
Acta Informatica Pragensia, 2015, 4(3): 226–241

DOI: 10.18267/j.aip.71

Peer-reviewed paper

226 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015

Security Measures in Automated Assessment
System for Programming Courses

 Jana Šťastná*, Ján Juhár*, Miroslav Biňas*, Martin Tomášek*

Abstract

A desirable characteristic of programming code assessment is to provide the learner
the most appropriate information regarding the code functionality as well as a chance to
improve. This can be hardly achieved in case the number of learners is high (500 or more).
In this paper we address the problem of risky code testing and availability of an assessment
platform Arena, dealing with potential security risks when providing an automated
assessment for a large set of source code. Looking at students’ programs as if they were
potentially malicious inspired us to investigate separated execution environments, used by
security experts for secure software analysis. The results also show that availability issues
of our assessment platform can be conveniently resolved with task queues. A special
attention is paid to Docker, a virtual container ensuring no risky code can affect the
assessment system security. The assessment platform Arena enables to regularly,
effectively and securely assess students' source code in various programming courses.
In addition to that it is a motivating factor and helps students to engage in the educational
process.

Keywords: Automated assessment, Programming assignment, Unsafe code, Virtual
environment, Docker, System availability.

1 Introduction

Automated assessment in programming assignments has been a center of attention in various

studies which differ in applied strategies or technologies. Some focused on deployment

of separate tools run from command line, others described complex systems providing a user

interface (UI) over Internet, and finally, some are available as web services. As mentioned in

a work of Ihantola et al. (2010) or Pears et al. (2007), one common problem is availability of

particular assessment tool. Mostly, such tools are created to solve local problems, e.g.

automated evaluation of student projects.

Programming courses and innovative assessment approaches have been discussed since at

least 1997, when Thorburn and Rowe (1997) described in their work an automated system

used for assessment of students' programs. They called it PASS (Program Assessment using

Specified Solutions) and it checked if a student's program matches a solution plan provided to

the system by a teacher. The solution plan was a description of proper program functionality

at a higher level of abstraction – some kind of pseudo-code of desired solution. The

representative solution plan was compared with a solution plan extracted from the student's

* Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic

 jana.stastna@tuke.sk, jan.juhar@tuke.sk, miroslav.binas@tuke.sk, martin.tomasek@tuke.sk

227 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015

program and if they matched, it indicated that the student's solution is implemented as desired

and with full score. The score together with more detailed feedback were provided to the

student.

It seems that PASS, the system mentioned above, inspired many other researchers and

programming teachers, if not in functionality then at least in naming. Wang and Wong (2008)

deal with computer-assisted learning in programming courses and they describe how they

used the Programming Assignment aSsessment System (PASS) in their classes. Automatic

assessment systems are used not only as a means to simplify the assessment. Law, Lee, & Yu

(2010) provide a study which shows how PASS encourages and motivates students in

learning.

Problems of automated assessment are also discussed in a work of Pieterse (2013). The author

provides an extensive summary of issues regarding programming assignments assessment,

especially in massive open online courses (MOOC) focused on teaching programing. With

high numbers of attendees it is crucial to provide fast feedback and fair assessment

of assignments, which is not possible to achieve without automation of the assessment

process. The educational view on the evaluation of programming assignments is also

discussed in a work of Biňas and Pietriková (2014) and Pietriková, Juhár, and Šťastná (2015).

Regardless of the preferred assessment tool it is crucial to discuss security issues associated

with testing by execution of unknown and probably risky code submitted by students. Novice

programmers will probably make mistakes in their code which could cause problems on the

testing system or even render it inoperable. Automatic assignments evaluation platform

should be resistant to such effects of risky code execution and availability of the evaluation

service needs to be sustained also in case of numerous requests.

In this article we describe potential security risks related to verification of students’ code,

weaknesses of evaluation systems and our experiences with automatic evaluation platform

Arena that is being developed at our department. We present one of several approaches for

coping with security risks in Arena and describe how we ensured the system’s confidentiality,

integrity and availability.

2 Motivation

Our assessment platform Arena is based on web services with focus on its reusability and

availability. However, execution of students’ programming solutions may pose a problem

unless appropriate security measures are applied.

2.1 The Arena platform

In our programming courses, we use an approach of programming custom computer games

(Biňas & Pietriková, 2014). Generally, aspects of a programming language along with an

individual game-related problems are dispensed gradually. This way students remain

motivated while they are not potentially overburdened neither by the complexity of the

language nor by the complexity of a particular problem. It also opens a way to get into the

depth of language concepts as well as principles of given programming paradigm.

Our main intention with Arena platform is to build an effective learning environment leading

towards training of good programmers. Maintaining attractive learning environment and its

services is a contributing factor in increasing of students’ motivation and enhancement of

their engagement during the entire semester. Version control system in combination with

228 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015

automated evaluator provide an effective as well as a fair assessment of large number of

students.

