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Abstract  

This article analyzes ways of calculating characteristics of data and most common data structure types 

that allow comparison between them or on a time axis. To achieve this, it studies the key aspects of 

relational databases, XML, JSON and RDF structure types. These data structure types are compared to 

multiple isolated approaches to data quality and other data characteristics measurements. The goals of 

the article are the calculation method itself and a storage structure for calculated values. The article 

presents a method of characterization of data and data structure types based on the calculation of three 

metrics: the amount of structuredness, the amount of hierarchicallity and the amount of information. 

This triad of metrics allows comparison between various data sets (objects), for example evaluating the 

complexity of the transformation of data from one data object to another, as well as with data structure 

types (as mentioned above). Based on the vector of three metrics, the calculation method of the 

compatibility between data and data structure type is proposed. This method can help select the most 

compatible data format for existing data. The calculated values of metrics can also detect non-optimal 

storage design and classify data transformations. The method was evaluated on an example case study, 

which showed its usability on an example demonstration data set. It can be used in the process of data 

modelling to help select optimal data structure type, to design a data transformation process and to 

optimize existing data storages. 

Keywords 

Data metrics, Amount of information, Metadata, Relational database, XML, JSON, RDF, Ontology, 

Transformation, Structuredness, Hierarchicallity, Normalization, Visualization. 

 

 

 
  

https://doi.org/10.18267/j.aip.145
https://www.vse.cz/english/
https://orcid.org/0000-0002-5974-6187


Acta Informatica Pragensia  Volume 10, 2021 

https://doi.org/10.18267/j.aip.145  39 

1 Introduction 

The motivation for this article is to design a method for characterization of various data (independently 

on its structure type, format, or data model) by three calculable metrics. This calculation allows 

comparison between data sets (data with another data) and the calculation of their compatibility with any 

data structure type (data with relational database, XML etc.). Compatibility calculation helps to design 

the transformation of any data set to the most compatible data structure type. The calculated compatibility 

can be compared with the complexity of data transformation represented by its transformation length 

(vector of metrics values changes). 

To demonstrate the problem addressed by our approach, we shall consider complex enterprise data stored 

in a relational database. Multiple questions can be asked: 

1. Can the data be more easily converted and stored by XML or JSON (or any other format or data 

model)? 

2. Which parts of the data can most easily be converted and stored by XML? 

3. Which parts of the data are unsuitable for storing in a relational database? 

4. Which part of the data changes the most in time? 

5. Which parts of the data most increase its size and what is the probable reason? 

6. Which parts of the data are the most redundant? 

 

This article builds on the idea that to answer such questions, a single three metric-based method can be 

applied. These metrics are the amount of structuredness, hierarchicallity and information. 

2 Background 

There have been multiple isolated researches comparing single or two data structure types, their usage 

advantages and disadvantages and specifics for their most compatible data. Typically, relational database 

and XML (Krishnamurthy et al., 2001; Ma et al., 2020; Shanmugasundaram et al., 2001; Song & Haw, 2020) 

or XML and JSON (Helland, 2017). But current research lacks a unified systematic approach that allows 

comparing various pairs of data structure types and their corresponding data, which is the perspective of 

this article. 

The problem of the amount of data structuredness is usually limited to focusing on data at a specific 

structuredness level. Paper (Florescu, 2005) represents a general consideration of the problem of less 

structured information and data as one of the main limitations of relational databases. Article (Šperková, 

2014) mentions that unstructured data is generated mostly by social networks nowadays. This paper 

extends this structuredness approach into a continuous calculable metric. Article (Wellenzohn et al., 2020) 

propose an indexation method for semi-structured (and also hierarchical) data. 

This paper also addresses the problem of measuring how hierarchical the data is (the structure of a tree). 

Despite multiple definitions of a tree, no work approaching a measurable continuous value has been 

found. For example, (Musca et al., 2011) only say that a structure is hierarchical if "lower level units are 

part of higher level units". This article uses this definition to identify non-hierarchical parts of data and to 

calculate the amount of hierarchicallity based on their share.  

The amount of information has been well known since the approach of Shannon’s entropy. However, its 

main philosophy of the amount of information as a “non-redundancy” expressing the “unpredictability” 

of data is extended by Algorithmic information theory (AIT) based on Kolmogorov complexity, which 

deals with "the relationship between the computational method, information and randomness" and thus 

measures in particular the complexity of the relevant data (Hutter, 2007). This paper further applies AIT 

to measure the amount of information.  
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There are two main objectives of this article. The first objective is the calculation method, that takes a data 

object (any bounded set of data) and computes a triad of values – its amount of structuredness, 

hierarchicallity and information, belonging to the interval 〈0; 1〉 . The second objective is the storage 

method that allows saving computed values referenced to specific data and time into a structured 

database called “metadata warehouse”. Both objectives are strongly interconnected – each method 

requires using the other (the calculation method uses previously stored values). Their usability is 

evaluated on experimental data examples. 

The calculated values that characterize various data can help to demonstrate their characteristics in simple 

tables or graphically and to facilitate communication between data experts, software engineers as well as 

statisticians and content managers. 

Many universal or specifically targeted metrics of data have been designed and used. A large number of 

them refers to the concepts of “Big Data” and “data quality”. Article (Morton, 2014, p. 4) presents the 

following characteristics of Big Data – volume, variety, velocity, value and validity. Regarding data 

quality, (Floridi, 2013) presents “accessibility, accuracy, availability, completeness, currency, integrity, 

redundancy, reliability, timeliness, trustworthiness and usability”. Article (Närman et al., 2011) present 

the main dimensions of data quality, which they study in the context of Enterprise architecture: completeness, 

consistency, timeliness, relevance and accuracy, which is, however, a concept of metric rather than a 

dimension. This approach is also related to the “data governance” topic, which (Begg & Caira, 2012) define 

as a framework – a logical structure for classifying, organizing and communicating complex activities 

involving making decisions about them and taking action on business data. 

