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Abstract  

The mortality due to stroke is increasing. Accurate prediction of stroke-caused death is very important 

for healthcare. Data mining methods are novel ways to predict these mortality risks. The aim of this 

study is to employ popular data mining algorithms to predict the survival of stroke patients and extract 

decision rules. The data on stroke patients (n=4149) were collected from paper medical records. Missing 

data were managed using the multiple imputation method. Also, the target variable was balanced 

using methods such as over-sampling, under-sampling and Synthetic Minority Oversampling 

(SMOTE). The support vector machine (SVM), decision tree, and logistic regression (LR) algorithms 

were employed to predict the survival of stroke patients. Also, the Repeated Incremental Pruning to 

Produce Error Reduction (RIPPER) algorithm was used to extract the decision rules from the main 

dataset. LR outperformed other algorithms in terms of accuracy (76.96%), sensitivity (79.06%) and 

kappa (33.34). However, specificity (65.35%) and AUC (0.77) scores were lower than those of other 

algorithms. An independent dataset with 234 records was selected to challenge the LR algorithm with 

the best performance from the main dataset. After employing this algorithm on the external validation 

dataset, its performance was improved in accuracy (79.91%), sensitivity (83.94%), kappa (39.26) and 

AUC (0.8), but not in specificity (60.98%). The constructed model predicted the survival of stroke 

patients with high scores and useful rules were extracted for clinical usage. 
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1 Introduction 

While stroke was the fifth common cause of death worldwide in 1990, it was ranked third in 2017. In 

recent decades, the incidence rates have decreased by 42% in developed countries but increased by more 

than 100% in low- and middle-income countries (Gebreyohannes et al., 2019). For instance, the incidence 

of stroke in Iran has been estimated to span up to 140 cases in every 100,000 people (Azarpazhooh et al., 

2010; Hosseini et al., 2010). Ischemic stroke is sustained by the highest number of patients (80%) with 

different types of stroke (Boehme et al., 2017). Almost 60% of all new cases of ischemic stroke occur in 

people under 70 years (Lindsay et al., 2019). However, incidence of this disease is approximately one 

decade earlier in Iran than in other countries (Ghandehari, 2016). Over 2.7 million people die from 

ischemic stroke each year (Lindsay et al., 2019). The mortality rate is affected by factors ranging from 

admission delay to patient age and comorbidities. Notably, early admission to an intensive care unit and 

rapid specific diagnosis can significantly improve functional results and reduce mortality (Xian et al., 

2011). Survival analyses support clinical prognosis by employing historical data to estimate the mortality 

risk among patients who suffer a specific illness. Accurate predictions of stroke-caused death risk can help 

clinicians and hospital administrators take necessary hospital management measures (Smith et al., 2013).  

Traditionally, statistical methods such as the Kaplan-Meier test and Cox’s proportional hazards model 

have been employed to predict patient survival. However, novel methods are available today for this 

purpose. A large number of variables must be analysed simultaneously for prediction of stroke mortality, 

which limits the use of traditional statistical methods. Data mining methods have recently received 

particular attention in clinical medicine. In data mining, computer algorithms are employed to extract 

patterns from large datasets to improve the accuracy and precision of prediction models (Arslan et al., 

2016). A data mining algorithm learns from duplicate inputs to discover hidden relationships between 

data and make predictions on unseen examples (Ni et al., 2018). 

A study to predict medical outcomes in patients with sub-arachnoid haemorrhage (SAH) using machine 

learning techniques in the Waikato Environment for Knowledge Analysis (Weka) was conducted by Paula 

de Toledo et al. (2009). They analysed two datasets: a set of 441 training data items and another one 

consisting of 192 data items for external validation. They employed decision tree algorithms such as C4.5, 

fast decision tree learner, partial decision trees, Repeated Incremental Pruning to Produce Error Reduction 

(RIPPER), nearest neighbour with generalization, and ripple down rule learner. A model was developed 

based on the first dataset. The results showed that C4.5 had the best performance based on kappa (0.625) 

and AUC1 (84.10). The model was evaluated on the second dataset, and the results indicated that C4.5 

outperformed others with kappa and AUC values of 837 and 0.55, respectively. Also, in a work done by 

Peng et al. (2010) the 30-day mortality rate of patients with SAH was predicted in Weka. The data of 423 

patients were analysed by using random forests (RF), artificial neural network (ANN), support vector 

machine (SVM), and logistic regression (LR). These algorithms were compared to each other in terms of 

AUC, sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value 

(NPV). The results showed that RF acquired the highest AUC value (87). In another study by Celik et al. 