Over the last year, Arena has been experimentally used with the programming languages C

and Java within three courses, together covering over 1100 students. We currently have

following two use cases in which Arena is being used.

 Scheduled assessment of students’ projects they push to Git repository. This

assessment is scheduled in a cron task that every few hours sends repositories

matching a given name pattern for evaluation to Arena. Result of assessment is made

available on a web page of Arena platform accessible with the knowledge of

a randomly generated student identifier that is sent to the student by email after first

assessment of his or her project.

 Real-time assessment during final exam. Students access a web page containing

description of programming tasks and a web-based code editor where they implement

their solutions. These solutions can be assessed on-demand multiple times during the

exam - whenever student press the "submit" button. In this use case it is especially

important to achieve as short evaluation times as possible.

With the help of Arena platform, students have a chance to fix errors and improve their

overall score prior to a deadline. In the case of scheduled assessment our intention is to

identify specific problems as early as possible rather than to assess a black-box once by the

end of semester. For final exam, our approach gives students enough space for improvement

within the exam time limit.

2.2 Services of the Arena platform

The top-level view on the Arena platform reveals a set of separate web services designed

to cooperate with each other through REST-like2 interfaces. They are displayed in Fig. 1 and

can be characterized by the following description.

 Arena, as a service, represents user-facing web application through which the

assessment results of students’ projects are presented. This service is dependent on the

Gladiator, as it expects the input data (the assessment results) in the format produced

by this service.

 Gladiator service represents the key part of the Arena platform, its test runner. This

service is responsible for running sets of tests provided by lecturers against students’

projects and grade the results according to rules provided with tests. Gladiator is

designed to be independent of the other services and to be usable for assessment of

programs written in (almost) any programming language.

 Conductor is a small standalone service that checks the structure of a project against

the declarative description of its expected content.

 Spartan is a web application providing real-time evaluation results of programming

tasks presented and solved within a web browser. The main use case of this service is

the automated assessment and grading of course exams. It depends on the Gladiator

service for actual evaluation. The interface displays only the summary result of each

evaluation and provides a URL address to full results available in Arena service.

2 REST – Representational State Transfer, a software architectural style for web application interfaces.

229 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015

These services, developed mostly in Python, have already been used in our courses. The

separation of the processes involved in the automatic assessment of programming

assignments that resulted in this set of services is a continuation of our work presented in

(Biňas, 2014).

Although the platform is designed to be universal regarding the tests it is able to run, it is also

designed for the needs of an educational environment. This is manifested for example in the

terms testcase, problemset, and submission that have following meanings: a testcase

represents a single task to be assessed and graded. In the most common case it is a test

represented as a command to be executed with additional information as title, description,

expected results and score assigned for correct solution. All the testcases form a problemset

configuration. Problemset package provided by lecturer contains this configuration in a JSON

(JavaScript Object Notation) file. It also contains all the files that are required to actually run

the tests, e.g., implementation of unit tests and required libraries. Finally, a submission refers

to the result of assessing student’s project against a problemset that contains structured output

of each testcase. It usually consists of standard output, error output and return code of

a testcase command. More details on problemset package preparation and presentation of

submission outputs are published in (Pietriková, Juhár & Šťastná, 2015).

Testcase runners in Gladiator are implemented as plugins. Currently there are two such

plugins: executable testcase runner that runs a specified local command and web service

testcase runner that calls remote service through HTTP (HyperText Transfer Protocol). The

web service testcase runner is currently used only for checking structure of student’s project

with the Conductor service. In the following, we focus on the executable testcase runner, as

there were several challenges in its implementation in both secure and performing way.

2.3 Security issues

Our evaluation platform works on a base of software testing (e.g., unit testing). In order to

find out if a solution is correct, the source code from the submission is executed with

predefined inputs. The first version of the executable testcase runner used system calls

executed directly from within Gladiator’s web server processes to run the tests specified in the

problemset configuration. This posed two significant security problems:

 Risky code problem - unknown code was executed directly under operating system

of the server (although under user with restricted system rights).

 Availability problem - during execution of tests the server process was unavailable to

serve other requests. Server configuration was set up for 4 worker processes, which

presented limit of 4 concurrently processable HTTP requests, while assessing one

submission takes - depending on the test complexity - several seconds to complete.

Execution of unknown code poses a risk that students unwittingly or, in a worse case

scenario, on purpose submit for evaluation code that performs harmful operations or that may

subvert fair grading of test results or even damage the evaluation system. Even if we do not

expect many submissions to include harmful operations, for security reasons we should

handle students’ programs as potentially malicious software. After all, code we evaluate

comes from students learning to program and erroneous implementations should be expected.

By taking some precautions it should be possible to prevent collapse of the assessment

platform.

230 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015

Fig. 1. Components of the Arena platform. Source: Authors.

As for the availability problem, first usage of Arena was during scheduled assessment

of students’ project from single course and thus it was not affecting the system performance.