Multiple papers have studied topics related to the specific three metrics used in this article. The 

structuredness of data is widely understood as a discrete rather than continuous variable, having three 

levels – structured, semi-structured and unstructured, described e.g. by (Bartmann et al., 2011). Similarly, 

(Pokorný, 2010) extends the concept of classic and traditional database, because the goal is to manage a rich 

collection of structured, semi-structured, and unstructured data, spread in various enterprise repositories and on 

the Web. No relevant publications about data hierarchicallity have been found, just general definitions of 

hierarchies and the author’s previous poster (Vodňanský & Zamazal, 2016) measuring hierarchicallity on 

OWL ontologies.  

The amount of information is a popular topic since Shannon’s concept of information entropy (Shannon, 

2001), which is limited to a linear sequence of messages and their probability in an information channel. 

This concept is usable on single-dimension structured data only, but it is not flexible enough for usage on 

the multiple data structure types in this paper. According to (Hutter, 2007), the algorithmic amount of  

information is the “length of the shortest description” of a string or a data set which can be created by a 

compression (e.g. by Lempel-Ziv, bzip2 and PPMZ algorithms). Authors in article(Grünwald & Vitányi, 

2008) mention a “minimum number of bits from which a particular message can effectively be 

reconstructed”. Paper (Meinsma, n.d.) discusses the relation to lossy compression and proves that “there 

is no lossless compression that strictly reduces every file” and (Grünwald & Vitányi, 2008) recognize the 

extension of the AIT concept to lossy algorithms, which “allows formalizing more sophisticated concepts 

such as ‘meaningful information’ and ‘useful information’”. 

3 Applied methods 

This article uses a synthesis of sorted information sources of current theoretical knowledge (summarized 

in chapter 2). Data structure types are gradually qualitatively analyzed in part 4.1 and the result of their 

analysis is formalized by the three metrics described in part 4.2. By summarizing the possible 

combinations of metrics value changes, the data transformation types are derived in part 4.3.  
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The evaluation method is an experimental verification of the applicability of the metrics calculation 

method on an example case study (chapter 5), which uses three sets of demonstration data and also 

analyses their transformations. The output of this paper can be used as a quantitative analytical method 

based on deduction, which is practically verified on demonstration and real data. 

4 Designed calculation method 

This paper designs a method which allows describing various data by a triad of metrics. 

4.1 Considered data structure types 

This paper studies the following common data structure types.  

Relational databases (RDBs) are undoubtedly one of the dominant data storage technologies, popular on 

a theoretical basis from (Codd, 1990), strongly popular in the enterprise sector (Ramel, 2015). RDBs are 

oriented primarily on structured data, despite the support of XML and JSON storing typical for most 

RDBS systems and the NoSQL concept. An important aspect of RDBS is normalization – their main 

intention is to save structured data with a minimum redundancy. 

XML is a format complementary with RDBs especially in data interchange and semi-structured data 

storage. Compared with RDBs, it is self-describing and more flexible (Helland, 2017). It can store data 

from unstructured to fully structured level. The storage is hierarchical (if we ignore the non-uniform 

mechanism of elements referencing each other). XML documents can contain any level of redundancy – 

data normalization can be impossible in this format when the information represented by the XML 

document is not hierarchical. 

JSON represents a brackets-based notation of objects originally from the JavaScript language. However, 

the following description corresponds to multiple formats with similar structures including Redis and 

other “key-value” storages. JSON has almost same characteristics as XML, but it is focused primarily on 

structured data and probably the record can be shorter due to using brackets instead of elements, which 

decreases data redundancy. 

RDF is a data format used for publishing Linked Data together with schema defined by RDBs and OWL. 

Its specific form depends on a serialization of RDF, but the main aspect is its graph orientation (even its 

XML serialization does not use the classic tree relation). Its decentralized web-based concept allows and 

assumes redundancy of data published by multiple subjects. 

4.2 Three data metrics 

The metrics designed in this paper are marked as follows: 

• amount of structuredness – 𝑠(𝐷), 

• amount of hierarchicallity – ℎ(𝐷), 

• amount of information – 𝑖(𝐷), 

while 𝑠(𝐷), ℎ(𝐷), 𝑖(𝐷) ∈ 〈0; 1〉. 𝐷 is a data object – a bounded set of data that can consist of partial child 

data objects, or it can be elementary (the smallest possible object that still allows calculating the values of 

metrics). The computational formulas also use 𝑣(𝐷) as a bit size of the data object 𝐷 and 𝑐1 … 𝑐𝑛 (or a string 

length, if all data is textual), which represent the elementary child objects of data object 𝐷. 

The triad of data metrics can be visualized in a “three-dimensional data metrics space” – a cube with 

edge length 1 (all values ∈ 〈0; 1〉), where one corner is the point [0; 0; 0] and the three adjacent edges 

correspond to these three data metrics (see further Figure 3).  



Acta Informatica Pragensia  Volume 10, 2021 

https://doi.org/10.18267/j.aip.145  42 

4.2.1 Amount of structuredness 

As mentioned in the Background section, this paper, compared to the three-level structuredness concept 

(structured, semi-structured and unstructured), considers structuredness as a continuous value.  

The requirement for this metric is its ability to respond to two aspects of the examined data – its ability to 

break down into smaller parts and the degree of structure of individual maximally distributed parts of 

data (child elementary data objects). For elementary data objects, a significantly simpler way of 

determining the value of this metric can be expected. Both aspects should increase the resulting value of 

the degree of structuring of the examined data. This is also the reason why a simple weighted average 

calculation cannot be used – it ignores the ability of data to distribute. 