(2014) the 10-day mortality rate in patients with stroke was predicted by using neural networks and 

multivariate statistical methods. The data of 968 stroke patients were collected and analysed in MATLAB. 

The results indicated that the highest accuracy was obtained from the multivariate discriminant analysis 

(MDA) in the haemorrhagic group (87.8%) and from LR in the ischemic group (80.9%). In the study 

conducted by Ho et al. (2014) to predict post-stroke survival, the imbalanced target variable was balanced 

by using Synthetic Minority Oversampling Technique (SMOTE). Also, the data mining techniques, 

including naïve Bayes (NB), SVM, decision trees, RF, and LR in RapidMiner were implemented. Data 

 

1 It means area under the ROC curve. 
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related to 778 stroke patients were analysed. The results showed that the F1 score (0.33) and c-statistic 

(0.868) of SVM exhibited the best performance. Also, an independent dataset (39 records) was obtained as 

an external validator to test the selected classifier. The performance of the selected classifier (SVM) 

improved after implementation on the independent dataset. Cheon et al. (2019) employed deep learning 

to predict the mortality rate of patients with stroke. They collected data on 15,099 stroke patients and 

analysed them by using RF, AdaBoost classifier, Gaussian naïve Bayes, the k-nearest neighbours (KNN), 

SVM and deep learning in Keras. Sensitivity, specificity, accuracy, AUC and PPV of these algorithms were 

measured in their study. The AUC results showed that deep learning (83.50%) outperformed other 

algorithms.  

All the above-mentioned studies about prediction of stroke mortality by data mining algorithms have 

been conducted in high- and upper-middle income countries such as the USA (Ho et al., 2014), Spain 

(Paula de Toledo et al., 2009), South Korea (Cheon et al., 2019), Taiwan (Peng et al., 2010) and Turkey 

(Celik et al., 2014). Unfortunately, there is a noticeable lack of studies related to this domain in low- and 

lower-middle income countries such as Iran.   

Considering the rapid increase of stroke incidence in low- and middle-income countries, this study aims 

to employ the data mining techniques SVM, decision trees, LR, and RIPPER to predict the survival of 

Iranian stroke patients and to extract corresponding decision rules. 

2 Materials and methods 

The study used a retrospective registry examination design. The endpoint for the analyses was death at 

hospital discharge. The variables used for prediction were age, sex, smoking history, diabetes mellitus 

(DM) history, hypertension history, congestive heart disease history, coronary artery problem history, 

atrial fibrillation (AF) history, cerebrovascular accident (CVA) history, hospital-acquired complications 

(HACs), cholesterol history, and triglycerides history. Data for the predictive variables were collected at 

the time of hospital admission. The first stage of the study was carried out on data from the Imam 

Khomeini Teaching Hospital (dataset A) and the second external validation stage on data from the Imam 

Reza Hospital (dataset B). The required data were collected retrospectively from medical records of 

patients with stroke in the period 2011-2017 (see tables 1 and 2).  

Table 1. General statistics of dataset A variables. 

Distinct values Categorical variables 

Male Female Sex 

Percentage Frequency Percentage Frequency 

51.5% 2133 48.5% 2005 

No Yes Smoking history 

Percentage Frequency Percentage Frequency 

75.1% 3114 24.9% 1035 

No Yes Diabetes mellitus (DM) history 

Percentage Frequency Percentage Frequency 

75.6% 3138 24.4% 1011 

No Yes Hypertension history 

Percentage Frequency Percentage Frequency 

43.8% 1817 56.2% 2332 

No Yes Congestive heart disease history 

Percentage Frequency Percentage Frequency 

82% 3401 18% 748 

No Yes Coronary artery problem history 

Percentage Frequency Percentage Frequency 
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94.4% 3918 5.6% 231 

