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Abstract  

Deep learning has made identifying breast cancer lesions in mammography images an easy task in 

modern medicine, which has helped improve the diagnosis efficiency, sensitivity and accuracy by 

precisely identifying breast cancer from mammography images, contributing to timely detection and 

maintaining consistent performance. This paper presents the steps and strategies to develop a deep 

learning (DL) model to detect lesions in mammography images, based on U-Net architecture for precise 

segmentation, which has been developed for biomedical image segmentation, and incorporating 

ResNet34 as its encoder to extract features. Next, we employ the FastAI library, which simplifies and 

accelerates the model training tasks. For the data, studies and available resources lead us to INbreast, 

which is built with full-field digital mammograms contrary to other digitized mammograms. We 

obtained a high accuracy of 98% on the INbreast database, which is very challenging compared to state-

of-the-art results. 
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1 Introduction 

The recent advances in computing power have helped computer scientists build models with high 

computing requirements, specifically for image processing (Fajrianti et al., 2022). From a collection of 

annotated images, models can be trained and produce better and faster results than a human domain 

expert (Schaudt et al., 2023). Radiologists need to screen and visualize hundreds of medical images. This 

task requires very high precision to detect all abnormalities. Clinical treatment can then be adopted. If we 

could automatize this task, or at least give the human expert a higher representation of the image, in which 

suspicious regions are highlighted, diseases would be easier to detect. 

The recent advancement of artificial intelligence techniques, especially deep learning, continues to attract 

the medical imaging community’s interest to improve the precision of cancer screening (Jiang et al., 2023). 

Due to statistics (Iacoviello et al., 2021), breast cancer is the leading cause of death in women between 20-

50 years old. When patients are taken care of at an early stage of the disease, their vital prognosis improves. 

The process that patients undergo during diagnosis involves two different phases. First, X-ray images of 

each breast are taken from two different angles during a routine mammogram: examinations involve dual-

view mammography (craniocaudal, CC, and mediolateral oblique, MLO) of each breast (Moshina et al., 

2022), and one or two experts examine these electromagnetic waves for abnormalities. Afterwards, 

diagnostic evaluations are made for suspicious cases (Akhund et al., 2023). Despite the benefits, screening 

mammography results are threatened by a high risk of false positives. Screening mammograms needs to 

be evaluated by experienced readers. This procedure is monotonous, tiring, lengthy, costly and beyond 

all other consideration, prone to errors (Piva et al., 2023). In order to help radiologists, the development of 

computer-assisted detection and diagnostic CAD software has improved the predictive accuracy of 

screening mammography. CAD systems have been developed since the 1990s to ameliorate this problem 

(Dominguez et al., 2020). These applications review a mammogram and highlight any worrisome areas 

that the radiologist should examine. This system is expensive because of its costs and the necessity of 

maintenance. Health care systems in developing countries fail to cover these costs, thus offering equivalent 

functions using simpler software could help make those services more affordable and accessible. 

Our work seeks to establish an effective deep learning model for detecting breast cancer lesions in 

mammography images. To achieve this, we combine the ResNet34 image classification model with the U-

Net architecture for biomedical image segmentation. This method takes advantage of the strengths of U-

Net in accurate and genuine segmentation (Bal-Ghaoui et al., 2023) and the ability of ResNet34 to reliably 

identify and localize lesions in mammography images, especially in situations with irregular forms and 

significant heterogeneity (Silalahi, 2021). The experimentation approach involved numerous stages, 

beginning with the search for a suitable dataset for the task at hand. Following a thorough review, we 

decided to use the INbreast dataset for transfer learning, because of its extensive and carefully curated 

mammography collection. To speed up the training process and boost efficiency, we employed the robust 

capabilities of the FastAI library, which is known for its user-friendly interface and outstanding 

functionality in deep learning tasks (Hubens et al., 2022). During the first model development experiment, 

we entailed various configurations of the U-Net architecture and incorporated transfer learning with 

INbreast. Preliminary results gave modest performance (accuracy = 0.586, sensitivity = 0.670 and 

specificity = 0.669), which required further examination for improvement. 

With trust in the authenticity of the INbreast dataset, we looked into architectural refinement to unleash 

its full potential, exploiting nuanced insights to boost the model accuracy, sensitivity and specificity. The 

rest of this article is organized as follows: a detailed review of recent studies describing deep learning 

model used in breast cancer detection is discussed in Section 2. Section 3 consists in describing the database 

used and the model. Section 4 reviews its performance compared to existing similar experiments. At the 

end of the study, a conclusion and perspectives of our work are provided. 
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2 Related Works 

Deep learning is a critical technology for future applications and is giving interesting solutions to medical 

analytic difficulties, because of its huge success in new inventions and filling the academic and medical 

gap. Among the medical fields, mammography has seen a great implementation of deep learning research. 

