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Abstract  

Blackout events in smart grids can have significant impacts on individuals, communities and 

businesses, as they can disrupt the power supply and cause damage to the grid. In this paper, a new 

proactive approach to an early warning system for predicting blackout events in smart grids is 

presented. The system is based on deep learning models: convolutional neural networks (CNN) and 

deep self-organizing maps (DSOM), and is designed to analyse data from various sources, such as 

power demand, generation, transmission, distribution and weather forecasts. The system performance 

is evaluated using a dataset of time windows and labels, where the labels indicate whether a blackout 

event occurred within a given time window. It is found that the system is able to achieve an accuracy 

of 98.71% and a precision of 98.65% in predicting blackout events. The results suggest that the early 

warning system presented in this paper is a promising tool for improving the resilience and reliability 

of electrical grids and for mitigating the impacts of blackout events on communities and businesses. 
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1 Introduction 

Blackouts in smart grids can have a range of negative consequences for individuals and communities. For 

example, blackouts can cause economic losses as businesses and households may be unable to operate or 

function without electricity. In addition, blackouts can disrupt essential services that are dependent on 

electricity, such as healthcare, communication, transportation and emergency response (Anderson & Bell, 

2012). In certain situations, blackouts may also pose public safety risks, such as by disrupting traffic signals 

or hindering the functioning of emergency systems. Overall, blackouts can have a significant impact on 

the well-being and quality of life of individuals and communities. As a result, it is important to have 

effective tools and strategies in place to predict and prevent blackout events and to minimize their impacts 

on individuals and communities (Alhelou et al., 2019).  

Early warning systems have the potential to enhance the resilience of smart grids by providing timely and 

accurate alerts of potential blackout events, allowing operators to take proactive measures to prevent or 

mitigate the impacts of these events (Mahzarnia et al., 2020; Zhang et al., 2017). 

Smart grids are modern electricity systems that use advanced technologies to improve the efficiency, 

reliability and sustainability of power generation, distribution and consumption (Albasrawi et al., 2014). 

These systems rely on a combination of traditional and renewable energy sources, as well as digital 

communication and control technologies, to enable bidirectional energy flows and enable the integration 

of distributed energy resources (DER) such as solar panels and electric vehicles (Borlase, 2017; Tuballa & 

Abundo, 2016). Despite their many benefits, smart grids are also vulnerable to blackouts, which can occur 

due to a variety of reasons, including technical failures, natural disasters and cyber-attacks (Lázaro et al., 

2021). 

An early warning system has the potential to enhance the resilience of smart grids by providing timely 

and accurate alerts of potential blackout events, allowing operators to take proactive measures to prevent 

or mitigate the impacts of these events (Sharma et al., 2021). In this paper, we present a novel proactive 

approach to an early warning system for blackouts in smart grids, which is based on deep learning 

algorithms.  

The motivation behind our approach lies in addressing the shortcomings of existing blackout prediction 

methods and enhancing the resilience of smart grids. The proposed early warning system is based mainly 

on the convolutional neural network (CNN) and deep self-organizing map (DSOM) deep learning models 

and includes four components: data collection and preprocessing, model training and prediction, alert 

generation and notification, and response management. It offers several key benefits. Firstly, it enables 

early detection and prediction of blackout events, empowering operators to take timely action to prevent 

or mitigate their impacts. Secondly, it aids in reducing the frequency and duration of blackouts, thereby 

minimizing disruptions to individuals and communities. Additionally, our system assists operators in 

identifying the root causes of blackout events, facilitating corrective action to prevent future occurrences. 

The rest of this paper is organized as follows. The next section reviews the related literature on early 

warning systems for blackouts in smart grids and discusses the various techniques and approaches that 

have been used to develop these systems. Section 3 describes the design and implementation of the 

proposed early warning system. Section 4 presents the results of experiments conducted to evaluate the 

performance of the proposed system, including its accuracy, precision and false alarm rate. Section 5 

discusses the potential challenges and limitations of the system and Section 6 concludes and outlines 

directions for future research and development. 