No Yes Atrial fibrillation (AF) history 

Percentage Frequency Percentage Frequency 

96% 3982 4% 167 

No Yes Cerebrovascular accident (CVA) 
history  

Percentage Frequency Percentage Frequency 

70.8% 2936 29.2% 1213 

No Yes Hospital-acquired complications 
(HACs) problem 

Percentage Frequency Percentage Frequency 

83% 3442 17% 707 

No Yes High cholesterol history 

Percentage Frequency Percentage Frequency 

72.7% 1881 27.3% 707 

No Yes High triglycerides history 

Percentage Frequency Percentage Frequency 

84.7% 2190 15.3% 397 

Level3 Level2 Level1 Body mass index (BMI) 

Percentage Frequency Percentage Frequency Percentage Frequency 

3.3% 37 5.2% 58 91.3% 1002 

> 61 days 15-60 days 0-14 days Length of stay (LOS) 

Percentage Frequency Percentage Frequency Percentage Frequency 

2.4% 98 13.3% 551 84.4% 3498 

    

Standard Deviation 
(SD) 

Mean Range Numerical variables 

14.52 68.19 (18-101) Age 

1.3 2.28 (0-8) Severity of stroke 

 

Table 2. General statistics of dataset B variables. 

Distinct values Categorical variables 

Male Female Gender 

Percentage Frequency Percentage Frequency 

47.9% 112 52.1% 122 

No Yes Smoking history 

Percentage Frequency Percentage Frequency 

75.6% 167 24.4% 54 

No Yes Diabetes mellitus (DM) history 

Percentage Frequency Percentage Frequency 

72.6% 170 27.4% 64 

No Yes Hypertension history 

Percentage Frequency Percentage Frequency 

43.2% 101 56.8% 133 

No Yes Congestive heart disease history 

Percentage Frequency Percentage Frequency 

88% 206 12% 28 

No Yes Coronary artery problem history 

Percentage Frequency Percentage Frequency 

97.4% 228 2.6% 6 
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No Yes Atrial fibrillation (AF) history 

Percentage Frequency Percentage Frequency 

95.7% 224 4.3% 10 

No Yes Cerebrovascular accident (CVA) 
history  

Percentage Frequency Percentage Frequency 

72.6% 170 27.4% 64 

No Yes Hospital-acquired complications 
(HACs) problem 

Percentage Frequency Percentage Frequency 

87.6% 205 12.4% 29 

No Yes High cholesterol history 

Percentage Frequency Percentage Frequency 

73% 92 27% 34 

No Yes High triglycerides history 

Percentage Frequency Percentage Frequency 

82.4% 103 17.6% 22 

Level3 Level2 Level1 Body mass index (BMI) 

Percentage Frequency Percentage Frequency Percentage Frequency 

40.3% 64 52.2% 83 7.5% 12 

> 61 days 15-60 days 0-14 days Length of stay (LOS) 

Percentage Frequency Percentage Frequency Percentage Frequency 

0 0 9.5% 22 90.5% 209 

    

Standard Deviation 
(SD) 

Mean Range Numerical variables 

13.16 69.38 (30-93) Age 

1 2.12 (0-5) Severity of stroke 

2.1 Data collection 

Due to the lack of an electronic health record (EHR) system in Iran, the data were collected by reviewing 

4149 paper medical records from neurology departments of the Imam Khomeini Teaching Hospital of 

Urmia (equipped with 635 approved beds) and 234 paper medical records from the Imam Reza Hospital 

of Urmia (equipped with 256 approved beds). The review of medical records was based on ICD-10 

(International Statistical Classification of Diseases and Related Health Problems) codes. Patients aged 0-

17 years or those who were not finally diagnosed with either ischemic or haemorrhagic stroke (according 

to ICD-10 codes) were excluded from the study.  

2.2 Data structuring 

All variables were of the categorical type, except for age and severity of stroke, which were numerical. 