Scheduled nature of this kind of assessment prevented the problem from occurring even when

two courses were using the Arena during the next semester. However, first exposure of

Spartan to real-time use case scenario, in which around 80 students had the possibility to

evaluate their current solution on-demand, confirmed that the design is inappropriate and

problem needs prompt solution. Web server running Arena services was easily overloaded

with incoming requests 3 which caused long evaluation times and even developed into

complete unavailability of the service.

Our motivation for this work lies in the effort to explore possible solutions of the above

outlined problems. We also want to show how the selected technologies were integrated with

our solution.

3 Execution of unknown programs

Depending on the specific harmful code fragments, execution of the program may have

negative consequences on the system’s primary security principles:

 Confidentiality – it is necessary to ensure that a submission and test results are

available to the student-author and a lecturer. No other user should have access to

these data by exploiting the evaluation system.

 Integrity – one student’s submission cannot be modified in an undesired manner –

neither by another student nor by other person involved in the course. Such undesired

3 There were two requests for each submission, because Spartan communicated with Gladiator through another HTTP

request.

231 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015

alterations would lead to violation of information integrity core attributes (Boritz,

2005).

 Availability – sometimes even unintentional error in submitted source code, for

example mistake in the implementation of the while-do cycle producing an infinite

loop, can obstruct the evaluation process and render the evaluation system practically

inoperable. This situation should be prevented in order to sustain availability of the

evaluation service, mainly in the use case of course exams evaluation and grading.

Secure execution of potentially harmful software is an issue not only when assessing students’

projects in programming courses but also in computer security research, especially in the field

of malicious software analysis.

There are two general approaches to analysis of unknown code functionality:

1. static analysis, and

2. dynamic analysis.

3.1 Static analysis

Static analysis of source code as simply defined in the work of Landi (1992) is “the processes

of extracting semantic information about a program at compile time”. Determining program’s

functionality from its syntactic representation is a difficult task. In the case of students’

submission analysis we consider static analysis for the purpose of determining program’s

partial correctness, since the total correctness of a program is generally an unsolvable problem

(Wögerer, 2005).

Static analysis methods can be helpful in detection of various errors in code, however,

checking program’s functionality seems to be more complicated. For every testcase a valid

program structure would have to be defined, not to mention the issue that some functionality

may be programmed in numerous different ways.

In general, every program can comprise numerous execution paths, also called execution

traces. The disadvantage of dynamic analysis is that only one execution trace can be observed

at a time. On the other hand, static analysis can handle all of the traces, but this is viewed also

as a disadvantage of static analysis (Beaucamps, Gnaedig, & Marion, 2012), because

inspecting large number of program traces requires more processing time and memory space

than only one execution trace.

While static analysis is practically safe, it does not meet the needs of our evaluation platform,

although it may be useful as a minor analytic technique, for checking e.g. the submission’s

structure and proper program’s construction.

3.2 Dynamic analysis

Techniques of dynamic program analysis require execution of the analyzed program, which is

a drawback from security point of view, but offer results relatively quickly and in an easier

way. Several security researchers consider dynamic analysis more reliable in obtaining

program’s real functionality than static analysis (Egele et al., 2012).

Concerning dynamic analysis, a good practice among malicious software researchers is to use

separated environment for the purpose of programs’ execution. This can be achieved by

allocating either a physical system or a virtual system for this special purpose. Considering

our resources the virtual system was the best choice.

232 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015

3.3 Secure environments for unknown code testing

We looked at solutions used by malware analysts in search of suitable environment for

execution and testing of unknown code. A lot of researchers rely on an analytic setting of

virtual machines, as described in a work e.g. by Wagener, State, & Dulaunoy (2008).

A potentially malicious code is executed and analyzed in a virtual environment without a risk

of damaging the host system. After the analysis the environment can be safely destroyed and

re-created with the initial settings. There are paid solutions available as well as free and open-

source systems.

3.3.1 General and special-purpose virtualization system

One of the possibilities for establishing a secure environment for code execution, known as

sandbox, is to use full virtualization technology. The advantage is that the environment is

fully isolated from hosting operating system and such environment allows to run programs

without any modifications, as if running directly in a normal operating system. Virtualization

software like VirtualPC, VMWare and VirtualBox are built for general-purpose virtualization.

Alongside full virtualization sometimes a paravirtualization technology is used, also called

“hardware-bound”. Xen is one of the systems using that technology (Ormandy, 2007). The

main difference, comparing with full virtualization, is that instructions of a program are

executed by the physical central processing unit. In order to effectively share physical

resources between the host and the guest operating system, several modifications need to be

made on the virtual environment (Ferrie, 2007). These changes are detectable by programs

running on the guest system, which is often undesired when analyzing malicious software.