This section presents a detailed review of recent studies presenting deep learning models for lesion 

detection in mammography images. We present the studies grouped by the deep learning model topology 

used: FCNN, CNN, Multi-scale CNN, ResNet and Multi-view ResNet. 

Liu et al. (2021) studied a deep learning (DL) model that integrated mammography and clinical variables 

to predict the malignancy of BI-RADS 4 microcalcifications in breast cancer screening (Figure 1). 

 

Figure 1. Schematic model illustration. Source: (Liu et al., 2021). 

The researchers tested the model on a dataset consisting of mammograms taken from 71 patients, in which 

71 lesions were detected: 37 malignant and 34 benign. The model is combined and incorporates 

mammography and clinical variables. Its evaluation was done with the area under the receiver operating 

characteristic curve (AUC) of 0.910, sensitivity of 85.3% and specificity of 91.9% in predicting malignant 

BI-RADS 4 microcalcifications in the testing dataset. The diagnostic performance of junior radiologists 

improved after AI assistance, with increased AUC and improved interobserver agreement.  

As one of the remarkable limitations, as already cited in the paper, is that some patients’ reports were 

excluded, which means that data cannot be considered representative of the existing population. Besides, 

the model utility in detection was somehow limited because of focusing on BI-RADS 4 mammographic 

microcalcification type.  
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Tsai et al. (2022) presented a deep neural network (DNN) model for BI-RADS classification of screening 

mammography (Figure 2). 

 

Figure 2. Schematic illustration of BI-RADS classification model. Source: (Tsai et al., 2022). 

The proposed model was trained using block-based images segmented from a mammogram dataset of 

Taiwanese women. It achieved an overall accuracy of 94.22%, an average sensitivity of 95.31%, an average 

specificity of 99.15%, and an area under curve (AUC) of 0.9723. The work shared almost the same 

limitations as the previous paper, especially in restricting the model utility by focusing on only BI-RADS 

categories. 

Ribli et al. (2018) created a Faster R-CNN model based on computer-aided detection in order to ensure 

whether a mammogram is malignant or benign (Figure 3).  

 

Figure 3. Outline of Faster R-CNN model. Source: (Ribli et al., 2018). 
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The proposed model represented a layering branch of convolutional layers known as a region proposal 

network (RPN), found above the last convolutional layer of the original network. It experienced training 

on two different databases: the public Digital Database for Screening Mammography (DDSM) with 2620 

digitized screening mammography examinations and a dataset from the Semmelweis University in 

Budapest that contains 847 FFDM images of 214 examinations, besides tested on the public INbreast 

dataset with 115 FFDM cases with pixel-level ground truth annotations and histological proof for cancers. 

After the testing phase, the system performance reached the highest AUC score reported on the INbreast 

dataset with a fully automated system based on a single model at that time, with AUC = 0.95. The 

limitation of the model comes from the small size of the publicly available pixel-level annotated dataset 

that affected the classification performance. 

Meanwhile, Kooi et al. (2017) presented a convolutional neural network model trained on a large dataset 

of mammographic lesions compared with some of the most recent ones in the mammography CAD system 

at the time, using a custom-created feature set (Figure 4). The purpose was to build a system which is able 

to read mammograms independently. 

 

Figure 4. Graphical model abstract. Source: (Kooi et al., 2017). 

Hologic Selenia digital mammography equipment was utilized to record the mammograms, which were 

obtained from a major screening programme in the Netherlands. In order to accelerate the process, images 

went from 70 to 200 microns, and to fend off information loss and bias, raw images were used and a log 

transform was exclusively proffered. The model used 44,090 mammographic views, which have been 

divided into 39,872 views to train the model and 4218 to validate it. As for testing, 18,182 images of 2064 

patients with 271 annotated malignant lesions were taken. This model was compared with three 

experienced readers at a patch level, and it was shown that the human readers and CNN had the same 

capacity. As a result, this model outperformed the state-of-the art CAD system; therefore, it has 

considerable potential to advance the field of research. However, some CNN researchers proved its 

limitation for this task, because it may not generalize well to different imaging modalities or populations 

if the training data are not representative. 