2 Literature Review 

Smart grid power outages can have significant negative consequences for individuals, communities and 

businesses, including financial losses, disrupted essential services and even public safety risks. One way 
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to improve the resilience of smart grids is to implement early warning systems that provide timely, 

accurate alerts about potential blackout events. These systems allow grid operators to take proactive 

measures to prevent or reduce the impacts of these events (Shuai et al., 2018; Soyata et al., 2019). This 

literature review summarizes the state of the art in early warning systems for blackouts in smart grids and 

discusses the various techniques and approaches that have been used to develop these systems. 

2.1 Using machine learning algorithms 

One trend is the use of machine learning algorithms as a key component of early warning systems (Tomin 

et al., 2016). Several studies have proposed early warning systems for blackouts in smart grids based on 

machine learning algorithms (Gupta et al., 2015a; Gupta et al., 2015b; Khediri et al., 2020). These systems 

typically use real-time monitoring of grid conditions, such as voltage and current levels, to identify 

patterns and trends that may indicate the risk of a blackout event. For example, Gupta et al. (2015b) 

proposed an early warning system based on a neural network model, which is trained to predict blackout 

events by learning from historical data on grid conditions and events. Similarly, J. Wang et al. (2016) 

presented an early warning system based on support vector machine (SVM) and AdaBoost bi-level 

classifiers, which uses features such as voltage and current levels, as well as weather data, to predict 

blackout events. Another study by Yang and Li (2023) addressed the crucial task of identifying vulnerable 

lines in smart grid systems to enhance stability and reduce cascading fault blackouts. Employing a 

machine learning approach, the study proposes an identification method based on an enhanced 

agglomerative hierarchical clustering algorithm. 

2.2 Using data analytics and real-time monitoring 

Other approaches to early warning systems for blackouts in smart grids have focused on data analytics 

and real-time monitoring of grid conditions (Zhang et al., 2018). For example, Gupta et al. (2016) proposed 

a system based on a combination of data analytics and real-time monitoring, which uses an approach 

based on Kullback-Leibler divergence (KLD) to identify and analyse patterns in grid data and provides 

alerts for operators when potential blackout events are detected. Similarly, England and Alouani (2020) 

proposed enhancing Thevenin parameter estimation accuracy in smart grids by using individual load 

measurements from smart meters. They also introduced a real-time stability index to forecast instability, 

aiding in proactive blackout prevention. Simulations on an IEEE 30 bus power system validated the 

efficacy of the methods, demonstrating improved stability estimation precision and early detection of 

voltage instability, empowering utilities with vital tools for blackout prevention. 

2.3 Using probabilistic and statistical models 

In addition to the approaches mentioned above, there have also been several studies on the use of 

probabilistic and statistical models for early warning systems in smart grids (Rahnamay-Naeini et al., 

2012; Wang et al., 2021). For example, Wang et al. (2021) proposed a system based on a probabilistic model, 

which used historical data on grid conditions and events to estimate the probability of a blackout event 

occurring in the future. Similarly, Li and Zhou (2015) presented a statistical model based on a logistic 

regression approach, which used data on grid conditions and events to predict the likelihood of a blackout 

event occurring.  

2.4 Using control and optimization techniques 

Other studies have focused on the use of control and optimization techniques for early warning systems 

in smart grids (De Zotti et al., 2018; Enacheanu et al., 2005; C. Wang et al., 2016). For example, C. Wang et 

al. (2016) proposed control strategies for preventing and predicting blackouts in power grids, using fast-

response energy storage systems and a phase-oscillator model that considers different types of power 



Acta Informatica Pragensia  Volume 13, 2024 

https://doi.org/10.18267/j.aip.246  276 

sources and loads. The strategies can be applied to traditional and smart grids and the research offers 

ideas for improving the robustness and cost-efficiency of smart power grids. 

