Acta Informatica Pragensia 2025, 14(2), 272-281 | DOI: 10.18267/j.aip.2701516
Universal Basic AI Access: Countering the Digital Divide
- 1 Institute of Political Science, Faculty of Social Sciences, Charles University, Prague, Czech Republic
- 2 Department of Philosophy, Faculty of Economics, Prague University of Economics and Business, Prague, Czech Republic
- 3 Department of Managerial Economics, Faculty of Business Administration, Prague University of Economics and Business, Prague, Czech Republic
Generative artificial intelligence (GAI) presents an opportunity to democratize access to high-performance, easy-to-use tools of productivity enhancement. However, current adoption patterns suggest that it may instead amplify existing digital divides. The aim of this paper is to propose a policy intervention to ensure equitable access to frontier GAI capabilities: the universal basic AI access (UBAI). Relying on literature research and theoretical analysis, we examine two implementation variants: a voucher-based system making use of commercial providers (UBAI-Light) and direct public provision of GAI services (UBAI-Heavy). We also consider a gradual implementation approach that allows policymakers to support an immediate capture of democratizing benefits while building the capacity for a more substantive future government involvement, should it become necessary. Given the rapid pace of GAI development and adoption, we conclude that timely implementation of UBAI could help prevent the spread of GAI-driven inequalities before they become entrenched.
Keywords: Generative artificial intelligence; Digital divide; Technology policy; Universal basic services; Digital inequality; AI governance.
Received: February 2, 2025; Revised: May 23, 2025; Accepted: May 31, 2025; Prepublished online: June 29, 2025; Published: July 26, 2025 Show citation
References
- Acemoglu, D., & Autor, D. H. (2011). Skills, Tasks and Technologies: Implications for Employment and Earnings. In Handbook of Labor Economics (Vol. 4, Part B, pp. 1043-1171). Elsevier. https://doi.org/10.1016/S0169-7218(11)02410-5
Go to original source...
- Autor, D. H. (2019). Work of the Past, Work of the Future. AEA Papers and Proceedings, 109, 1-32. https://doi.org/10.1257/pandp.20191110
Go to original source...
- Aschenbrenner, L. (2024). Situational Awareness: The Decade Ahead. https://situational-awareness.ai/
- Bick, A., Blandin, A., & Deming, D. J. (2024). The Rapid Adoption of Generative AI: Working Paper 32966. National Bureau of Economic Research. https://doi.org/10.3386/w32966
Go to original source...
- Brynjolfsson, E., Li, D., & Raymond, L. (2025). Generative AI at Work. The Quarterly Journal of Economics, 140(2), 889-942. https://doi.org/10.1093/qje/qjae044
Go to original source...
- Burgess, M., & Newman, L. (2025). DeepSeek's Popular AI App Is Explicitly Sending US Data to China. Wired. https://www.wired.com/story/deepseek-ai-china-privacy-data/
- Corduneanu, R., Winters, S., Michalski, J., Horton, R., Sahu, R. K., & Echániz, J. (2024). Europeans are optimistic about generative AI but there is more to do to close the trust gap. Deloitte Insights. https://www2.deloitte.com/us/en/insights/topics/digital-transformation/trust-in-generative-ai-in-europe.html
- Cottier, B., You, J., Martemianova, N., & Owen, D. (2024). How Far Behind Are Open Models? https://epoch.ai/blog/open-models-report
- Cui, Z., Demirer, M., Jaffe, S., Musolff, L., Peng, S., & Salz, T. (2025). The Effects of Generative AI on High-Skilled Work: Evidence from Three Field Experiments with Software Developers. Social Science Research Network. https://doi.org/10.2139/ssrn.4945566
Go to original source...
- Dal Bó, E. (2006). Regulatory Capture: A Review. Oxford Review of Economic Policy, 22(2), 203-225. https://doi.org/10.1093/oxrep/grj013
Go to original source...
- De Simone, M., Tiberti, F., Mosuro, W., Manolio, F., Barron, M., & Dikoru, E. (2025). From chalkboards to chatbots: Transforming learning in Nigeria, one prompt at a time. World Bank Blogs. https://blogs.worldbank.org/en/education/From-chalkboards-to-chatbots-Transforming-learning-in-Nigeria
- Dell'Acqua, F., McFowland III, E., Mollick, E. R., Lifshitz-Assaf, H., Kellogg, K., Rajendran, S., Krayer, L., Candelon, F., & Lakhani, K. R. (2023). Navigating the Jagged Technological Frontier: Field Experimental Evidence of the Effects of AI on Knowledge Worker Productivity and Quality. Social Science Research Network. https://doi.org/10.2139/ssrn.4573321
Go to original source...
- European Commission. (2025). The Digital Europe Programme. https://digital-strategy.ec.europa.eu/en/activities/digital-programme
- Feuerriegel, S., Hartmann, J., Janiesch, C., & Zschech, P. (2024). Generative AI. Business & Information Systems Engineering, 66(1), 111-126. https://doi.org/10.1007/s12599-023-00834-7
Go to original source...