Calculating the amount of structuredness of a large data object with multiple levels of child objects is 

based on splitting the objects into elementary child objects, while all middle level (non-elementary) child 

objects are ignored. 

𝑠(𝐷) =

∑ (1 −
𝑣(𝑐𝑗)

𝑣(𝐷)
(1 − 𝑠(𝑐𝑗))) ⋅ 𝑣(𝑐𝑗)𝑛

𝑗=1

𝑣(𝐷)
 

Formula 1.  Amount of structuredness. 

This amount is calculated by Formula 1, where 𝑠(𝐷) is the result amount of structuredness, 𝑣 is a bit or 

text size function, 𝐷 is the data object and 𝑐1 … 𝑐𝑛 are its the elementary child objects. The weight of a data 

elementary child object is  
𝑣(𝑐𝑗)

𝑣(𝐷)
. 

Such a setting of the formula means that the amount of structuredness of, for example, a data object 𝐷2 

consisting of two equally large child objects (one structured and one unstructured, both having a weight 

of 
1

2
) is not 

1

2
, as would be the case with a simple weighted average calculation, but the following: 

𝑠(𝐷2) = (1 −
1

2
(1 − 1)) ⋅

1

2
+ (1 −

1

2
(1 − 0)) ⋅

1

2
= 0.5 + 0.25 = 0.75. 

The reason is that the object is divisible into two child objects; therefore, the unstructured child data object 

reduced the value by only 0.25. 

This method is based on the assumption that the structuredness 𝑠(𝑐
𝑗
) of an elementary data object 𝑐𝑗 is 

obvious and its determination can be automated – an elementary object is usually a small single value (e.g. 

a number or a single-word string in a database etc.) or a larger structure that cannot be split without losing 

the information it represents (e.g. a sentence, any longer text as well as media files). The principle of this 

method is that the unstructured elementary object 𝑐𝑗  decreases the structuredness of object 𝐷 

proportionally to its share of the object.  

For example, a single long text is an unstructured elementary object. By organizing thousands of such 

texts into a list, database etc., we get a much more structured superior object. Therefore, the limit of 

𝑠(𝐷), as the number of data objects increases, is one; the organization of objects next to each other and the 

ability to split their superior data object makes it more structural. 
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4.2.2 Amount of hierarchicallity 

The amount of hierarchicallity expresses how a data object fulfills the definition of hierarchical structure 

– a structure that can be expressed as a tree with a root node and its children on multiple levels (e.g. a web 

page or a XML file) without creating a redundancy. Formula 2 shows the definition of entity 𝑎 having a 

hierarchical property 𝐻 is the following (based on the definition from (Musca et al., 2011)). 

∀𝑎, 𝑏: (𝐻(𝑎) ∧ 𝑅(𝑎, 𝑏)) ⇒ (¬∃𝑐: 𝑐 ≠ 𝑏 ∧ 𝑅(𝑎, 𝑐)). 

Formula 2. Hierarchical property definition. 

Relation 𝑅(𝑎, 𝑏) means that 𝑏 is 𝑎’s parent – for example in a database, a row in a table refers by a foreign 

key to another “parent” row, which creates 1: 𝑁 relation, in XML a child element has a parent element etc. 

An entity referring to multiple others (having for example 𝑀: 𝑁  relation) breaks the definition of 

hierarchical property – such structure cannot be represented by a tree without repeating information from 

another entity. More examples of this problem are given in (Vodňanský, 2016). 

The amount of hierarchicallity is calculated by Formula 3. 

ℎ(𝐷) =
∑ 𝑣(𝐻(𝑐𝑗))𝑛

𝑗=1

𝑣(𝐷)
 

Formula 3. Amount of hierarchicallity. 

This method is also based on splitting a data object into elementary child objects, while 𝑣(𝐻(𝑐𝑗)) is the 

size of an elementary child data object that is not a part of any data object breaking the definition of 

hierarchical property and is not a child object of any object breaking the definition. 

4.2.3 Amount of information 

As the background stated, Shannon’s concept of information entropy is not usable for complex data 

structures. This paper applies AIT by measuring the compression rate of the whole data object with a 

given compression algorithm. This method can be computationally demanding on large objects and no 

algorithm can achieve the lowest possible size of compressed data, but using AIT is possible on data of 

any type and structure with a clear result. 

The amount of information is calculated by Formula 4. 

𝑖(𝐷) =
𝑣(𝑘(𝐷))

𝑣(𝐷)
 

Formula 4. Amount of information. 

Function 𝑘 is the compression function – 𝑣(𝑘(𝐷)) is the size of the compressed data object and 𝑣(𝐷) is the 

size of the original object. 

The characteristics of data structure types listed in the previous section are summarized in Table 1, which 

includes the intervals of data metrics values of an optimal data storage – a storage filled by data with the 

most suitable characteristics. 
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Table 1. Optimal ranges of metrics values. 

 amount of structuredness  amount of hierarchicallity amount of information 

RDBS {1} 〈0; 1〉 {1} 

XML 〈0; 1〉 {1} (0; 1⟩ 

JSON {1} {1} (0; 1⟩ 

RDF {1} 〈0; 1〉 (0; 1⟩ 

 

4.3 Data transformations classification 

The triad of data metrics allows classifying a transformation of data, based on the changes of metrics 

values. Data transformation is a process in which data object 𝐷0 is transformed into data object 𝐷1, while 

both objects represent the same information. 