Especially for the purpose of malware analysis and research some virtualization systems have

evolved into specialized systems with analytical features. CWSandbox is a sandbox which

enables automatization of malware behavior analysis by implementing hooking of Windows

API (Application Programming Interface) functions calls (Willems, Holz, & Freiling, 2007).

A similar analytic environment is Anubis (Bayer et al., 2009), which has formed into an

advanced dynamic malware analysis platform. In addition to Windows API hooking, Anubis

is able to inspect data flows and network traffic of analyzed samples and in this way collect

information about program’s behavior.

3.3.2 Hybrid virtual machine

The problem of executing unsafe programs is addressed in an unusual way in a work

of Nishiyama (2012) which deals with source code written in programming language C. The

code is executed through Java Native Interface which allows C functions execution from Java

methods. Nishiyama proposes an improved Virtual Machine execution mechanism - a Hybrid

Virtual Machine - which is a combination of Java bytecode interpreter and an engine for

emulation of native code execution in a sandbox-like environment. Every time a native code

is to be executed, a context manager changes the execution context for the emulation engine

and so the code executes in a separate context. Then when Java code is to be executed again

the context is switched back from emulation engine to the original Java thread.

Hybrid Virtual Machine is able to check and limit unsuspected system calls which are able to

violate consistency of Virtual Machine. It is achieved either by preventing the system call to

even execute or by limiting external resources used by it, e.g. by disabling access to certain

system directories or limiting data transfer speed (Nishiyama, 2012). It is an interesting

approach, however, it is limited only to C programming language, so it could not be used in

our evaluation platform in the future for courses using different programming languages.

233 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015

Even if virtualization provides a relatively safe separated environment for execution

of unknown code, virtual systems and sandboxes have also bugs and weak points (Ray

& Schultz, 2009) which generate opportunities for exploitation (Payer, Hartmann, & Gross,

2012). Therefore it is necessary to count with the fact that even the best virtualized

environment is not 100% secure.

3.3.3 Virtual containers

A significant disadvantage of full virtualization technology, mentioned in sections above,

is the time required to start virtual operating system inside the virtual machine, which can be

in tens of seconds. This makes it not usable for our use cases.

A more lightweight solution is a container-based virtualization, of which Docker represents

an increasingly popular option. It provides fast and secure virtualization as well as extensive

API for working with virtual containers. As we can see in Fig. 2, the main difference

compared to full virtualization is that container virtualization does not include full guest

operating system in virtual environment.

Docker containers are built on top of Linux containers. When a container is started, kernel

namespaces and control groups are created for it (Petazzoni, 2014). The provided virtual

environment runs as an isolated process on the host operating system, shares kernel with the

host OS and other containers, and comprises only the application and its dependencies.

Control groups ensure that no single container can exhaust all system resources. Resource

isolation and allocation benefits of virtualization are (for the most part) preserved while the

solution is significantly more efficient. Container starts more quickly - usually in the sub-

second range - and requires less system resources.

However, shared OS kernel adds one attack vector that is not present in full virtualization,

specifically if a kernel vulnerability can be exploited or container is misconfigured and allows

for elevation of user permissions. Also the Docker API needs to be secured to prevent its

usage by unauthorized users.

Fig. 2. Difference between full virtualization and container virtualization. Source: Docker Inc. (2015)

Besides extending Linux containers with more secure defaults, Docker containers provide

benefits in terms of container image management. An image template can be specified within

Dockerfile. It contains a sequence of commands used to assemble an image of container.

234 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015

These commands can specify a base image to build upon (either from local or remote image

repository), run commands to install required system packages, set up working directories,

and more.

Based on discussed properties of multiple virtualization solutions, we decided to use Docker

virtual containers. The decision was mainly influenced by its short startup times, good

environment isolation, and convenient automation features, like Dockerfile.

4 Distributed task queues

Based on the behavior of Arena platform during real-time assessment use case and on the

subsequent availability problems, we concluded that there are two specific changes to the

platform architecture that should resolve these problems. The first is to move submission

assessment execution off the main server processes. Such execution “in the background” will

not block server processes and they will be able to serve other requests. The second change is

to introduce a reliable mechanism that even under higher load will ensure that all received

submissions will be evaluated. Properties of distributed task queues meet requirements of

these changes.

Distributed task queues enable remote execution of tasks through message passing. Various

implementations of this technique provide a wide range of capabilities, which include task

scheduling, re-running of failed tasks or persistently storing results of tasks. As the Arena

platform is implemented in Python, we looked at some Python task queue projects. According

to Makai (2015) the following represent the most used ones:

 Celery – arguably the most advanced solution for Python. Celery supports many

features like scheduling, handling of synchronous and asynchronous task, message

routing, result storing. It also supports multiple message brokers and storage backends,

like RabbitMQ4 and Redis5, which can be selected with regard to different features

they provide.

 RQ (Redis Queue) – library for queueing tasks and processing them in background. As

name implies, this library is backed by Redis.