Hadad et al. (2017) applied a cross-modal fine-tuning approach on a convolutional neural network to 

identify masses in breast MRI images after training it on mammography X-ray images. The small size of 

the training set and the adoption of this strategy were justified by the lack of domain-specific pre-trained 
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models that could be applied without training the network. Cross-modal transfer learning has a positive 

effect on improving the classification performance in this case, producing a robust model able to fix issues 

from another domain or from a different imaging modality. The strategy used in cross-modal transfer 

learning is fine-tuning. As learning rates of other layers increase, certain network weights are fixed, and 

the decision layer is adjusted to the desired output size. 

Figure 5 describes the VGG-Net and MG-Net architectures. 

 

Figure 5. Network architectures of VGG-Net and MG-Net. Source: (Hadad et al., 2017) 

Two datasets were used in the experiment: the mammography (MG) dataset with full-field digital visuals, 

which were taken from 282 patients, and the MRI dataset including dynamic contrast-enhanced sequences 

with data of 123 patients. Both datasets were reviewed by a breast radiologist, identifying mass of lesions 

and delineating their limitations with the assignment of each lesion with a BI-RADS score. The 

experiments involved three types of evaluation: training a CNN from scratch using MR images (achieved 

accuracy of 0.94 and AUG of 0.98), fine-tuning a VGG-Net CNN (it reached accuracy of 0.90 and AUG of 

0.95) and a fine-tuning a CNN on MG-Net (with accuracy of 0.93 and AUG of 0.97). As already mentioned 

in the original paper, the model faced some limitations while working on small sizes of datasets. 

Lotter et al. (2017) proposed a multi-scale convolutional neural network model trained with a curriculum 

learning strategy. It proceeded in two stages, starting with training a patch classifier, followed by a full 

image classification (Figure 6). 

 

Figure 6. Schematic of multi-scale CNN and curriculum learning. Source: (Lotter et al., 2017). 

The model was evaluated on the Digital Database for Screening Mammography. That was separated into 

87% for training, 5% for validation and 8% for testing. This choice was made to increase the amount of 
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data to be trained, while ensuring a suitable interval for the last results. The experiment started with 

training segmentation masks of lesions from mammograms used to train CNN-based patch classifiers, 

and after that, the learned features were used to initialize a scanning-based model that rendered a 

judgment on the entire image and is trained end-to-end on outcome data. The results showed that the 

model achieved AUROC of 0.92. 

De Moor et al. (2018) worked on a convolutional neural network model with modified U-Net architecture 

to detect and segment malignant lesions from digital mammography images. The contribution consisted 

in doubling the filter numbers of each block and applying batch normalization (Figure 7). 

 

Figure 7. Diagram describing U-Net architecture with study contribution. Source: (de Moor et al., 2018). 

The database used contained 7196 digital mammography examinations with 28,294 images, which were 

divided in a random way into training (50%), validation (10%) and testing (40%). Its performance was 

evaluated with free receiver operating characteristic (FROC) analysis, which gave a result of sensitivity of 

0.98 and false-positive rate per image of 7.81 in the examination-based FROC. The main limitation of the 

model is that it only studied soft tissue lesions. 

Dhungel et al. (2017) made a multi-view deep residual neural network (mResNet) model, created for fully 

automated classification of mammograms (Figure 8).  
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Figure 8. Diagram illustrating model' classification and mask generation process. Source: (Dhungel et al., 2017). 

The model was formed by a sequence of outputs of a group of associated deep residual networks, which 

had six input images, including unregistered craniocaudal (CC) and mediolateral oblique (MLO) 

mammogram views and associated automatically detected lesions. The publicly available INbreast 

dataset, which comprises 116 cases containing 410 images, was used for the experiment, and a five-fold 

cross-validation technique was used to split the dataset. As a result, it produced an AUC of 0.8. The 

primary limitation of the work is that due to concerns with proprietary intellectual property, a number of 

algorithms and results were not accessible in the open literature. 

Al-Antari et al. (2018) presented a deep learning model using YOLO for mass detection, FrCn for mass 

segmentation and CNN for mass classification (Figure 9). 

 

Figure 9. Diagram illustrating model process. Source: (Al-Antari et al., 2018). 
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Their model used the INbreast database of X-ray mammography to test its performance. For training, a 

large amount of annotated dataset was required, so data augmentation was used to increase the size of 

the dataset, giving a total of 896 mammograms. The evaluation results of the proposed CAD system via 

four-fold cross-validation tests showed a mass detection accuracy of 98.96%, a mass segmentation 

accuracy of 92.97% and a mass classification accuracy of 95.64%. The only limitation is that it requires a 

large dataset to function properly. 