Before the process of transformation, the system of three metrics helps to calculate the compatibility of 

data object 𝐷1 and data structure type 𝑆1. Formula 5 shows the compatibility calculation (function 𝑘). 

𝑘𝑇(𝐷) = 1 −
1

√3
⋅ min

S∈𝑇
√(𝑠(𝑆) − 𝑠(𝐷))

2
+ (𝑖(𝑆) − 𝑖(𝐷))

2
+ (ℎ(𝑆) − ℎ(𝐷))

2
 

Formula 5. Amount of compatibility of data object 𝐷1 and data structure type 𝑆1. 

Data object 𝐷 is defined by a triad of data metric values – amount of structuredness 𝑠(𝐷1), amount of 

hierarchicallity ℎ(𝐷1) and amount of information 𝑖(𝐷1). Data structure 𝑆 of type 𝑇 is defined by three 

intervals or values of these metrics, as shown in Table 1. The number √3 is the longest possible distance 

(geometrically, it is the inner diagonal of the cube). Geometrically, compatibility is based on the distance 

between a point ( 𝐷1 ) and a block ( 𝑆1 ) inside a three-dimensional data metrics space (estimated 

transformation length) – the shorter this distance is, the higher is the compatibility. 

The real data transformation length is the distance of two points (scaled on the interval 〈0; 1〉) representing 

the first object 𝐷0 and the transformed object 𝐷1. This number has the opposite function than compatibility 

– the higher the compatibility, the lower the transformation length should be; both numbers can be 

compared with each other. The calculation is shown in Formula 6.  

𝑡(𝐷0, 𝐷1) =
1

√3
√(𝑠(𝐷1) − 𝑠(𝐷0))

2
+ (ℎ(𝐷1) − ℎ(𝐷0))

2
+ (𝑖(𝐷1) − 𝑖(𝐷0))

2
 . 

Formula 6. Data transformation length between data objects 𝐷0 and 𝐷1. 

The transformation can be classified into 6 basic types (one data metric value is changing) of 

transformations and multiple other combined types (more metrics values are changing). The basic types 

are described by the following parts. 

4.3.1 Structuralization 

The process in which the amount of structuredness increases is typical to many job roles and disciplines, 

including data modelling and filling a database, accounting, semantic annotation (explained in more 

detail by (Oren et al., 2006)).This process is difficult to automate; one of such methods is FRED (Gangemi 

et al., 2017), a tool that transforms natural language text to RDF/OWL format, OCR (optical text 

recognition from images) and other natural language processing methods. In this context, (Šperková, 

2014) mentions the process of “sorting, cleaning and transformation of unstructured data into matrixes”. 

Structuralization is neutral to the other transformation types – it allows increasing and decreasing both 

other data metrics. 
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4.3.2 Destructuralization 

This inverse transformation type is typical for most interpersonal communication based on using 

structured data, e.g. a simple presentation. This process can only keep or increase the amount of 

hierarchicallity – by using less structured data, the definition of hierarchical property cannot be broken. 

The amount of information typically decreases but keeping this amount or even normalizing the data 

while being destructuralized cannot be excluded. 

4.3.3 Hierarchization 

This process, in which violations of hierarchical property definition are being removed, is typical for using 

data with a strict hierarchical structure – creating a webpage, XML document or even this paper itself (if 

inner cross-references are excluded). This process is described in more detail in (Vodňanský, 2016). 

Hierarchization is neutral with respect to structuredness. It can very probably increase the level of 

redundancy when non-hierarchical structures are transformed and decrease the amount of information, 

while it cannot normalize the data and increase it in any way. 

4.3.4 Dehierarchization 

This process creates breakings of the definition of hierarchical property. It can be assumed that this 

creation of double reference from a single entity is intentional (a reference cannot occur randomly). It is 

typical for processes creating graphs and diagrams – data models, ontologies, mind maps etc. 

This inverse transformation can increase the amount of structuredness. This metric cannot be decreased 

just by organizing data non-hierarchically. It also very typically occurs together with the normalization 

process, while denormalization is practically excluded – a non-hierarchical reference does not create 

redundancy, only if it is redundant itself. 

4.3.5 Normalization 

The process, in which redundancies are removed and the amount of information increases, is very popular 

in RDBs and its principles are described in multiple papers, e.g. (Codd, 1990; Halpin, 2001). A more 

detailed description and examples are superfluous for this paper. This paper understands normalization 

as a process applied on existing data, not just its schema and not just RDBs. 

It is typical for the same activities as the strongly related dehierarchization and it excludes hierarchization 

due to reasons set out in that section. This process is typical for structured data and Structuralization, but 

it is admissible even for unstructured data, which can be less redundant, therefore it is neutral to the 

amount of structuredness. 

4.3.6 Denormalization 

This inverse process, which creates redundancy, occurs when data is being prepared for easier or faster 

access for a machine (a data cache storage) or a human. 

It can probably decrease structuredness but allows its increase (for which there is probably no practical 

example) and it also probably increases hierarchicallity; dehierarchization cannot denormalize data. 

4.3.7 Combined transformation 

The discussion in the paragraphs above described the basic transformation types and their relation to each 

other. These relations can be combined into more complex types, in which two or three metrics change. 

By excluding the combinations described above and inverse pairs, 18 types exist and can be illustrated by 

the following Venn diagram (Figure 1), where a letter represents the initial letter of the transformation 

type name and an added letter D represents the inverse type. 
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Figure 1. Venn diagram of permissible combined data transformation types.  

This diagram in Figure 1 allows placing each classified data transformation, regardless of the size of the 

amount change. Simple transformations are represented by letters S – structuralization, H – 

hierarchization and N – normalization, the inverse transformations add the letter D (e.g. DN as 

denormalization). Combined transformations have multiple abbreviations separated by a comma. 