Finally, there have also been several studies on the use of hybrid approaches for early warning systems in 

smart grids, which combine multiple techniques and approaches such as machine learning algorithms 

with data analytics and real-time monitoring in order to achieve improved performance and accuracy 

(Amroune et al., 2018; Wang et al., 2021).  

Overall, the literature suggests that there is a wide range of techniques and approaches that can be used 

to develop early warning systems for blackouts in smart grids. These approaches include the use of 

machine learning algorithms, data analytics, real-time monitoring, control and optimization techniques 

and hybrid approaches. These approaches have been proved significant in areas of blackout prevention 

and resilience as the related works demonstrate. Yet, each of those techniques and approaches has its 

advantages and disadvantages. 

Five major problem areas can be identified from the literature review (Table 1): imminent blackout 

prediction (P1), asset management (P2; refers to identifying problems with grid assets, such as 

transmission lines, transformers or generators and recommending action to prevent or mitigate these 

problems), cascading failure (P3), grid disturbance (P4) and risk assessment (P5; refers to helping identify 

potential risks to the grid, such as extreme events, e.g., natural disasters or weather hazards). In order to 

provide a comprehensive overview of existing research efforts in the field of smart grid management, we 

analyse how each study addresses specific challenges within the smart grid resilience domain. 

Table 1. Comparison of studies. 

Technique Study P1 P2 P3 P4 P5 

Machine learning algorithms Gupta et al. (2015b) X - X - - 

Gupta et al. (2014) X - - X - 

Khediri et al. (2020) X - - - X 

Data analytics and real-time 

monitoring 

Gupta et al. (2016) - X - - X 

England and Alouani 

(2020) 
- - X - - 

Probabilistic and statistical models Wang et al. (2021) - X - X - 

Li & Zhou (2015) - - X - X 

Control and optimization techniques C. Wang et al. (2016) X X - - - 

Hybrid techniques Amroune et al. (2018) - X - X - 

Proposed approach  X - X X X 

 

Each of the aforementioned studies set out to address at least one of the five problems identified. This 

research aims to offer an approach that takes into consideration four problems: imminent blackout 

prediction (P1), cascading failure (P3), grid disturbance (P4) and risk assessment (P5). We structure our 

comparative analysis to assess how each study tackles these identified problems. By examining the 

methodologies, techniques and outcomes of each study in relation to these key problem areas, we aim to 

offer insights into the strengths and limitations of the existing approaches and identify potential avenues 

for further research and improvement. The suggested proactive approach, which serves as an early 

warning system, is described in the following section.  
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3 Proposed Approach  

The proposed approach for an early warning system is based on the CNN deep learning model and the 

deep self-organizing map (DSOM). The choice of these models was based on their demonstrated 

effectiveness in similar tasks and their theoretical foundations. The CNN model and DSOM were selected 

due to their robustness in managing large datasets and their excellent generalization capabilities, which 

have been demonstrated in previous research (Bhatt et al., 2021). These models work together to provide 

highly accurate predictions of blackout events.  

The system consists of five main components (Figure 1): data collection and preprocessing, the CNN 

model, alert generation, response management, and user interface. 

 

Figure 1. Schematic overview of proposed approach. 

These components are interconnected, with data being collected and preprocessed and then fed into the 

CNN model for prediction. The predictions of the CNN model are then used to trigger alerts, which are 

sent to grid operators and used to manage the response to blackout events. 

3.1 Data collection and preprocessing  

This component is responsible for collecting and preprocessing data from various sources, such as real-

time monitoring of grid conditions, weather forecasts and other data sources. The data are collected using 

sensors, meters and other monitoring devices and include information on factors such as power demand, 

generation, transmission, distribution and use as well as historical data. The deep self-organizing map 

(DSOM) is used in the data collection and preprocessing component. Its role is to analyse the data collected 

from various sources and identify patterns and trends that are relevant to predicting blackout events. The 