Al-Masni et al. (2018) proposed a novel CAD system based on ROI-based convolutional neural network 

(CNN) which is called You Only Look Once (YOLO). This model passes through four phases: 

preprocessing, feature extraction, mass detection and finally mass classification (Figure 10). 

 

Figure 10. Diagram describing YOLO process. Source: (Al-Masni et al., 2018) 

The Digital Database for Screening Mammography (DDSM) was used for training and testing the 

proposed model, its small size required the augmentation technique to increase the training data. As a 

result, this CAD system had an accuracy of mass location detection of 99.7%  and classification accuracy 

of 97%. Just like the previous work (this experiment was done by the same team), the model requires a 

large dataset to function effectively.  

Platania et al. (2017) used convolutional neural network model called BC-DROID for automated breast 

cancer detection and diagnosis (Figure 11).  

 

Figure 11. Diagram depicting BC-DROID process. Source: (Platania et al., 2017). 

Image Retrieval in Medical Applications (IRMA) was used, plus some additional metadata, which were 

provided by the original DDSM dataset. The deep neural network model has two principal components. 

The first one is a stack of 3x3 convolutional layers, to extract the features. The second component is three 

fully connected layers, which work on predicting the output. This model achieved a detection accuracy of 

up to 90% and a classification accuracy of 93.5% (AUC of 92.315%). It is considered the first work enabling 

both automated detection and diagnosis of these areas in one step from full mammogram images. The 

research revealed that the model struggles with detecting objects that are very small or very close together, 

because of the fixed spatial resolution characteristic. 
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Following is a summarized table of the listed works, which highlights the key aspects of each study, 

including the type of model, datasets, performance metrics and notable limitations (Table 1). 

Table 1. Key aspects of each mentioned study. 

Study Model type Dataset Performance Limitations 

Liu et al. (2021) Combined DL 

model 

71 patients, 71 

lesions 

AUC: 0.910, 

sensitivity: 85.3%, 

specificity: 91.9% 

Not representative of 

the population, 

focused on BI-RADS 4 

microcalcifications 

Tsai et al. (2022) DNN-based model Taiwanese women 

mammograms 

Accuracy: 94.22%, 

sensitivity: 95.31%, 

specificity: 99.15%, 

AUC: 0.9723 

Restricted to BI-RADS 

categories 

Ribli et al. (2018) Faster R-CNN DDSM, 

Semmelweis 

University, 

INbreast 

Highest AUC on 

INbreast: 0.95 

Small size of publicly 

available pixel-level 

annotated dataset 

affecting classification 

performance 

Kooi et al. (2017) CNN 44,090 

mammographic 

views, 18,182 

images for testing 

Comparable to 

human readers 

CNNs may not 

generalize well to 

different imaging 

modalities or 

populations 

Hadad et al. (2017) CNN with cross-

modal transfer 

Mammography X-

ray and MRI 

datasets 

Accuracy: 0.94 

(training), 0.90 

(VGG-Net fine-

tuning), 0.93 (MG-

Net fine-tuning) 

Small dataset sizes 

Lotter et al. (2017) Multi-scale CNN DDSM AUROC: 0.92 No specific limitations 

mentioned 

de Moor et al. 

(2018) 

Modified U-Net 

CNN 

7,196 digital 

mammography 

examinations, 

28,294 images 

Sensitivity: 0.98, 

false positive rate 

per image: 7.81 

Focused only on soft 

tissue lesions 

Dhungel et al. 

(2017) 

 

Multi-view deep 

residual network 

INbreast dataset, 

116 cases, 410 

images 

AUC: 0.8 Proprietary algorithms 

and results not 

publicly accessible 

Al-Antari et al. 

(2018) 

YOLO, FrCn, CNN INbreast database Detection accuracy: 

98.96%, 

segmentation 

accuracy: 92.97%, 

classification 

accuracy: 95.64% 

Requires large dataset 

for proper functioning 

Al-Masni et al. 

(2018) 

ROI-based CNN 

(YOLO) 

DDSM Mass location 

detection accuracy: 

99.7%, classification 

accuracy: 97% 

Requires large dataset 

for proper functioning 

Platania et al. 