4.4 Metadata warehouse 

The metadata warehouse principle is based on the popular OLAP (online analytical processing) concept 

used in BIT (Business intelligence technologies). The metadata warehouse does not only serve as a 

repository, it is also an instrument of calculation itself – the values for parent objects are calculated from 

already stored values for lower-level objects.  

There are 3 main differences from the OLAP concept based on tables of facts and tables of dimension. The 

first difference is that it uses the three metrics together, which can serve as dimensions as well – 

hierarchicallity can be studied on multiple levels of structuredness and vice versa. The second difference 

is that values cannot be aggregated – they must be computed separately for an object on all levels (multiple 

data objects may contain no redundancy but can be redundant to each other inside the parent data object, 

they can break the hierarchy together or be organized more structurally). The third difference is that the 

structure of the warehouse is universally set for various data, while the OLAP cube is usually designed 

for a specific usage. 

The metadata warehouse can be built once (to study a specific situation ad-hoc) or continuously (to 

monitor data changes in time). The main principle of storing metadata in a warehouse is its referencing to 

the unique data it represents (in a format depending on data structure type). Metadata warehouse is a 

relational database with structure shown in Figure 2. 
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Figure 2. Metadata warehouse physical model.  

The first table shows an object that has its primary key, foreign key referring to a parent data object inside 

which this object is contained (the main, “root” object has null value and there must be no cycle), bit size 

(or string length for fully textual data), three amounts of metrics, reference to the represented data 

explained above and two datetimes defining the time range when the data object is changeless – each 

change in any parameter creates a new data object inside the warehouse with a new time range which can 

express a data transformation. 

The second table shows the 𝑀: 𝑁 relation, storing the information about the data mutual referencing of 

data (foreign keys in database, links in HTML, predicates in RDF data), when the referrer and rereferred 

objects are distinguished (they usually are in relation with 1: 𝑁  cardinality). This table is used for 

hierarchicallity calculation. 

4.5 Metric-based data visualization 

The triad of metrics allows three-dimensional visualization of most situations described in this paper. This 

visualization method uses a cube with the amount of hierarchicallity on axis 𝑥, the amount of information 

on axis 𝑦 and the amount of structuredness on axis 𝑧. While all metrics belong to the interval 〈0; 1〉, the 

three-dimensional space is represented by a cube shown in  Figure 3. The axis from top to bottom is the 

amount of information, the axis from left to right is the amount of hierarchicallity and the oblique axis 

from bottom left to the middle is the amount of structuredness. 
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Figure 3. Three-dimensional data metrics space.  

Inside this space, a data object is shown as a point with three metric values as coordinates. Data structure 

types, based on Table 1, with intervals or single values are shown as blocks, rectangles, lines or points – 

their intersections show areas compatible with multiple structure types. Data transformations are shown 

as arrows, representing a vector from one data object (point) to another. Webpage (Vodňanský, 2020) 

proposes an open-source application for 3D visualization of data object metrics and data structure types. 

5 Method evaluation by example case study 

This part shows three practical examples of using the principles on two purposefully created 

demonstration data sets with minimal size to illustrate the calculation. Both data sets represent the same 

information. Both are used to show the principle of data metrics and compatibility calculation. They are 

also used to show an example of data transformation, expressed by transforming the first data set into the 

second one. 

5.1 Relational database 

The first data set consist of a RDB with 3 tables, based on the topic of organizing sport courses. The 

database table are shown in Table 2, Table 3 and Table 4. 

 

Table 2. RDB table Area of the first data set. 

 

 

 

id_area name description 

1 swimming pool This is an example-long description of a swimming pool 

2 football pit null 

3 tennis court Tennis 
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Table 3. RDB table Course of the first data set. 

id_course day time id_area id_period 

1 1 15:00:00 1 3 

2 2 15:00:00 3 3 

3 5 14:40:00 3 3 

4 2 14:00:00 1 4 

5 3 15:30:00 2 4 

 

Table 4. RDB table Period of the first data set. 

id_period from to 

3 2019-03-01 2019-06-30 

4 2018-09-01 2019-02-26 

 

The metadata warehouse is built in six steps. 

Step 1: This step creates the “data_object” table, while id, creation (“existence_from”) and location 

specification is set (in the format “/table/id/column”). This process starts from the main “root” 

object to fill out the reference to the parent object. 

 

Step 2: This step fills the “data_reference” table, while in RDBs, only objects at RDB row level are 

practically referring using their foreign keys. 

 

Step 3: This step fills the size of the objects. Due to the text format of the data, a simple string length 

can be used instead of bit size. 

 

Step 4: This step calculates the amount of hierarchicallity. The object has value 1 if it does not contain 

any child objects both referencing each other in data_reference table non-hierarchically 

(breaking the definition of hierarchical property). This practically happens for the root object 

only, which contains all three tables, while all rows of Course table refer to the rows of both 

other tables. The value is calculated by Formula 3, dividing the size of elementary data objects 

that are children of the object breaking the criterion by the size of the whole object. For the root 

object, it is h(D1) = 
∑ v(H(cj))n

j=1

v(D1)
=

95

180
=0.5278. 

 

Step 5: This step calculates the amount of structuredness. All elementary objects are structured except 

the description of Area 1 (data object 7), which contains a sentence. This data object decreases 

the metric value for all parent objects in proportion to its share, therefore the amount for object 

3 is 
13(1−

13

68
(1−1))+54(1−

54

68
(1−0))

68
=0.3546, where 13 is the size of child object 6, 54 is the size of child 

object 7, and 68 is the size of the entire data object 3. Other data object values (especially 2 and 

1, which are the parent of this one) are computed analogically. 