 Taskmaster – task queue designed to handle large numbers of one-off tasks that are

characterized by large amount of transferred data.

 Huey – simple task queue that depends only on Redis as its backend.

As Makai (2015) also notes, Celery is generally the library to go for, even though its usage is

more complicated (due to larger number of included features) than with the other libraries. As

we wanted to select solution that would provide enough possibilities for future extension, we

decided to use this task queue in our implementation.

5 Integrating Docker and Celery with Gladiator

First version of executable testcase runner used direct system calls from the context of web

server process. In POST request to judge REST endpoint of Gladiator service with student’s

submission and problemset identifier the problemset configuration was used to read

4 Message broker with focus on reliability and high availability, see https://www.rabbitmq.com/

5 Data structure storage server supporting publish/subscribe pattern, see http://redis.io/

https://www.rabbitmq.com/
http://redis.io/

235 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015

individual commands and these were executed with Python’s subprocess library. The only

security measures applied were execution of the tests under user with restricted permissions

and specification of maximal allowed duration for single testcase execution.

To solve the availability problem and the problem of risky code that we described earlier, we

transformed Gladiator service into Celery workers that run executable testcases within

Docker container.

5.1 Running tests with Docker

First added was the Docker support. Problemset configuration JSON file can specify the name

of Docker image that will be used during assessment. It is also possible to include Dockerfile

within the problemset package, which provides convenient way specifying requirements for

test execution. This way, a lecturer - author of a problemset package - can set up the whole

testing environment without needing direct access to the server where test are executed.

Within Gladiator we implemented a new class Dockerizer that serves for checking

availability of configured images on the system, for building those images from

dockerfile in case they are not available, and for starting containers with these prepared

images. Dockerizer is implemented with the help of Docker API client for Python called

docker-py6. Before the container is created, the content of problemset package is copied into

temporary directory that is then configured as a volume on the container. This means that

content of this directory is made available to otherwise isolated file system of the container.

Container is also created with limited available memory.

The last required step for docker integration was to update executable testcase runner to use

prepared Docker container. Main modification consisted of changing direct testcase command

execution to sending the command into running Docker container. However, we still set the

desired user and maximal allowed execution time of the test.

5.2 Gladiator as Celery worker

Integration of distributed task queue Celery with Gladiator started with configuration of the

so-called Celery application. Its configuration consists of specifying message broker (we

choose RabbitMQ) and task result backend (in our case Redis) and of various parameters

related to message passing. We also needed to refactor code related to submission evaluation

into functions independent on the web server-related code of Gladiator service that could be

then marked as Celery tasks.

To minimize amount of data transferred through RabbitMQ queue, we set up a shared

network storage server accessible through SSH. This storage is used for problemset packages

as well as students’ submissions retrieved by Gladiator, which are thus accessible for workers

running on multiple different hosts.

6 An official Docker API client for Python, see https://github.com/docker/docker-py

https://github.com/docker/docker-py

236 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015

Fig. 3. Submission evaluation in the real-time assessment scenario. Source: authors.

REST API endpoint judge of the Gladiator’s web server (the one that performs submission

evaluation) was modified to call appropriate task of the Celery application. The call places

a new task on the Celery queue. Three arguments are passed to this call: original name

of submitted file, unique identifier of that file stored in shared storage, and identifier of

problemset against which the submission should be evaluated. These arguments are retrieved

by worker that is (by Celery internal mechanisms) selected to process the task, it can then

fetch the submission and problemset files from shared storage and perform the evaluation of

the submission.

5.3 Updated real-time assessment scenario

However, for all these changes in the implementation, there was still one obvious weak spot

that prevented full benefit of task queue to show up. Even though submission evaluation was

moved to one of the distributed celery workers, if the server needs to wait for the result the

situation regarding availability is not really improved. And in a situation where all server

workers are waiting for celery workers to finish their jobs, task queue is not going to help

much either.

As we wanted to preserve REST-like Gladiator interface, it appeared that the problem would

require usage of asynchronous web server. Such server would be able to wait for result of

a worker job without blocking the process of handling other requests and to respond with the

result after it is received. This would, of course, mean a significant rewrite of the whole web

server part of Gladiator. However, as we stated in section 2.2, for real-time assessment use

case we needed some more quickly realizable solution. Thus we decided to implement an

alternative asynchronous communication channel usable with combination of the web

browser and leave REST services synchronous for the moment (they would not be used). To

this end a simple real time web server was created, which serves as a mediator for delivering

submission result to browser through Redis publish-subscribe channel and WebSocket

connection.

The whole process of on-demand submission evaluation during real-time scenario (final

exam) is captured in Fig. 3 and can be described as follows.

237 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015

1. A Student clicks on the "submit" button when he or she wants to evaluate their current

solution.

2. A request with the student’s implemented source code is sent to Spartan web server

through XMLHttpRequest7 (XHR) API.

3. Spartan saves source code to shared storage and enqueues submission evaluation and

publication tasks directly in Celery task queue.