(2017) 

CNN (BC-DROID) IRMA, additional 

DDSM metadata 

Detection accuracy: 

90%, classification 

accuracy: 93.5%, 

AUC: 92.315% 

Struggles with very 

small or closely 

located objects due to 

fixed spatial resolution 

characteristic 
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After reviewing different methods applied to detecting lesions in mammography images, it can be 

concluded that there is a wide variety of methods that have been used. We cannot confirm any of the 

methods as being the most suitable, because each one has its own advantages and limitations, and the 

information available is very variable in quantity and quality. Also, there are many public and private 

datasets, thus comparing their performance is quite difficult, since each study used a different dataset. 

Besides, the large number of applications presented shows the interest of researchers in this field.  

3 Proposed Model  

A deep neural network is a neural network which contains more than two layers. It treats given data in a 

complex procedure by applying sophisticated mathematical modelling. Simonyan & Zisserman (2014) 

affirmed that that network depth is very important, and deep networks naturally integrate low/mid/high 

level features (Zeiler and Fergus, 2014) with an end-to-end multilayer classification besides the possibility 

of augmentation of feature levels according to the network depth. In the convergence stage, while the 

depth increases, the accuracy gets saturated and then quickly decreases. This is known as vanishing 

gradient. The gradients ensure the calculation of the loss function, which easily shrinks to zero after 

several applications of the chain rule. This change is not provided by overfitting, it is due to the additional 

layers, which leads to increasing the training error rate as reported by He and Sun (2015) and Srivastava 

et al. (2015). 

For this reason, a deep residual learning framework was created with layers that apply learning residual 

functions, which offers easier training for the networks that have additional layers compared to the old 

ones, besides giving the model the ability to acquire accuracy regardless of the depth, and the flexibility 

to any space increases because of the parameter space to explore. The name ResNet34 refers to the fact 

that its total number of weighted layers is 34 (Figure 12). 

 

Figure 12. Basic architecture of ResNet34. 

Meanwhile, ResNet34 architecture was inspired by the VGG networks: it consists of one convolutional 

and pooling step, followed by 4 layers of the same attitude with 3x3 filters (Figure 13), based on these 

rules:  

● The layers have an equal number of filters for the same output feature map size. 

● To maintain the time complexity per layer if the feature map size is cut in half, there must be twice 

as many filters (He et al., 2016). 
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A downsampling is performed by convolutional layers that have a stride of 2. The network ends with a 

global average pooling layer and a 1000-way fully-connected layer with softmax (Figure 12). 

 

Figure 13. Basic VGG-Net architecture. 

As we work on building a deep learning model to detect lesions in mammography images, we believe that 

ResNet34 suits the purpose: it won the 1st place in the tasks of ImageNet detection, ImageNet localization, 

COCO detection and COCO segmentation (He et al., 2016). 

3.1 Architecture 

Deep convolutional networks have made great success in visual recognition, but it has been limited by the 

size of datasets and networks. For this case, U-Net appears to give a hand to some types of deep neural 

networks that demand numerous annotated samples to provide successful training; thanks to data 

augmentation with elastic deformations, working with a limited number of annotated samples is 

sufficient. 

In biomedical image processing, each pixel is class-labelled; following this, Ciresan et al. (2012) trained a 

network for pixel prediction in a sliding window. The U-Net team observed some weaknesses: the 

network worked slowly and there was a trade-off between localization accuracy and the use of context. 

Based on this issue, U-Net was created. 

In this work, we used the U-Net network. As mentioned above, it was developed by Olaf Ronneberger, 

Philipp Fischer and Thomas Brox for biomedical image segmentation (Ronneberger et al., 2015). Its 

architecture is composed of two paths: firstly, the contraction path (encoder) extracts features holding the 

information of what is in the image using 3x3 convolutionals, each one followed by a linear unit (Relu) 

and a 2x2 max pooling layer with stride 2 for downsampling. During this step, the feature map is reduced. 

Secondly, the expansion path (the decoder), is for recovering the feature map size for the segmentation 

image, using up-convolution, which is an upsampling followed by 2x2 convolutions and 3x3 convolutions. 

U-Net won the ISBI cell tracking challenge in 2015. Also, this network is fast, segmentation of a 512x512 

image lasts less than a second using a recent GPU, as shown by Ronneberger et al. (2015). 