 

Step 6: This step calculates the amount of information. This applies the AIT principle and uses bzip2 

algorithm to compress the data (in this case, a simple text representation of the data objects, in 
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which the child objects are split by a single space). The value of root data object 1 is 
204

238
=0.8571, 

while 204 is the length of the compressed text and 238 is the original length. For very small data 

objects, the compressed text can be longer than the original; then the value is 1. 

 

The final metadata warehouse is shown in the Appendix A. The compatibility of this (root) data object 

can be calculated as 

𝑘𝑅𝐷𝐵𝑆(𝐷) = 1 −
1

√3
⋅ 𝑚𝑖𝑛

𝑆∈𝑇
√(0.8233 − 1)2 + (0)2 + (0.8571 − 1)2 = 0.8688 

Analogically, the compatibility with the other data type structures can be calculated, which results in 

Table 5. It shows that even though this data set is a RDB, it is compatibility with RDBs is decreased by an 

unstructured child object, but it is still the most appropriate data structure type together with RDF. 

Compatibility with XML and JSON is decreased mostly by the data set’s hierarchicallity, which is only 

0.5278. 

Table 5. Compatibility of data object 𝐷1 and all data structure types. 

Data structure type Compatibility 

RDBS 0.8688 

XML 0.7152 

JSON 0.6974 

RDF 0.8688 

 

5.2 JSON 

The second data set consist of the same information as first one, but it is organized hierarchically in 

accordance with the JSON format: 

{ 

   "coursesByArea":{ 

      "swimming_pool":{ 

         "description":"This is an example long description of a swimming 

pool", 

         "courses":[ 

            { 

               "day":1, 

               "time":"15:00", 

               "period":"2019-03-01 - 2019-06-30" 

            }, 

            { 

               "day":2, 

               "time":"14:00", 

               "period":"2018-09-01 - 2019-02-26" 

            } 

         ] 

      }, 

      "football_pit":{ 

         "description":"", 

         "courses":[ 

            { 

               "day":3, 

               "time":"15:30", 

               "period":"2018-09-01 - 2019-02-26" 

            } 

         ] 

      }, 
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      "tenis_court":{ 

         "description":"Tenis", 

         "courses":[ 

            { 

               "day":2, 

               "time":"15:00", 

               "period":"2019-03-01 - 2019-06-30" 

            }, 

            { 

               "day":5, 

               "time":"14:40", 

               "period":"2019-03-01 - 2019-06-30" 

            } 

         ] 

      } 

   }, 

   "coursesByPeriod":[ 

      { 

         "range":"2018-09-01 - 2019-02-26", 

         "courses":[ 

            { 

               "day":1, 

               "time":"15:00", 

               "area":"swimming_pool" 

            }, 

            { 

               "day":2, 

               "time":"15:00", 

               "area":"tenis_court" 

            }, 

            { 

               "day":5, 

               "time":"14:40", 

               "area":"tenis_court" 

            } 

         ] 

      }, 

      { 

         "range":"2019-03-01 - 2019-06-30", 

         "courses":[ 

            { 

               "day":2, 

               "time":"14:00", 

               "area":"swimming_pool" 

            }, 

            { 

               "day":3, 

               "time":"15:30", 

               "area":"football_pit" 

            } 

         ] 

      } 

   ] 

} 

The metadata warehouse is built in six steps again. The following steps list only the differences from the 

first data set. 

Step 1: The location specification is based on sub-object names and numbers in square brackets (in case 

of array items), separated by a slash. 

 

Step 2: The JSON data objects have no explicit mechanism of interval referencing, therefore the 

“data_reference” table is empty and omitted. 
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Step 3: The size of the data object is calculated from the text length without delimiting parentheses or 

brackets but including all whitespace inside. Therefore, the size is not always equal to the sum 

of all children object sizes. 

 

Step 4: As mentioned in step 2, the amount of hierarchicallity in the JSON data structure type is 

always 1. 

 

Step 5: The amount of structuredness is calculated analogically to the previous dataset. The JSON 

format includes a lot of whitespace and delimiting characters. A sum of children data object 

sizes instead of the size of the data object itself is used. 

 

Step 6: This step applies AIT the same way, including inner whitespaces and delimiters. 

 

The compatibility is shown in Table 6. The metadata warehouse in the Appendix B. It shows, that even 

though this data set is JSON, it is more compatible with XML (due to unstructured child object occurrence) 

and therefore the selected data structure type is not optimal. Also, the very low amount of information 

0.2426 (high redundancy) of the data makes it very incompatible with RDBS data structure type. 

Table 6. Compatibility of object 𝐷1 and data structure types. 

Data structure type Compatibility 

RDBS 0.5614 

XML 1 

JSON 0.9661 

RDF 0.9661 

 

5.3 Data transformation 

The transformation study uses results from the first and second data set as the initial and final state of 

transformation. The data from the relational database is transformed into a JSON document, which is a 

common process, e.g. in web-based technologies. 

Table 7. Part of metadata warehouse containing initial and transformed objects. 

object_id parent_object_id size structuredness hierarchicallity information

_amount 

location_specification 

1 NULL 201 0.8233 0.8967 0.8571 rdbs/ 

2 NULL 1764 0.9412 1 0.2426 json/ 

 

The changes of metrics values can classify this transformation as a slight structuralization (number of 

structured data objects and their levels has increased due to the created redundancy), hierarchization and 

denormalization (S, H, DN transformation type area in Figure 1). This can be written as the following 

vector:  

𝑡
→ (𝐷)= [  ∆𝑠(𝐷), ∆ ℎ(𝐷), ∆ 𝑖(𝐷)] = [0.9412 − 0.8233;  1 − 0.8967; 0.2426 − 0.8971]

= [0.1179; 0.1033; −0.6145] 
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From this, the transformation length can be calculated (𝐷0 is the first row and 𝐷1 is the second row in 

Table 7): 

𝑡(𝐷0, 𝐷1) =
1

√3
√0.11792 + 0.10332 + (−0.6145)2 = 0.3661. 