Cholesterol, triglycerides and LOS were the three variables converted from numerical into categorical 

using the reduction method. Accordingly, zero and 1 indicated normal and high levels of cholesterol and 

triglycerides, respectively. In addition, the LOS was classified as three categories of 0-14, 15-60 and over 

60 days based on consultation with neurology specialists at the hospital. The severity of stroke and HACs 

were obtained by merging several variables using the transformation method. The severity of stroke was 

determined by using the Rapid Arterial oCclusion Evaluation (RACE) scale (Lima et al., 2016). The 

variable HACs was a combination of bedsore, lung infections, urinary tract infection and deep vein 

thrombosis (DVT).  

Since outliers and missing data may affect the final interpretation of knowledge, the number of missing 

data should be determined so that the necessary measures can be taken to manage them. In this study, 

some outliers (in 12 records) related to the age and hypertension history variables were detected by the 
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boxplot and histogram features. The proper values were inserted by a recheck of the paper medical 

records. These outliers were due to human error when entering values in Excel. The total missing data of 

dataset A were equal to 5.05%. The missing data were related to the variables of gender (0.26%), high 

cholesterol history (37.6%), high triglycerides history (37.6%), BMI (73%), LOS (0.04%) and age (0.12%). If 

more than 50% of records of a variable have missing data, they cannot be effective in analysis and should 

be excluded from the study. Accordingly, BMI (with 73% missing records) was excluded from this study. 

The missing data on age, gender and length of stay were substituted by their mean and mode respectively. 

The missing data on other two variables (high cholesterol history and high triglycerides history) were 

handled by the multiple imputation method. To perform multiple imputations, the missing data 

distribution type should be either missing completely at random (MCAR) or missing at random (MAR) 

(Horton et al., 2007). The missing data distributions for cholesterol and triglycerides were highly related. 

When data were collected from medical records, it was found out that cholesterol and triglyceride tests 

had been performed on all patients; however, the test results of some patients had inadvertently not been 

recorded. Therefore, it was concluded that the missing data distribution of this dataset was of the MAR 

type. After running the multiple imputation method, five complete datasets were created. 

The target variable of dataset A was unbalanced. This means that one value of the target variable has the 

maximum share of data, whereas other values account for the minority of data. Previous studies have 

shown that unbalanced learning can lead to predictions with bias and produce incorrect and unreliable 

results (Gu et al., 2008; Wei et al., 2013). This problem can be solved using methods that balance data such 

as over-sampling, under-sampling and SMOTE. In over-sampling and under-sampling, the number of 

minority values of the target variable is increased and reduced, respectively, to balance the target variable. 

Another technique to balance the target variable is SMOTE. In this technique, new records that are 

consistent with the records of minority values of the target variable are generated and simulated without 

changing the records of the majority values to compensate for the imbalance between the values of the 

target variable (Fernández et al., 2018). The proportion of the target variable values in this study was 

approximately 5 to 1 (84.6% alive to 15.6% dead), which was balanced by using over-sampling, under-

sampling and SMOTE. After balancing the target variable with the mentioned methods, the proportion of 

its values was 1 to 1 (50% alive to 50% dead). These methods were implemented on the train data and the 

test data were unchanged. 

2.3 Data analysis  

2.3.1 Model construction 

The data mining models used in this study were SVM, decision tree, LR, and RIPPER. SVM is a supervised 

data mining algorithm for classification, prognosis and regression. This method works based on 

integration of linear algorithms and linear (or nonlinear) nuclear functions (Jeena et al., 2016). In this 

study, the 10-fold cross-validation technique was employed to conduct SVM.  

A decision tree is a simple hierarchical model for managing large volumes of information. The 10-fold 

cross-validation technique was employed to perform the C5.0 algorithm in this study.  

The regression analysis is inherently based on prediction of values of the dependent variable by using 

several independent variables. As a more general model of linear regression, LR is utilized to predict 

binary values or variables with multiple discrete values (target variables). In this study, the LR was carried 

out using the 10-fold cross-validation technique. 

RIPPER is a rule-based learner that follows a set of if/then rules. Since these rules are extracted directly 

from the training datasets, this method can also be called the direct method.  
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The prediction models (LR, C5 and SVM) were implemented on 20 complete datasets. The target variables 

of five datasets had not been balanced, whereas the target variables of 15 datasets had been balanced with 

over-sampling, under-sampling and SMOTE. RIPPER was implemented on five complete datasets. 