As our purpose is to develop a deep learning model for detecting lesions in mammography images, we 

find ResNet34 to be a suitable choice as the encoder within the selected U-Net architecture. Thus, 

introducing and developing the U-Net structure with ResNet34 as the encoder (Figure 14) is considered a 

novelty in detecting lesions in mammography images. Additionally, using tools such as the FastAI library 

and employing transfer learning with the INbreast dataset adds more innovation to our model. This 

approach has demonstrated its efficacy in medical segmentation tasks, as evidenced by papers specializing 

in lung image segmentation (Biyyala, 2023), pneumothorax segmentation in chest X-rays (Abedalla et al., 

2020) and optical coherence tomography layer segmentation (Yojana and Rani, 2023). Encouraged by these 

successes mainly using the U-Net architecture, we embarked on a study to apply this approach to a new 

problem domain, achieving remarkable results when compared to recent works. 
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Figure 14. U-Net architecture + ResNet34 implemented with PyTorch for road segmentation.  
Source: (Salcedo et al., 2022). 

3.2 Dataset 

Breast screening uses an X-ray test called mammogram, which detects malignant lesions that are 

impossible to see or feel. The earlier the condition is found, the better the patient’s chance to avoid breast 

removal (mastectomy) or chemotherapy. This mammogram needs to be taken at a special clinic or mobile 

breast screening unit. This is done by a female health practitioner. The breasts are X-rayed one at a time, 

by placing them on the X-ray machine and gently but firmly compressing with a clear plate. Two X-rays 

are taken of each breast separately at different angles. Currently used computer-aided detection 

approaches are based on machine learning for classification on top of manually and precisely designed 

features that describe an X-ray image. Breast cancer does not always have readily observable symptoms 

because of the tiny tumour portions that appear during mammography screening, which makes the 

classification generally unclear. For example, a full-field digital mammography image is typically 

4000x3000 pixels, although the region of concern for cancer may be as little as 100x100 pixels (Shen et al., 

2019). That is why numerous studies have focused solely on the classification of annotated lesions.  

The dataset used was obtained at the Breast Centre in CHSJ, Porto, under permission of both the hospital’s 

ethics committee and the National Committee of Data Protection. It was selected between April 2008 and 

July 2010, the acquisition equipment was Siemens MammoNovation full-field digital mammography, 

with a solid-state detecting tool of amorphous selenium, pixel size of 70 microns, and 14-bit contrast 

resolution (Moreira et al., 2012). The image matrix was 3328x4084 or 2560x3328 pixels, depending on the 

patient’s breast size. Images were saved in the DICOM format. 

A total of 115 cases were taken, where 90 had two images, namely the mediolateral oblique view and the 

craniocaudal view (Figure 15), of each breast and the other 25 cases were of women who had had a 

mastectomy and two views of only one breast were included. The dataset contains a total of 410 images, 8 

of the 91 cases with two views of the organ; besides, it was taken in separate sessions. The sample cases 

included: normal mammograms, mammograms with masses, mammograms with calcifications, 

architectural distortions (Figure 16), asymmetries and images with multiple findings (Moreira et al., 2012). 

While radiologists were examining and comparing the two breasts and the two views, they were marking 
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assessments about the abnormalities found and the recommended actions to be taken in each case. For 

this purpose, the American College of Radiology established the Breast Imaging Reporting and Data 

System (BI-RADS) scale to standardize the terminology of the mammographic report, the assessment of 

findings and the recommended actions to be taken. 

 

Figure 15. (a) Craniocaudal (CC) view of the right breast; (b) CC view of the left breast.  
Source: (Moreira et al., 2012). 

 

Figure 16. Annotation examples: (a) distortion (b) spiculated region. Source: (Moreira et al., 2012). 

Based on the level of suspicion, abnormalities were placed into one of six BI-RADS categories, as shown 

in Table 2. This dataset was chosen after studying many other databases. Its robustness depends on it 

being full-field digital mammograms, contrary to digitized mammograms; it presents a tremendous 

variation of cases, and is considered publicly available with precise annotations. Thus, the coverage of 

such technological development presents a decisive step to develop future CADs. 

Table 2. BI-RADS assessment categories. Source: (Moreira et al., 2012). 

Category Description 

0 Needs additional image evaluation and/or prior mammograms for comparison. 

1 Negative. 

2 Benign finding(s). 

3 Probably benign finding(s). Short-interval follow-up is suggested. 

4 Suspicious anomaly. Biopsy should be considered. 

5 Highly suggestive of malignancy. Appropriate action needs to be taken. 

6 Biopsy-proven malignancy. 
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4 Experiment 

4.1 Library 

FastAI is a research lab whose objective is to make AI accessible by offering an easy-to-use library built on 

top of PyTorch, as well as exceptionally good tutorials. After much research, we chose the FastAI library 

because it is considered a high-level library, which requires only a few lines of code to manipulate a model. 