4. Spartan server sends an empty response to the original XHR request. This ensures that

the connection is quickly closed.

5. Eventually, the tasks from the queue gets to one of running workers. Receiving worker

retrieves submission code from shared storage.

6. Worker starts Docker container from image specified in problemset configuration.

7. Actual evaluation of the submission proceeds as a sequence of commands from

problemset configuration is sent to the running Docker container and results of these

command calls (i.e., stdout, stderr, return code) are collected for assessment.

8. Worker stops running Docker container.

9. Worker sends results of submission assessment to Arena service, where it is stored for

viewing in accessible form by student.

10. Response from Arena service contains URL (Uniform Resource Locator) address

where the results are available.

11. The URL address and the achieved submission score are combined into a simple

JSON-formatted string and this message is sent through Redis publish/subscribe,

where the real-time server can pick it up.

12. Real-time server sends the received JSON to student’s browser through WebSocket

connection that is open for entire duration of student’s session on Spartan web page.

5.4 Results

Implementation changes described above were tested in an artificial situation where

48 computers were scripted to open Spartan web page and repeatedly send evaluation

requests of tasks prepared for C programming course exam. Gladiator was configured to use

4 workers. At first, responses of the system (retrieval of the gained score and URL to full

submission results) were in 3-4 second range. As the queue began to fill up with unprocessed

tasks, responses slowed down and stabilized at 45-50 seconds. Although such times are not

exactly acceptable for final exam, the experiment setup was rather unrealistic, because

scripted Spartan page issued new request as soon as it retrieved response to the previous one.

Moreover, response times would be easily reduced with more configured workers. On the

positive side, we did not observe any request that would fail to be evaluated or its result to be

delivered to the browser during the entire duration of the experiment (30 minutes). During the

real final exam evaluation times rarely raised above 5 seconds. This showed significant

improvement of platform availability over the original setup.

Evaluation of Docker integration benefits from the risky code problem perspective is more

complicated to approach. Docker containers themselves do not prevent erroneous or malicious

7 An API available in web browsers that enables in-background HTTP requests to a server.

238 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015

code execution, but they should provide enough isolation from the rest of the system that any

problems would have effect only on the container. And although we have not yet detected any

attempts to compromise the system by submitting malicious code, by taking basic precautions

against students’ errors through limiting execution time and available memory, we managed

to ensure better stability of the evaluation platform. Moreover, automation features of Docker,

like Dockerfile, provide convenient means to configure and manage execution

environments for different problemsets.

6 Related work and discussion

The approach to evaluation of students' programs presented by Thorburn and Rowe (1997)

surely inspired other authors who needed to deal with the same problem. The idea of so called

solution plan as a simple representation of program's functionality at a higher level of

abstraction is interesting. We believe that simple programs in procedural languages can be

safely checked whether they match a specific solution plan, however, in case of object-

oriented programming complications should be expected. The nature of object-oriented

languages gives programmers more freedom in how some functionality is expressed and

usually these languages are used in larger projects which would be difficult to check with the

technique of Thorburn and Rowe. Despite all this, their solution enables safe inspection

of unknown code and could be considered in the future.

Concerning security issues with automatic evaluation of programming assignments, Pieterse

(2013) assumes based on her previous experience that only a low amount of students'

assignments are intentionally malicious, however, the potential threat remains in erroneous

programs. While programming courses provided for university students have a limited

amount of participants, massive open online courses have potentially unlimited attendance, so

especially in the latter case even serious security breaches need to be considered and

prevented.

A system developed by Pieterse (2013) and her colleagues is described in her paper. Similarly

as in our approach they used a sandbox as a separated secured environment, in which

functionality of students' programs is tested with a set of testcases. The testing procedure is

described in general, but neither details concerning the testing environment nor specific

security measures that they used are provided in the paper.

A problem with students’ assignments evaluation, similar to ours, is addressed in the work of

Špaček, Sohlich, and Dulík (2015). For secure testing of unknown students’ programs they

incorporated separated environment into their evaluation system called APAC. Similarly as

in our work they chose Docker container for secure testing of programs.

There are several differences worth mentioning between our Arena platform and APAC.

Beside the difference in programming language used for implementation and architecture of

these systems, it seems that in their case Docker container and APAC run on different

systems. It can improve the isolation of Docker from the main system, on the other hand, such

isolation causes a communication delay.

Concerning students’ submissions assessment process, Špaček et al. (2015) mention that the

submitted source code is compiled still on the host system on which APAC application is

running. Only then is the compiled program transferred to the Docker container. In contrast

with their solution, our Docker container takes care also of the compilation of source code

submitted by a student. This ensures greater level of protection against errors or attacks

possible in compilation phase. Moreover, they use pool of prepared Docker containers that are

239 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015

repeatedly used while they are available. Although in this way they may manage to shorten

evaluation time (there are always some containers prepared to execute tests), our

implementation creates new container for each submission being evaluated. The result is that

each submission starts in an identical testing environment, unaffected by any changes that

may remain from previous evaluations.