DSOM is used to preprocess the data, which involves removing any missing or invalid data points and 

normalizing and transforming the data as needed. The preprocessed data are used to create time windows, 

which are used as input to the CNN model. Time windows are created by dividing the data into fixed-

length segments or by using techniques such as rolling windows or overlapping windows to capture 

trends and patterns over time. 
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Algorithm 1. Data preprocessing function pseudo-code. 

    define data_preprocessing(raw_data): 

    define list of relevant data fields 

    filter raw data to include only relevant fields 

    for each datapoint in raw_data: 

        if datapoint is missing or invalid: 

            if missing data can be filled in: 

                fill in missing data 

            else: 

                remove invalid data 

    normalize data to a common scale 

    convert data to appropriate format for model input 

    return processed data 

The data preprocessing function takes in a dataset of raw data and returns a preprocessed version of the 

data. It performs the following steps: 

• Identify the fields of data that are relevant for the task at hand (e.g., power demand, generation, 

transmission, distribution). 

• Filter the raw data to include only the relevant fields. 

• Check for missing or invalid data points in the filtered data. 

• Fill in missing data or remove invalid data as appropriate (e.g., impute missing values using the 

mean or median or drop rows with invalid data). 

• Normalize the data to a common scale (e.g., subtract the mean and divide by the standard 

deviation). 

• Convert the data to the appropriate format for model input (e.g., if using a self-organizing map, 

convert data to a matrix). 

• Return the processed data. 

3.2 CNN model  

This component is responsible for predicting blackout events based on the time windows of preprocessed 

data. The convolutional neural network model is trained using a dataset of time windows and labels, 

where the labels indicate whether a blackout event occurred within a given time window. The CNN learns 

features from the data and identifies patterns and trends that are associated with blackout events. The 

CNN model is implemented using machine learning libraries (TensorFlow) and is trained using 

techniques such as gradient descent, backpropagation or stochastic gradient descent. The model is 

evaluated using metrics such as accuracy, precision, recall and F1 score and can be fine-tuned using 

techniques such as hyperparameter optimization, regularization or early stopping (case study). 

Once trained, the CNN model is able to predict the likelihood of a blackout event occurring within a given 

time window, based on the data and features. 

Residual networks represent a type of convolutional neural networks (CNN) (Cui et al., 2016), which has 

been designed mainly to recognize visual patterns directly from pixel images with minimal preprocessing 

(Wang et al., 2017). ResNet can be also used for time series datasets. Since the data delivered in a smart 

grid (weather readings) are a time series, the model structure is used for this matter. 
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Figure 2. Fully convolutional network (FCN) structure. Source: (Khediri et al., 2019). 

ResNet has the same structure as fully convolutional networks (Figure 2) with a deeper structure. In time 

series settings, the FCN is performed as a feature extractor. The softmax layer is responsible for the final 

outputs. A convolutional layer followed by a batch normalization layer and a rectified linear unit (ReLU) 

activation layer represent the basic block. 

𝑦 = 𝑊 ⊗ 𝑥 + 𝑏 

𝑠 = 𝐵𝑁(𝑦) 

ℎ = 𝑅𝑒𝐿𝑈(𝑠) 

(1) 

Where ⊗ is the convolution operator. The final networks are built by piling three convolutional blocks 

with the filter sizes Ki {64, 128, 128}. 

 

Figure 3. Residual network (ResNet) structure. 

The neural networks are extended by the ResNet to add deep structures by adding the shortcut connection 

in each residual block (Figure 3). The convolutional blocks in Equation (1) are reused to build each residual 

block. Block k indicates the convolutional block with the number of filters k. 

h1 = Block K1 (x) 

h2 = Block K2 (h1) 

h3 = Block K3 (h2) 

(2) 
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y = h3 + x 

h = ReLU(y) 

The number of filters ki = {64, 128, 128}. Three stacked residual blocks and followed by a global average 

pooling layer and a softmax layer forms the final ResNet. 