Besides, it provides an implementation of the latest state-of-the-art techniques extracted from research 

papers, achieving state-of-the-art results for nearly any problem.  

4.2 Evaluation metrics 

Accuracy (ACC), sensitivity (SEN), specificity (SPE) and F1-score were chosen to describe the model 

performance. Accuracy (ACC) is determined by dividing the number of right predictions by the total. It is 

defined by the following equation: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  + 𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠   

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  +  𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠  + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  + 𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠  

 
(1) 

Sensitivity (SEN), also known as recall or true positive rate, measures the ability of a classification model 

to correctly identify positive instances among all actual positive instances. It is defined by the following 

equation: 

Sensitivity (recall) = 
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  + 𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠  
 (2) 

Specificity (SPE) measures the ability of a classification model to correctly identify negative instances 

among all actual negative instances. It is defined by the following equation: 

Specificity = 
 𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠  

𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠  + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  
 (3) 

The F1-score metric is the harmonic mean of precision and recall (sensitivity), which provides a balance 

between precision and recall, computing the correct predictions made by the model. It is defined by the 

following equation: 

F1-score = 2 * 
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (4) 

4.3 Results  

The experiment started by data upload, which was of different types, making us search for the appropriate 

method to deal with each type separately. We also had to convert the data to an easier and more 

convenient format in order to obtain data that are in line with the following approaches. After that, we 

entered the learning phase, starting with installing libraries and obtaining some methods that helped 

accomplish the task. Next, we trained the model without transfer learning and then with transfer learning 

to see what these changes would bring to the results. 

We started with the basic version of U-Net for breast cancer lesion detection. After testing, we noticed 

some limitations (Figure 17) that led us to search for a better solution. As mentioned above, we settled for 

ResNet34 as an encoder for U-Net, and that contributed to enhancing the model performance (Figure 18). 
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Figure 17. Procedural workflow of U-Net, besides its performance (segmentation and mask extraction), in which 
some limitations occurred. 

 

Figure 18. Model procedural workflow and performance using U-Net with ResNet34 as encoder, which helped fix 
the previous error. 
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We would like to note that the validation set and the training set were created by providing the validation 

set with 20% of the prepared dataset images. As a result, we got 275 images for training and 68 for 

validation. Our model achieved an accuracy of 0.891 with a validation loss that went down to 0.089 

without transfer learning. However, transfer learning with the pretrained U-Net encoder on the Imagenet 

dataset achieved an accuracy of 0.9890 and a validation loss of 0.031. Moreover, we noticed that the 

pretrained model had made a remarkable difference on both the result and the network learning speed, 

which performed better than the non-pretrained model. The results are summarized in Table 3. 

Table 3. Model performance. 

Method  Environment Dataset Training results Validation results 

U-Net Google 

colaboratory 

INbreast Accuracy = 0.717, 

Sensitivity = 0.801, 

Specificity = 0.730, 

F1-score = 0.775 

Accuracy = 0.586, 

Sensitivity = 0.670, 

Specificity = 0.669, 

F1-score = 0.603 

U-Net with 

ResNet34 as 

encoder 

Google 

colaboratory 

INbreast Accuracy = 0.979, 

Sensitivity = 0.983, 

Specificity = 0.974, 

F1-score = 0.981 

Accuracy = 0.986, 

Sensitivity = 0.970, 

Specificity = 0.969, 

F1-score = 0.983 

 

Furthermore, we studied the impact of the following hyperparameters on the model performance: epoch 

and loss function. Table 4 shows the obtained results.  

To identify the best epochs for optimal performance, metrics were monitored across different epochs of 

the training process. Table 4 describes the task of choosing the best one in which the model performs the 

best. Here, the 10th epoch stands out as the best one based on the provided metrics. There, the model 

showcased the lowest loss function value = 0.21, the highest values of accuracy = 0.98, sensitivity = 0.97, 

specificity = 0.96 and F1-score = 0.95. That indicates that it had converged well and effectively minimized 

errors during training. This finding contributed to speeding up the training process while preventing 

overfitting that could be caused by using more epochs. 

Table 4. Model performance in different epochs, according to evaluation metrics. 