2.3.2 Interpretation and evaluation  

The most appropriate models were selected purposively to acquire knowledge. The prediction models 

used in this study were evaluated in terms of accuracy, sensitivity, specificity, AUC and ROC curves and 

kappa statistics. For selecting the best representative of each algorithm (LR, C5 and SVM) implemented 

on 20 datasets, the algorithm that had the best performance in terms of evaluation criteria (equal to or 

more than 3 criteria) was selected. The criterion to select the best rules using RIPPER from five datasets 

was the rate of correct classified instances. 

2.3.3 Data analysis: External validation 

In the second stage of the study, dataset A was compared to dataset B for external validation. Dataset A, 

with 4149 records, and the external validation dataset, with 234 records, were regarded as training and 

testing datasets, respectively. Then the performance of the best model among three algorithms (LR, C5 

and SVM) was evaluated based on accuracy, sensitivity, specificity, AUC and ROC curves and kappa 

statistics.  

3 Results 

 The best performance of LR and C5 resulted from datasets that had been balanced by the over-sampling 

method. However, the best performance of SVM was due to the under-sampling method. The selected 

rules extracted by RIPPER were from the first dataset (see Table 3).  

Table 3. Performance of algorithms on dataset A. 

 

 

 

 

The highest AUC (0.78) was observed for SVM, the highest accuracy, sensitivity and kappa statistic (76.96, 

79.06, and 33.34, respectively) were related to LR, and the highest specificity (70.08) belonged to the 

decision tree. Figure 1 shows the ROC curve of algorithms for predicting the survival of stroke patients in 

dataset A. 

The rules extracted from the RIPPER algorithm for dataset A were: 

• A patient aged above 77 years with normal blood pressure, HACs and a stroke severity of 1 is 

more likely to die. 

• A non-smoker patient with HACs and a stroke severity between 1 and 9 is more likely to die. 

• A patient aged above 85 years who has been hospitalized for up 60 days is more likely to die. 

• A patient aged over 76 years with a stroke severity of 4 or more who has been hospitalized for 

more than 60 days is more likely to die. 

• Otherwise, the patient is more likely to survive. 

AUC 
Kappa 

[%] 

Specificity 

[%] 

Sensitivity 

[%] 
Accuracy [%] 

                    Performance 

Algorithm  

.75 32.87 70.08 76.35 75.39 Decision Tree (C5) 

.77 33.34 65.35 79.06 76.96 LR 

.78 31.72 68.50 76.21 75.03 Support Vector Machine 
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Figure 1. ROC curve of predicting algorithms in dataset A. 

In the external validation, LR was selected to run on the dataset (B) as the best model of training dataset 

(A). Table 4 presents evaluation results, and Figure 2 shows the ROC curve of the LR algorithm. 

Table 4.  Performance of best algorithm on dataset B. 

 

 

 

 

 

Figure 2. ROC curve of LR algorithm in dataset B. 

AUC 
Kappa 

[%] 

Specificity 

[%] 

Sensitivity 

[%] 
Accuracy [%] 

                      Performance 

Algorithm  

.80 39.26 60.98 83.94 79.91 LR 
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The rules extracted from the RIPPER algorithm for external validation are as follows: 

• A patient aged less than 74 years with HACs and a stroke severity of 1 is more likely to die. 

• A patient aged over 81 years who has been hospitalized for 15-60 days is more likely to die. 

Otherwise, the patient is more likely to survive.  

4 Discussion 

This study aimed to evaluate the performance of data mining techniques (SVM, decision trees and LR) in 

predicting the survival rate and extracting the rules of stroke patients (using RIPPER) based on clinical 

data collected from northwestern Iran. When these models were compared in performance on dataset A, 

it was shown that the LR algorithm outperformed the other algorithms in terms of accuracy (76.96), 

sensitivity (79.06) and kappa (33.34). Its performance on the external validation dataset improved in all of 

the evaluation criteria except specificity.  

