Acta Informatica Pragensia 2023, 12(1), 141-159 | DOI: 10.18267/j.aip.2112719

Multi-Class Skin Cancer Classification Using a Hybrid Dynamic Salp Swarm Algorithm and Weighted Extreme Learning Machines with Transfer Learning

Ramya Panneerselvam ORCID..., Sathiyabhama Balasubramaniam ORCID...
Department of Computer Science and Engineering, Sona College of Technology, Salem, India

Skin cancer is a significant healthcare problem with a high mortality rate worldwide. Skin lesions occur due to the abnormal growth of skin cells in humans. Failure of early prediction and proper lesion diagnosis may lead to a malignant stage. In recent times, different skin lesion images have appeared with high similarity. Hence, classification is a more challenging task with imbalances in the dataset. The proposed work is implemented as a hybrid model with a dynamic salp swarm algorithm (DSSA) with a weighted extreme learning machine (DSSA-WELM) that addresses the imbalances in the dataset and performs the classification with higher accuracy. GoogleNet is a pre-trained network model used with the hybrid model, which helps converge faster with the optimization process. The extreme learning machine (ELM) is a multiclass classifier for accurate dermoscopic image classification. The DSSA, the best feature selection algorithm enhances the classification accuracy of the WELM. Image classification is accomplished with the International Skin Imaging Collaboration 2019 benchmark dataset. The proposed solution classifies images into eight classes: melanoma, melanocytic nevus, basal cell carcinoma, actinic keratosis, dermatofibroma, vascular lesion, squamous cell carcinoma and unknown lesion. The efficiency of the proposed solution is proved by comparing it with various state-of-the-art approaches such as support vector machine (SVM), ELM, and particle swarm optimization (PSO) methods. Results are evaluated using standard metrics of sensitivity, specificity and precision. The proposed solution outperforms all these older approaches.

Keywords: Skin cancer classification; Convolution neural network; Transfer learning; Extreme learning machine; Swarm algorithm; Metaheuristics.

Received: November 29, 2022; Revised: February 10, 2023; Accepted: March 9, 2023; Prepublished online: March 9, 2023; Published: April 19, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Panneerselvam, R., & Balasubramaniam, S. (2023). Multi-Class Skin Cancer Classification Using a Hybrid Dynamic Salp Swarm Algorithm and Weighted Extreme Learning Machines with Transfer Learning. Acta Informatica Pragensia12(1), 141-159. doi: 10.18267/j.aip.211
Download citation