Epoch Loss function Accuracy Sensitivity Specificity F1-score 

5 0.22 0.97 0.93 0.91 0.93 

10 0.21 0.98 0.97 0.96 0.95 

50 0.23 0.96 0.95 0.96 0.94 

100 0.23 0.95 0.89 0.94 0.92 

150 0.29 0.93 0.87 0.91 0.92 

200 0.24 0.94 0.89 0.92 0.91 

4.4 Comparative study 

Table 5 lists the performance of our model on both the training set and the validation set, compared to 

some previous studies on breast cancer detection, using the INbreast dataset (80% for training and 20% 

for validation) and accuracy as an evaluation metric in order to reveal the contribution of this work. 
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Table 5. Comparison between our model and recent studies. 

Method 
Evaluation 

dataset 
Training set (80%) Validation set (20%) 

This study INbreast Accuracy = 0.979, 

sensitivity = 0.983, 

specificity = 0.974, 

F1-score = 0.981 

Accuracy = 0.986, 

sensitivity = 0.970, 

specificity = 0.969, 

F1-score = 0.983 

DNN-based model (Tsai et al., 2022) INbreast Accuracy = 0.962, 

sensitivity = 0.950, 

specificity = 0.97 

F1-score = 0.949 

Accuracy = 0.952, 

sensitivity = 0.943, 

specificity = 0.981, 

F1-score = 0.944 

Automated deep learning 

empowered breast cancer diagnosis 

technique (Escorcia-Gutierrez et al., 

2022) 

INbreast Accuracy = 0.940, 

sensitivity = 0.973, 

specificity = 0.964, 

F1-score = 0.970 

Accuracy = 0.978, 

sensitivity = 0.950, 

specificity = 0.959, 

F1-score = 0.951 

Full-field digital mammography-

based deep learning (Liu et al., 

2021) 

INbreast Accuracy = 0.939, 

sensitivity = 0.901, 

specificity = 0.930, 

F1-score = 0.900 

Accuracy = 0.956, 

sensitivity = 0.853, 

specificity = 0.919, 

F1-score = 0.890 

 

As Table 5 shows, we tested different DL models, which were similar to our project, to determine the 

robustness of these models, and especially ours. We picked 80% and 20% of the INbreast dataset 

respectively for training (275 images) and validation (68). The results show that our model performed 

better than others, with an accuracy of 98%, a sensitivity of 98% and a specificity of 98% while training, 

and an accuracy of 97%, a sensitivity of 97% and a specificity of 96% in the validation test. The DNN-based 

model achieved an accuracy of 96%, a sensitivity of 95% and a specificity of 97% in training, and an 

accuracy of 95%, a sensitivity of 94% and a specificity of 98% in the validation test. However, the 

automated deep learning-empowered model reached a 94% accuracy, 97% sensitivity and a specificity of 

96% in training, while in validation it reached 97%, 95% and another 95% in accuracy, sensitivity and 

specificity respectively. Last but not least, an accuracy of 93%, a sensitivity of 90% and a specificity of 93% 

was the performance of the full-field deep learning model in the training test with an accuracy of 95%, a 

sensitivity of 0.85% and a specificity of 91% in the validation test. Overall, there was not a significant 

difference between our model and other DL models except for the training timing, thanks to the FastAI 

library, which remarkably improved testing timing. These results give the privilege to our model to be 

considered a well-performing deep learning model in detecting lesions in mammography images. The 

obtained accuracy can be explained by the high discriminative features extracted using the U-Net model, 

reinforced by a data augmentation technique that provides more samples in order to deal with the limited 

labelled data of the INbreast database of mammograms. Moreover, the time consumption of the proposed 

method is not high since 10 epochs were sufficient for the convergence of the model.  

5 Conclusion 

In this work, we explored deep learning advances in the medical field, especially in breast cancer 

diagnosis. We chose the INbreast database to explore approaches and methods. Image segmentation was 

investigated as a method for lesion detection in this problem. We used a well-known architecture in the 

biomedical field: U-Net, and ResNet34 as the encoder of the network. This article describes some steps 

and methodologies that were taken for the implementation of the system as well as the chosen approaches. 
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A large part of the work consisted of data preparation for the learning algorithm and using the FastAI 

neural network library for training the neural network. It is worth mentioning that this work provides an 

efficient method for breast cancer segmentation and classification based on the U-Net architecture, 

reinforced by data augmentation techniques to deal with the limited number of labelled samples. Our tool 

aims to assist radiologists with mammographic interpretation in clinical works and ameliorate 

mammogram interpretation efficiency as well. As a consequence, it leads to a reduction in the radiologist’s 

workload and helps in the case of shortage of radiologists. In future work, the generative adversarial 

network (GAN) can be added to the proposed method to improve the results. 
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