7 Conclusion

Beginner programmers many times learn on their own mistakes. Errors and bugs simply

belong to programming. Even if targeted attacks are rare in students’ source codes, we can

learn from security experts who cope with malicious programs every day. Looking at

students’ programs as potentially malicious code led us to important security improvements in

our automated assessment platform Arena.

By integrating Docker container into Arena the testing environment is separated from the rest

of the system and thereby better secured. In this way the risky code problem is resolved. This

solution is promising since it seems that employment of Docker is moving towards computer

security domain, especially malicious software analysis (Zeltser, 2015). With growing

popularity of containers like Docker also their implementation will improve, so their

disadvantages against full virtualization solutions may eventually disappear.

Availability of platform services is another area in which we made improvements. These were

achieved by using distributed task queue and workers that now handle scheduling of tasks and

their actual execution, respectively.

There are still some unresolved issues that we want to address in our future work. Best

practices for using Docker container securely are developing together with the technology

itself. We will seek to adapt those to our implementation to ensure secure and stable operation

of Arena platform. Also, the solution of availability problem presented in this work was

focused on our real-time use case and scheduled assessment use case cannot yet fully benefit

from the presence of task queue. Already outlined transformation of Gladiator web server to

asynchronous operation is another of our future plans.

Another direction for future work is to enrich the Arena platform with additional methods for

fair assessment of students’ assignments. Beside the functionality of tested code, its quality

can be evaluated also based on programmers’ profiles (Pietriková & Chodarev, 2015).

We believe that Arena will provide the most appropriate information regarding functionality

and quality of students’ code as well as a chance to improve their programming skills.

Acknowledgement

This work was supported by project KEGA No. 019TUKE-4/2014 Integration of the Basic

Theories of Software Engineering into Courses for Informatics Master Study Programmes

at Technical Universities – Proposal and Implementation.

240 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015

References

Bayer, U., Habibi, I., Balzarotti, D., Kirda, E., & Kruegel, C. (2009). A view on current malware
behaviors. In Proceedings of the 2nd USENIX conference on Large-scale exploits and emergent
threats: botnets, spyware, worms, and more (p. 8). Berkeley: USENIX Association Berkeley.

Beaucamps, P., Gnaedig, I., & Marion, J. Y. (2012). Abstraction-based malware analysis using
rewriting and model checking. In Proceedings of the 17th European Symposium on Research in
Computer Security (pp. 806-823). Berlin: Springer. doi: 10.1007/978-3-642-33167-1_46

Biňas, M., & Pietriková, E. (2014). Useful recommendations for successful implementation of
programming courses. In Proceedings of the 12th International Conference on Emerging
eLearning Technologies and Applications (pp. 397-401). New York: IEEE. doi:
10.1109/ICETA.2014.7107618

Biňas, M. (2014). Identifying web services for automatic assessments of programming assignments.
In Proceedings of the 12th International Conference on Emerging eLearning Technologies and
Applications (pp. 45-50). New York: IEEE. doi: 10.1109/ICETA.2014.7107547

Boritz, J. E. (2005). IS practitioners’ views on core concepts of information integrity. International
Journal of Accounting Information Systems, 6(4), 260-279. doi: 10.1016/j.accinf.2005.07.001

Docker Inc. (2015). What is Docker. Retrieved from https://www.docker.com/what-docker

Egele, M., Scholte, T., Kirda, E., & Kruegel, C. (2012). A survey on automated dynamic malware-
analysis techniques and tools. ACM Computing Surveys, 44(2), 6. doi:
10.1145/2089125.2089126

Ferrie, P. (2007). Attacks on more virtual machine emulators. Retrieved from
https://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf

Ihantola, P., Ahoniemi, T., Karavirta, V., & Seppälä, O. (2010). Review of recent systems for
automatic assessment of programming assignments. In Proceedings of the 10th Koli Calling
International Conference on Computing Education Research (pp. 86–93).
doi: 10.1145/1930464.1930480

Landi, W. (1992). Undecidability of Static Analysis. ACM Letters on Programming Languages and
Systems, 1(4), 323-337. doi: 10.1145/161494.161501

Law, K. M.Y., Lee, V. C.S., & Yu Y.T. (2010). Learning motivation in e-learning facilitated computer
programming courses. Computers & Education, 55 (1), 218-228.
doi: 10.1016/j.compedu.2010.01.007

Makai, M. (2015). Task Queues - Full Stack Python. Retrieved from
http://www.fullstackpython.com/task-queues.html

Nishiyama, H. (2012). Improved sandboxing for java virtual machine using hybrid execution model. In
Proceedings of the 6th International Conference on New Trends in Information Science and
Service Science and Data Mining (pp. 173-178). New York: IEEE.