- Garg, J. (2024). Open AI's O3 Benchmarking: Redefining Standards in AI Performance. Gocodeo.com. https://www.gocodeo.com/post/open-ais-o3-benchmarking
- Gottschalk, F., & Weise, C. (2023). Digital equity and inclusion in education: An overview of practice and policy in OECD countries. OECD Education Working Papers. https://doi.org/10.1787/7cb15030-en
Go to original source...
- Kestin, G., Miller, K., Klales, A., Milbourne, T., & Ponti, G. (2024). AI Tutoring Outperforms Active Learning. Research Square. https://doi.org/10.21203/rs.3.rs-4243877/v1
Go to original source...
- Khowaja, S. A., Khuwaja, P., Dev, K., Wang, W., & Nkenyereye, L. (2024). ChatGPT Needs SPADE (Sustainability, PrivAcy, Digital divide, and Ethics) Evaluation: A Review. Cognitive Computation, 16(5), 2528-2550. https://doi.org/10.1007/s12559-024-10285-1
Go to original source...
- Kokotajlo, D., Alexander, S., Larsen, T., Lifland, E., & Dean, R. (2025). AI 2027. AI 2027. https://ai-2027.com/
- Li, M., Sun, J., & Tan, X. (2024). Evaluating the effectiveness of large language models in abstract screening: A comparative analysis. Systematic Reviews, 13(1), 219. https://doi.org/10.1186/s13643-024-02609-x
Go to original source...
- MacAskill, W. & Moorhouse, F. (2025). Preparing for the Intelligence Explosion. Forethought. https://www.forethought.org/research/preparing-for-the-intelligence-explosion
- Mendelevitch, O., Haihao, S., & Bharadwaj, D. (2024). Do Smaller Models Hallucinate More?. Vectara. https://www.vectara.com/blog/do-smaller-models-hallucinate-more
- Mollick, E. (2023). Detecting the Secret Cyborgs. One Useful Thing. https://www.oneusefulthing.org/p/detecting-the-secret-cyborgs
- Moravec, V., & Kormaňák, M. (2024). Ve stínu ChatGPT: Proměny vnímání a využívání umělé inteligence českou populací a žurnalistikou. Ipsos.
- National Telecommunications and Information Administration. (2021). Digital Equity Act Programs. https://broadbandusa.ntia.doc.gov/funding-programs/digital-equity-act-programs?page=1
- Novelli, C., Casolari, F., Rotolo, A., Taddeo, M., & Floridi, L. (2024). Taking AI risks seriously: A new assessment model for the AI Act. AI & Society, 39(5), 2493-2497. https://doi.org/10.1007/s00146-023-01723-z
Go to original source...
- Noy, S., & Zhang, W. (2023). Experimental Evidence on the Productivity Effects of Generative Artificial Intelligence. Social Science Research Network. https://doi.org/10.2139/ssrn.4375283
Go to original source...
- Portes, J., Reed, H., & Percy, A. (2017). Social prosperity for the future: A proposal for Universal Basic Services. Institute for Global Prosperity.
- Potnis, D., Tahamtan, I., & McDonald, L. (2025). Negative consequences of information gatekeeping through algorithmic technologies: An Annual Review of Information Science and Technology (ARIST) paper. Journal of the Association for Information Science and Technology, 76(1), 262-288. https://doi.org/10.1002/asi.24955
Go to original source...
- Robles, P., & Mallinson, D. J. (2023). Catching up with AI: Pushing toward a cohesive governance framework. Politics & Policy, 51(3), 355-372. https://doi.org/10.1111/polp.12529
Go to original source...
- Stanford University. (2025). Artificial Intelligence Index Report 2025. Stanford Institute for Human-Centered Artificial Intelligence. https://hai.stanford.edu/ai-index
- Špecián, P. (2024). Machine Advisors: Integrating Large Language Models Into Democratic Assemblies. Social Epistemology, (in press), 1-16. https://doi.org/10.1080/02691728.2024.2379271
Go to original source...
- Team Gemini Google, et al. (2024). Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv. https://doi.org/10.48550/arXiv.2403.05530
Go to original source...
- Van Parijs, P. (1995). Real Freedom for All: What (if Anything) Can Justify Capitalism?. Clarendon Press.
- Voorwinden, A. (2021). The privatised city: Technology and public-private partnerships in the smart city. Law, Innovation and Technology, 13(2), 439-463. https://doi.org/10.1080/17579961.2021.1977213
Go to original source...
- Vosloo, S., & Helsper, E. (2023). A global review of selected digital inclusion policies. Unicef - Innocenti - Global Office of Research and Foresight. https://www.unicef.org/innocenti/reports/global-review-selected-digital-inclusion-policies
- Wang, R. E., Ribeiro, A. T., Robinson, C. D., Loeb, S., & Demszky, D. (2024). Tutor CoPilot: A Human-AI Approach for Scaling Real-Time Expertise. arXiv. https://arxiv.org/abs/2410.03017v2
Go to original source...
- Zhu, Y. (2023). The Case for Universal Basic Computing Power. arXiv. https://doi.org/10.48550/arXiv.2311.12872
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.