References

  1. Afza, F., Sharif, M., Khan, M. S., Tariq, U., Yong, H., & Cha, J. (2022). Multiclass Skin Lesion Classification Using Hybrid Deep Features Selection and Extreme Learning Machine. Sensors, 22(3), 799. https://doi.org/10.3390/s22030799 Go to original source...
  2. ASCO. (2022). Melanoma: Statistics. American Society of Clinical Oncology. https://cancer.net/cancer-types/melanoma/statistics
  3. Cao, W., Patwary, M. J. A., Yang, P., Wang, X., & Ming, Z. (2019). An Initial Study on the Relationship Between Meta Features of Dataset and the Initialization of NNRW. In International Joint Conference on Neural Network. IEEE. https://doi.org/10.1109/ijcnn.2019.8852219 Go to original source...
  4. Deepa, T., Sathiyabhama, B., Akilandeswari, J., & Gopalan, N. (2014). Action fuzzy rule based classifier for analysis of dermatology databases. International Journal of Biomedical Engineering and Technology, 15(4), 360-379. https://doi.org/10.1504/ijbet.2014.064828 Go to original source...
  5. De Tejada, M. G., Bilbao, A., Baré, M., Briones, E., Sarasqueta, C., Quintana, J. M., & Escobar, A. (2016). Association of social support, functional status, and psychological variables with changes in health-related quality of life outcomes in patients with colorectal cancer. Psycho-Oncology, 25(8), 891-897. https://doi.org/10.1002/pon.4022 Go to original source...
  6. Guo, L., & Ding, S. (2015). A hybrid deep learning CNN-ELM model and its application in handwritten numeral recognition. Journal of Computational Information Systems, 11(7), 2673-2680. https://doi.org/10.12733/jcis13987 Go to original source...
  7. Hosny, K. M., Kassem, M. a. E., & Fouad, M. M. M. (2020). Classification of Skin Lesions into Seven Classes Using Transfer Learning with AlexNet. Journal of Digital Imaging, 33(5), 1325-1334. https://doi.org/10.1007/s10278-020-00371-9 Go to original source...
  8. Hossin, M. A., Rupom, F. F., Mahi, H. R., Sarker, A., Ahsan, F., & Warech, S. (2020). Melanoma Skin Cancer Detection Using Deep Learning and Advanced Regularizer. In International Conference on Advanced Computer Science and Information Systems. IEEE. https://doi.org/10.1109/icacsis51025.2020.9263118 Go to original source...
  9. Huang, G., Zhu, Q., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1-3), 489-501. https://doi.org/10.1016/j.neucom.2005.12.126 Go to original source...
  10. Huang, G., Zhou, H., Ding, X., & Zhang, R. (2011). Extreme Learning Machine for Regression and Multiclass Classification. IEEE Transactions on Systems, Man, and Cybernetics, 42(2), 513-529. https://doi.org/10.1109/tsmcb.2011.2168604 Go to original source...
  11. Hussain, M., Bird, J. T., & Faria, D. R. (2018). A Study on CNN Transfer Learning for Image Classification. In Advances in Intelligent Systems and Computing, (pp. 191-202). Springer. https://doi.org/10.1007/978-3-319-97982-3_16 Go to original source...
  12. ISIC. (2019). Skin Lesion Images for Melanoma Classification. https://www.kaggle.com/datasets/andrewmvd/isic-2019
  13. Kannojia, S. P., & Jaiswal, G. (2018). Ensemble of Hybrid CNN-ELM Model for Image Classification. In International Conference on Signal Processing (pp. 538-541). IEEE. https://doi.org/10.1109/spin.2018.8474196 Go to original source...
  14. Kassem, M. a. E., Hosny, K. M., & Fouad, M. M. M. (2020). Skin Lesions Classification Into Eight Classes for ISIC 2019 Using Deep Convolutional Neural Network and Transfer Learning. IEEE Access, 8, 114822-114832. https://doi.org/10.1109/access.2020.3003890 Go to original source...
  15. Keras. (2023). Keras Applications. http://keras.io/api/applications
  16. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. https://doi.org/10.1145/3065386 Go to original source...
  17. Lu, H., Wang, X., Fei, Z., & Qiu, M. (2014). The Effects of Using Chaotic Map on Improving the Performance of Multiobjective Evolutionary Algorithms. Mathematical Problems in Engineering, 2014, Article ID 924652. https://doi.org/10.1155/2014/924652 Go to original source...
  18. Mirjalili, S., Gandomi, A. H., Mirjalili, S., Saremi, S., Faris, H., & Mirjalili, S. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191. https://doi.org/10.1016/j.advengsoft.2017.07.002 Go to original source...
  19. Olatunji, S. O., & Arif, H. (2014). Identification of Erythemato-Squamous Skin Diseases Using Support Vector Machines and Extreme Learning Machines: A Comparative Study towards Effective Diagnosis. Transactions on Machine Learning and Artificial Intelligence, 2(6), Article no. 124. https://doi.org/10.14738/tmlai.26.812 Go to original source...
  20. O'Reilly. (2023). Using the Theano backend with Keras. https://www.oreilly.com/library/view/keras-deep-learning/9781788621755/c89ce815-17a2-4fde-b8b6-97c677c6494f.xhtml
  21. Sasikala, S., Kumar, S. A., Shivappriya, S. N., & Priyadharshini, T. (2020). Towards Improving Skin Cancer Detection Using Transfer Learning. Bioscience Biotechnology Research Communications, 13(11), 55-60. https://doi.org/10.21786/bbrc/13.11/13 Go to original source...
  22. Sriwong, K., Bunrit, S., Kerdprasop, K., & Kerdprasop, N. (2019). Dermatological Classification Using Deep Learning of Skin Image and Patient Background Knowledge. International Journal of Machine Learning and Computing, 9(6), 862-867. https://doi.org/10.18178/ijmlc.2019.9.6.884 Go to original source...
  23. Teng, Y., Yu, Y., Li, S., Huang, Y., Xu, D., Tao, X., & Fan, Y. (2021). Ultraviolet Radiation and Basal Cell Carcinoma: An Environmental Perspective. Frontiers in Public Health, 9. https://doi.org/10.3389/fpubh.2021.666528 Go to original source...
  24. Tschandl, P., Rosendahl, C., & Kittler, H. (2018). The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific Data, 5(1). https://doi.org/10.1038/sdata.2018.161 Go to original source...
  25. Tubishat, M., Jaafar, S., Alswaitti, M., Mirjalili, S., Idris, N., Ismail, M. A., & Omar, M. S. (2021). Dynamic Salp swarm algorithm for feature selection. Expert Systems With Applications, 164, 113873. https://doi.org/10.1016/j.eswa.2020.113873 Go to original source...
  26. Wang, J., Lu, S., Wang, S., & Zhang, Y. (2022). A review on extreme learning machine. Multimedia Tools and Applications, 81(29), 41611-41660. https://doi.org/10.1007/s11042-021-11007-7 Go to original source...
  27. Xu, Z., Sheykhahmad, F. R., Ghadimi, N., & Razmjooy, N. (2020). Computer-aided diagnosis of skin cancer based on soft computing techniques. Open Medicine, 15(1), 860-871. https://doi.org/10.1515/med-2020-0131 Go to original source...
  28. Zhang, B., Zhou, X. S., Yichen, L., Zhang, H., Yang, H., Ma, J., & Ma, L. (2021). Opportunities and Challenges: Classification of Skin Disease Based on Deep Learning. Chinese Journal of Mechanical Engineering, 34(1). https://doi.org/10.1186/s10033-021-00629-5 Go to original source...
  29. Zong, W., Huang, G., & Chen, Y. (2013). Weighted extreme learning machine for imbalance learning. Neurocomputing, 101, 229-242. https://doi.org/10.1016/j.neucom.2012.08.010 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.