 

 

Figure 4. Data transformation in a three-dimensional space.  

The length is approximately one third, which means a lower level of complexity and therefore a less 

expensive (demanding) data transformation process. This corresponds to the compatibility of the first 

data set and JSON type, which is 0.6974 (approximately two thirds), as shown in Table 5, which is inverse 

to the transformation length. Also, guidelines for points 𝐷0 and 𝐷1 have been added to help to imagine 

the position of the points (this paper does not allow inserting an animation of a rotating space, which 

would be more illustrative). 

6 Discussion 

This paper opened the topic of data structure type and its corresponding data heterogeneity and 

calculation possibilities. It proposed a basic theoretic method of characterizing data and their structure 

types by a triad of metrics. These metrics values can be used to compare data with each other and to 

analyze data transformation process complexity.  

Transformation process complexity can also be predicted by calculating the compatibility between data 

and data structure type. The calculated values can be stored in a metadata warehouse and allow a further 

application of statistic methods. The transformation process can be classified into six basic types and 

multiple combined types. 

The triad of values and their changes have shown the ability to visually represent the state of a data object, 

the optimal area of data structure type and how the values change direction in three-dimensional space. 

The calculated compatibility can detect a non-optimal storage design. 

 

 



Acta Informatica Pragensia  Volume 10, 2021 

https://doi.org/10.18267/j.aip.145  54 

Using this approach can help to answer the question asked in the Introduction: 

1. Data can be stored the more easily by XML or JSON the more hierarchical it is. The higher the 

amount of structuredness is, the more suitable it is for the JSON format. The example case study 

has shown the hierarchicallity difference. 

2. Data objects with the highest amount of hierarchicallity are most compatible with the XML format. 

When the example case study hierarchized the data from the relational database, the amount of 

information strongly decreased – a redundancy was created. 

3. Data unsuitable for relational databases are data with a high redundancy (low amount of 

information) and a low amount of structuredness. The process of data normalization and 

structuralization can require the input of an expert. 

4. The most dynamic parts (child objects) of a data object can be detected by simple size volatility. 

The triad of metrics can explain the reason for size change (redundancy, low structuredness etc.). 

5. This is partially explained in answer 4 – size is measured alongside the three metrics. The source 

of the size increase can be traced inside the metadata warehouse from root to smaller child objects. 

6. The most redundant data parts can be detected by combinations of child data objects whose parent 

data object has a low amount of information despite the fact that the amount of information of the 

child objects is significantly higher – such objects might be mutually redundant. This can be seen 

in parent object 5 and child objects 6 and 10 in Appendix B. 

The example case study demonstrated usage on simple data sets, which experimentally evaluated the 

usability of the described methods, which was the objective of the paper. It showed a very typical 

situation, when non-hierarchical data (RDBs) are hierarchized into JSON, which creates redundancy. 

The main limitation of these methods is their dependency on an expert, who needs to understand the data 

and to design the calculation and data warehouse storage process – no full or partial automatization 

method has been found, but it probably can be further designed for typical data structure types. Also, 

using algorithmic information theory on very large data can be computationally demanding. The metrics 

also showed that there can exist some mutual dependency between them (especially the amount of 

information and hierarchicallity), but a high level of hierarchicallity is not the only reason for redundancy 

and normalized data can also be hierarchical. 

The designed methods can be used in data modelling as well as in part of the data mining process – it 

can help to select an optimal data structure type or evaluate the optimality of an existing data storage and 

provide feedback. It can help to reveal problematic areas where data volume increases due to 

redundancies caused by inappropriate hierarchization or unstructured storage of structured information.  

A continuous and automated data analysis applying the described method can be used to monitor any 

base of data (not only a database system itself) for a longer time. This process has a similar principle to 

OLAP storage, but it focused mostly on database engineers, developers, and data curators rather than 

business. 

Most processes in software development perform some kind of data transformation. Calculated 

compatibility can help to select the optimal structure type. Transformation length indicates the real 

complexity of the transformation. This can help to select the direction of transformation and to decrease 

the complexity and the overall cost of the transformation process. Despite possible external influences on 

the selection of data structure type, this method can bring calculation-based arguments to the discussion 

about structure selection. 
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Appendix A 
Metadata warehouse of the first data set. 
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1 NULL 201 0.8233 0.5278 0.8571 / 

2 1 99 0.6868 1 1 /area 

3 2 68 0. 3546 1 1 /area/1 

4 2 13 1 1 1 /area 

/2 

5 2 17 1 1 1 /area/3 

6 3 13 1 1 1 /area/1/name 

7 3 54 0 1 1 /area/1/description 

8 4 12 1 1 1 /area/2/name 

9 4 0 1 1 1 /area/2/description 

10 5 11 1 1 1 /area/3/name 

11 5 5 1 1 1 /area/3/description 

12 1 42 1 1 1 /period 

13 12 21 1 1 1 /period/3 

14 12 21 1 1 1 /period/4 

15 13 10 1 1 1 /period/3/from 

16 13 10 1 1 1 /period/3/to 

17 14 10 1 1 1 /period/4/from 

18 14 10 1 1 1 /period/4/to 

19 1 60 1 1 1 /course 

20 19 12 1 1 1 /course/1 

21 19 12 1 1 1 /course/2 

22 19 12 1 1 1 /course/3 

23 19 12 1 1 1 /course/4 

24 19 12 1 1 1 /course/5 

25 20 1 1 1 1 /course/1/day 

26 20 8 1 1 1 /course/1/time 

27 21 1 1 1 1 /course/2/day 

28 21 8 1 1 1 /course/2/time 

29 22 1 1 1 1 /course/3/day 

30 22 8 1 1 1 /course/3/time 

31 23 1 1 1 1 /course/4/day 

32 23 8 1 1 1 /course/4/time 

33 24 1 1 1 1 /course/5/day 

34 24 8 1 1 1 /course/5/time 
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Appendix B 