Ormandy, T. (2007). An empirical study into the security exposure to hosts of hostile virtualized
environments. Retrieved from http://taviso.decsystem.org/virtsec.pdf

Payer, M., Hartmann, T., & Gross, T.R. (2012). Safe Loading - A Foundation for Secure Execution of
Untrusted Programs. In Proceedings of the IEEE Symposium on Security and Privacy (pp. 18-
32). New York: IEEE. doi: 10.1109/SP.2012.11

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M., & Paterson,
J. (2007). A survey of literature on the teaching of introductory programming. ACM SIGCSE
Bulletin, 39(4), 204-223. doi: 10.1145/1345375.1345441

Petazzoni, J. (2014). Containers & Docker: How Secure Are They? Retrieved from
http://blog.docker.com/2013/08/containers-docker-how-secure-are-they/

Pieterse, V. (2013). Automated Assessment of Programming Assignments. In Proceedings of the 3rd
Computer Science Education Research Conference on Computer Science Education Research
(pp. 45-56). New York: ACM. doi: 10.1145/1559755.1559763

http://dx.doi.org/10.1007/978-3-642-33167-1_46
http://dx.doi.org/10.1109/ICETA.2014.7107618
http://dx.doi.org/10.1109/ICETA.2014.7107547
http://dx.doi.org/10.1016/j.accinf.2005.07.001
http://dx.doi.org/10.1145/2089125.2089126
https://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf
http://dx.doi.org/10.1145/1930464.1930480
http://dx.doi.org/10.1145/161494.161501
http://dx.doi.org/10.1016/j.compedu.2010.01.007
http://www.fullstackpython.com/task-queues.html
http://taviso.decsystem.org/virtsec.pdf
http://dx.doi.org/10.1109/SP.2012.11
http://dx.doi.org/10.1145/1345375.1345441
http://blog.docker.com/2013/08/containers-docker-how-secure-are-they/
http://dx.doi.org/10.1145/1559755.1559763

241 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015

Pietriková, E., & Chodarev, S. (2015). Profile-driven Source Code Exploration. In Proceedings of the
IEEE Federated Conference on Computer Science and Information Systems (pp. 929-934). New
York: IEEE. doi: 10.15439/2015F238

Pietriková, E., Juhár, J., & Šťastná, J. (2015). Towards Automated Assessment in Game-Creative
Programming Courses. Proceedings of the 13th International Conference on Emerging
eLearning Technologies and Applications (pp. 307-312). Košice: TUKE.

Ray, E., & Schultz, E. (2009). Virtualization Security. In Proceedings of the 5th Annual Workshop on
Cyber Security and Information Intelligence Research: Cyber Security and Information
Intelligence Challenges and Strategies (pp. 42:1-42:5). New York: ACM.
doi: 10.1145/1558607.1558655

Špaček, F., Sohlich, R., & Dulík, T. (2015). Docker as Platform for Assignments Evaluation. Procedia
Engineering, 100, 1665-1671. doi: 10.1016/j.proeng.2015.01.541

Thorburn, G., & Rowe, G. (1997). PASS: An automated system for program assessment. Computers
& Education, 29 (4), 195-206. doi: 10.1016/S0360-1315(97)00021-3

Wagener, G., State, R., & Dulaunoy, A. (2008). Malware behaviour analysis. Journal in Computer
Virology, 4(4), 279-287. doi: 10.1007/s11416-007-0074-9

Wang, F.L., & Wong, T.-L. (2008), Designing Programming Exercises with Computer Assisted
Instruction. In J. Fong, R. Kwan, & F.L. Wang (Eds.), Lecture Notes in Computer Science: Hybrid
Learning and Education (pp. 283-293). Berlin: Springer. doi: 10.1007/978-3-540-85170-7_25

Willems, C., Holz, T., & Freiling, F. (2007). Toward automated dynamic malware analysis using
CWSandbox. IEEE Security & Privacy, (2), 32-39.

Wögerer, W. (2005). A Survey of Static Program Analysis Techniques. Retrieved from
http://www.ics.uci.edu/~lopes/teaching/inf212W12/readings/Woegerer-progr-analysis.pdf

Zeltser, L. (2015). Security Risks and Benefits of Docker Application Containers. Retrieved from
https://zeltser.com/security-risks-and-benefits-of-docker-application/

http://dx.doi.org/10.15439/2015F238
http://dx.doi.org/10.1145/1558607.1558655
http://dx.doi.org/10.1016/j.proeng.2015.01.541
http://dx.doi.org/10.1016/S0360-1315(97)00021-3
http://dx.doi.org/10.1007/s11416-007-0074-9
http://dx.doi.org/10.1007/978-3-540-85170-7_25
http://www.ics.uci.edu/~lopes/teaching/inf212W12/readings/Woegerer-progr-analysis.pdf
https://zeltser.com/security-risks-and-benefits-of-docker-application/