Output layer: This layer applies a softmax activation function to the output of the previous layer, 

producing a probability distribution over the possible classes (e.g., low risk, moderate risk, high risk, 

extremely high risk). The class with the highest probability is the model prediction. 

Algorithm 2. CNN function pseudo-code. 

define CNN_model(processed_data) 

define model architecture 

for each time window in processed_data: 

input data to model 

if model output is within threshold for low blackout risk: 

label time window as "low risk" 

else if model output is within threshold for moderate blackout 

risk: 

label time window as "moderate risk" 

else if model output is within threshold for high blackout risk: 

label time window as "high risk" 

else: 

label time window as "extremely high risk" 

load trained model weights 

apply model to processed data 

for each time window in processed_data: 

if model output differs from label: 

update model weights 

return model output (blackout risk prediction) 

The CNN model function takes as input a dataset of processed data, which consists of time windows of 

data collected from various sources related to the operation of a smart grid. The function first defines the 

architecture of a model, which specifies the structure and behaviour of the model. The function then 

iterates over each time window in the processed data, inputting the data to the model. 

Based on the model output, the time window is labelled as "low risk", "moderate risk", "high risk" or 

"extremely high risk" depending on where the model output falls within a range of thresholds. These 

thresholds are determined based on the expected likelihood of a blackout event occurring. 

Next, the function loads a trained version of the model, which has already been adjusted to make accurate 

predictions based on previously labelled data. The function then applies the trained model to the 

processed data and, for each time window, checks to see whether the model output differs from the label. 

If it does, the model weights are updated to better reflect the data and improve the model prediction 

accuracy. Finally, the function returns the model output, which consists of a prediction of the blackout 

risk for each time window in the processed data. 

The CNN model function is designed to predict the risk of blackout events in smart grids. It takes in 

processed data as input, which is expected to be in a suitable format for model input. The function begins 

by defining the architecture of the model, which specifies the structure and parameters of the model. 

Next, the function loops through each time window in the processed data and inputs the data into the 

model. The model then generates a prediction for the blackout risk of the time window. If the model 
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prediction is within a certain threshold for low risk, the time window is labelled as "low risk". If the 

prediction falls within a different threshold for moderate risk, the time window is labelled as "moderate 

risk". If the prediction falls within a different threshold for high risk, the time window is labelled as "high 

risk". If the prediction falls outside these thresholds, the time window is labelled as "extremely high risk". 

After the time windows have been labelled, the function loads the trained model weights, which are the 

learned parameters of the model that have been previously determined through training on a dataset. The 

function then applies the model to the processed data, using the trained model weights. 

Finally, the function loops through each time window again and checks whether the model prediction 

differs from the label assigned to the time window. If the prediction differs from the label, the model 

weights are updated in an effort to improve the model accuracy. The function then returns the model 

output, which is the predicted blackout risk for each time window. 

3.3 Alert generation  

This component is responsible for generating alerts based on the predictions of the CNN model and for 

providing notifications for grid operators and other relevant parties. The alerts can be generated using a 

threshold or criteria defined by the system, such as the probability or likelihood of a blackout event 

occurring. For example, the system can generate an alert if the probability of a blackout event occurring 

within the next hour is greater than 50%. 

The alerts can be generated in real time, as the data are collected and processed by the system or on a 

scheduled basis, such as every hour or every day. The alerts can be delivered using various 

communication channels, such as email, SMS or push notifications and can be customized based on the 

severity and likelihood of the predicted blackout event. 

Algorithm 3. Alert generation function pseudo-code. 

define alert_generation(blackout_risk_prediction) 

define thresholds for generating alerts 

if blackout_risk_prediction is above extremely high risk 

threshold: 

generate extremely high risk alert 

  else if blackout_risk_prediction is above high risk threshold: 

generate high risk alert 

       else if blackout_risk_prediction is above medium risk 

threshold: 

generate medium risk alert 

             else if blackout_risk_prediction is above low risk 

threshold: 

                        generate low risk alert 

             end  if 

        end if 

  end if 

include information about predicted probability of blackout event 

recommend monitoring the situation % being prepared for possible 

preventive action 

else: 

do not generate alert 

end if 

end 



Acta Informatica Pragensia  Volume 13, 2024 

https://doi.org/10.18267/j.aip.246  282 

The alerts can include information such as the predicted probability or likelihood of a blackout event 

occurring, the expected duration and impact of the event and recommendations for preventive or remedial 

action. For example, the alert can recommend reducing power demand, transferring load to other parts of 

the grid or activating emergency procedures. 