Metadata warehouse of the second data set. Columns with “existence” are omitted due to space 

requirements and same values as first data set. 
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1 NULL 1764 0.9412 1 0.2426 / 

2 1 961 0.8498 1 0.3330 coursesByArea 

3 2 934 0.6348 1 0.3298 coursesByArea/swimming_

pool 

4 3 54 0 1 1 coursesByArea/swimming_

pool/description 

5 3 827 0.4898 1 0.3047 coursesByArea/swimming_

pool/courses 

6 5 114 0.4898 1 0.8070 coursesByArea/swimming_

pool/courses[1] 

7 6 1 1 1 1 coursesByArea/swimming_

pool/courses[1]/day 

8 6 5 1 1 1 coursesByArea/swimming_

pool/courses[1]/time 

9 6 15 0 1 1 coursesByArea/swimming_

pool/courses[1]/period 

10 5 114 0.4898 1 0.8421 coursesByArea/swimming_

pool/courses[2] 

11 10 1 1 1 1 coursesByArea/swimming_

pool/courses[2]/day 

12 10 5 1 1 1 coursesByArea/swimming_

pool/courses[2]/time 

13 10 15 0 1 1 coursesByArea/swimming_

pool/courses[2]/period 

14 2 190 0.4898 1 0.4246 coursesByArea/football_pit 

15 14 0 1 1 1 coursesByArea/football_pit/

description 

16 14 137 0.4898 1 0.7591 coursesByArea/football_pit/

courses 

17 16 114 0.4898 1 0.8421 coursesByArea/football_pit/

courses[1] 

18 17 1 1 1 1 coursesByArea/football_pit/

courses[1]/day 

19 17 5 1 1 1 coursesByArea/football_pit/

courses[1]/time 

20 17 15 0 1 1 coursesByArea/football_pit/

courses[1]/period 

21 2 537 0.7963 1 0.4246 coursesByArea/tenis_court 
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22 21 5 1 1 1 coursesByArea/tenis_court/

description 

23 21 266 0.7449 1 0.4511 coursesByArea/tenis_court/

courses 

24 23 114 0.4898 1 0.8070 coursesByArea/tenis_court/

courses[1] 

25 24 1 1 1 1 coursesByArea/tenis_court/

courses[1]/day 

26 24 5 1 1 1 coursesByArea/tenis_court/

courses[1]/time 

27 24 15 0 1 1 coursesByArea/tenis_court/

courses[1]/period 

28 23 114 0.4898 1 0.8070 coursesByArea/tenis_court/

courses[2] 

29 28 1 1 1 1 coursesByArea/tenis_court/

courses[2]/day 

30 28 5 1 1 1 coursesByArea/tenis_court/

courses[2]/time 

31 28 15 0 1 1 coursesByArea/tenis_court/

courses[2]/period 

32 1 756 0.9449 1 0.3386 coursesByPeriod 

33 32 425 0.9513 1 0.4518 coursesByPeriod[1] 

34 33 15 0 1 1 coursesByPeriod[1]/range 

35 33 355 1 1 0.3718 coursesByPeriod[1]/courses 

36 35 102 1 1 0.7843 coursesByPeriod[1]/courses

[1] 

37 36 1 1 1 1 coursesByPeriod[1]/courses

[1]/day 

38 36 5 1 1 1 coursesByPeriod[1]/courses

[1]/time 

39 36 13 1 1 1 coursesByPeriod[1]/courses

[1]/area 

40 35 100 1 1 0.8000 coursesByPeriod[1]/courses

[2] 

41 40 1 1 1 1 coursesByPeriod[1]/courses

[2]/day 

42 40 5 1 1 1 coursesByPeriod[1]/courses

[2]/time 

43 40 11 1 1 1 coursesByPeriod[1]/courses

[2]/area 

44 35 100 1 1 0.8000 coursesByPeriod[1]/courses

[3] 

45 44 1 1 1 1 coursesByPeriod[1]/courses

[3]/day 
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46 44 5 1 1 1 coursesByPeriod[1]/courses

[3]/time 

47 44 11 1 1 1 coursesByPeriod[1]/courses

[3]/area 

48 32 311 0.9168 1 0.6045 coursesByPeriod[2] 

49 48 15 0 1 1 coursesByPeriod[2]/range 

50 48 241 1 1 0.5311 coursesByPeriod[2]/courses 

51 50 102 1 1 0.7843 coursesByPeriod[2]/courses

[1] 

52 51 1 1 1 1 coursesByPeriod[2]/courses

[1]/day 

53 51 5 1 1 1 coursesByPeriod[2]/courses

[1]/time 

54 51 13 1 1 1 coursesByPeriod[2]/courses

[1]/area 

55 50 101 1 1 0.7921 coursesByPeriod[2]/courses

[2] 

56 55 1 1 1 1 coursesByPeriod[2]/courses

[2]/day 

57 55 5 1 1 1 coursesByPeriod[2]/courses

[2]/time 

58 55 12 1 1 1 coursesByPeriod[2]/courses

[2]/area 
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