3.4 Response management  

This component is responsible for managing the response to blackout events, based on the alerts generated 

by the system. This can involve activating emergency procedures, deploying resources or implement 

preventive measures as appropriate in response to a low, medium, high or extremely high risk alert. These 

preventive measures could help to prevent or mitigate the impacts of blackout events. The response is 

triggered automatically, based on the severity and likelihood of the predicted blackout event, or initiated 

manually by grid operators or other relevant parties. 

Algorithm 4. Response management function pseudo-code. 

define response_management(alert, blackout_risk_prediction) 

    if alert is generated: 

        if blackout_risk_prediction is increasing: 

            activate emergency shutdown procedures 

        else: 

            notify grid operators of potential blackout risk 

            implement preventive measures as appropriate 

    else: 

        do nothing 

 

The response can involve actions such as reducing power demand by shutting down non-critical loads, 

transferring load to other parts of the grid or activating emergency generation sources. The response can 

also involve deploying resources such as generators, transformers or other equipment to restore power or 

repair damage to the grid. 

3.5 User interface  

This component provides a user-friendly interface for grid operators to access the system and view the 

alerts generated by the CNN model. The interface is web-based or mobile-based and is accessed using a 

web browser or app. The interface can include features such as visualizations of data and predictions and 

options for managing the response to blackout events. The interface allows grid operators to view the 

current status and predictions of the system and to configure the system settings. 

To integrate these four components into a complete early warning system, we can create a main function 

that coordinates the flow of data and calls each of the individual functions as needed. 

Algorithm 5. Main function pseudo-code. 

define blackout_warning_system() 

    while grid is operating: 

        retrieve raw data from grid sources 

        processed_data = data_preprocessing(raw_data) 

        blackout_risk_prediction = s_cnn_model(processed_data) 
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        alert = alert_generation(blackout_risk_prediction) 

        response_management(alert, blackout_risk_prediction) 

This main function retrieves raw data from the grid sources, processes the data using the data 

preprocessing function, generates a blackout risk prediction using the CNN model function, generates an 

alert using the alert generation function and manages the response to the alert using the response 

management function. The main function runs continuously while the grid is operating, allowing the early 

warning system to continuously monitor the grid and respond to changes in blackout risk. 

4 Case study 

4.1 Case description 

A prototype is created utilizing the Python programming language and many deep learning and machine 

learning technologies, such as TensorFlow and Keras, in order to verify our proposal. Real data from 

Seattle City Light's historical outage reports and maintenance records are used in our study (Table 2). The 

collection includes 42,406 entries in total, representing various outage events. A total of 27,564 instances 

(65% of the total items) were used to train the model. The dataset is public (see Data Availability statement) 

and has been used in earlier studies (Khediri et al., 2020; Khediri et al., 2021). 

4.2 Methodology 

Hyperparameters were fine-tuned to optimize model performance. The learning rate was selected from a 

range of {0.1, ..., 0.00001} through validation error minimization and the batch size was maintained at 10 

to balance computational efficiency and model convergence. No regularization techniques were employed 

aside from early stopping. 

Utilizing a GPU-accelerated environment, training the CNN model for 120 epochs on a NVIDIA GeForce 

RTX 2080 GPU yielded promising results. Pre-training of the model took 60 seconds, with an average of 

0.5 seconds per epoch. Fine-tuning, conducted after pre-training, was completed in 35 seconds or 0.29 

seconds per epoch.  

The hyperparameters were selected by optimizing on the validation error. We tested learning rates in {0.1, 

…, 0.00001}. There was no use of any form of regularization besides early-stopping, nor optimization over 

the number of pre-training updates. 

Table 2. Experiment summary. 

Total number of items (outages) 42,406 

Used to train the model 27,564  

Batch size 10 

Learning rate [0.1, 0.01, …, 0.00001] 

Number of hidden layers 3 

4.3 Results 

Different deep learning algorithms are used in our experiments such as recurrent neural networks (RNN), 

variational autoencoders (VAE), transformers and others, in order to validate our proposal. The same dataset is 

used to train the models with the same number of items. Accuracy and precision are calculated for each 

model. 
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Table 3. Final result for the experiments. 

Model 
Labelled as 0 

classified as 0 

Labelled as 0 

classified as 1 

Labelled as 1 

classified as 0 

Labelled as 1 

classified as 1 
Accuracy Precision 

VAE 12,642 97 538 1,565 0.9572 0.9592 

Transformers 10,982 355 870 2,635 0.9175 0.9266 

RNN 9,882 862 1,135 2,963 0.8654 0.8970 

ResNet 12,971 14 177 1,680 0.9871 0.9865 

 

The final experiment results (Table 3) give us an accuracy rate of 98.71% and a precision rate of 98.65% for 

the ResNet model, which are the best results among all the models (Figure 4). 

 

Figure 4. Results of Accuracy and Precision presented in the graph. 

5 Discussion 

From the experiments that were carried out, we can affirm that the results are quite convincing, which 

proves that the proposed model could be used perfectly for blackout prediction and for resilience 

enhancement generally. These results show that the proposed early warning system can offer quite 

convincing results and can be used by electricity distribution networks at all levels. 

The proposed approach is based on a ResNet CNN model and the DSOM, which work together to provide 

highly accurate predictions of blackout events. The use of the DSOM helps learn features from the data 

and identify patterns and trends, which improves the performance of the CNN model. The resulting 

system offers predictions with a low false alarm rate and can be customized and scaled to suit the needs 

of different electricity distribution networks. These features of the system are crucial in ensuring that it 

provides significant benefits such as improved resilience, enhanced reliability, cost savings, improved 

safety and environmental benefits. 

However, the proposed early warning system stands as a promising innovation, yet its successful 

implementation requires acknowledgment of certain inherent limitations. The system efficacy hinges on 

the responsiveness of operators to generated warnings, necessitating meticulous training strategies and 

protocols to ensure timely action. 
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The vital concern of cybersecurity requires dedicated actions to protect the system from possible attacks. 

Although the predictive abilities of the system are groundbreaking, it has yet to be tested for its accuracy 

in forecasting complex blackout events. Additionally, the current scope of prediction is limited by the use 

of specific datasets, suggesting potential for expansion to cover a wider range of threat scenarios. Together, 

these limitations highlight the intricate context in which the early warning system operates, emphasizing 

the need for ongoing research to strengthen its effectiveness and reliability. 

6 Conclusion 

In conclusion, early warning of blackout events in smart grids is a critical challenge, as these events can 

have significant impacts on individuals, communities and businesses. There is a need for effective 

approaches and technologies to predict and prevent blackout events and to enhance the resilience and 

reliability of grids. 

The CNN deep learning algorithm and the other components described in this paper offer a promising 

approach to addressing this challenge, as demonstrated by the high precision (98.65%) and accuracy 

(98.71%) of the CNN model in predicting blackout events. The use of machine learning algorithms, data 

analytics, real-time monitoring, probabilistic and statistical models, control and optimization techniques 

and the integration of multiple technologies can provide a foundation for an early warning system that is 

capable of predicting blackout events in real time, with high accuracy and low false alarm rates. 

Conducting further research is imperative to systematically explore potential avenues for enhancing 

system efficiency. This potential direction holds promise for advancing the field of efficient energy 

systems and contributing to its ongoing evolution. 
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