A few studies have been conducted on the prediction of survival in stroke patients using data mining 

techniques. The accuracy index in some previous studies was higher than that of this study. For instance, 

it was 87.8 in Celik et al. (2014), 84.03 in Cheon et al. (2019), and 78.50 in Peng et al. (2010). However, it 

can be stated that the accuracy of algorithms is usually high in datasets with unbalanced values of the 

target variable due to predicting values of very high frequency. The kappa statistic excludes chance from 

calculations and provides an accuracy level that cannot be obtained from this simple strategy. However, 

none of the above studies reported using this indicator. 

The AUC values, which establish a balance between sensitivity and specificity, reported by Cheon et al. 

(2019), Peng et al. (2010) and Paula de Toledo et al. (2009), were higher than the value obtained in this 

study. This is probably because no balancing algorithm was employed in those studies. 

Ho et al. (2014) and Paula de Toledo et al. (2009) also employed external validation in their studies on 

datasets of 39 and 192 records, respectively. The dataset size of both studies was smaller than that of this 

study. However, like our work, the performance of the selected algorithm of both studies on the external 

validation dataset was slightly better. 

Following are some of the major differences between this study and previous ones. Some methods were 

used in this study for missing value management to prevent the loss of a variable or record. None of the 

previous studies employed such methods. Ho et al. (2014) used SMOTE for balancing, whereas SMOTE, 

oversampling and under-sampling algorithms were utilized in this study for this purpose. Apart from the 

study conducted by Cheon et al. (2019) on 15,099 records, the number of records in this study was higher 

than that of all other previous studies. It is noteworthy that Cheon et al. (2019) collected data from an 

electronic health records system, whereas paper medical records were reviewed for data collection. MRI 

and CT scans of patients were also used for data collection in other studies (Paula de Toledo et al., 2009; 

Peng et al., 2010; Cheon et al., 2019), whereas such documents were not available in medical records of 

patients to be used in this study. All studies except Celik et al. (2014) and Peng et al. (2010) employed the 

10-fold cross-validation technique, which reduces computation time as well as prediction bias. In this 

study, R was used for running the model. R is an open-source programming language consisting of several 

libraries in the field of artificial intelligence and data sequence. Other studies (Paula de Toledo et al., 2009; 

Peng et al., 2010; Celik et al., 2014; Ho et al., 2014; Cheon et al., 2019) employed RapidMiner, MATLAB, 

Weka and Keras for this purpose. 

There were also some similarities between this study and previous ones (Paula de Toledo et al., 2009; Peng 

et al., 2010; Celik et al., 2014; Ho et al., 2014; Cheon et al., 2019). All of the research variables were similar 

to those of the previous studies. The indicators used in this study for the evaluation of algorithms (e.g., 
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accuracy, sensitivity, specificity, etc.) were the same as those employed in the previous studies. Finally, 

both this study and the previous ones employed some common algorithms. 

The survival of stroke patients has been predicted to be 6 hours (Lewis et al., 2008), 5 days (Counsel et al., 

2003), 30 days (Counsell et al., 2002), 3 months (Johnston et al., 2000; Konig et al., 2008), 100 days (Weimar 

et al., 2002), 6 months (Counsel et al., 2003) and 1 year (Hankey et al., 2000; Li et al., 2012). The traditional 

statistical methods employed in those studies are different from the methods used in this study. 

It can be stated that age, HACs, male gender and severity of disease were the most important factors 

affecting the survival of stroke patients (Feigin et al., 2016; Wijaya et al., 2019). Moreover, diseases such as 

diabetes, hypertension, hyperlipidaemia and high cholesterol did not affect the survival of stroke patients 

(Nam et al., 2012; Salman et al., 2012).  

4.1 Limitations and future direction 

The first and most important limitation of this study was the use of the RACE index to determine the 

severity of stroke. The reason for using this index instead of the National Institutes of Health Stroke Scale 

(NIHSS) index was the lack of access to this index before 2015. If using the index, it should have been 

removed due to the large amount of missing data. At the same time, the RACE index was used due to its 

effectiveness. Also the reason for excluding some items such as family history, non-exploitation of brain 

images (CT scan and MRI) and genetic tests in this study was the incompleteness of medical records as 

well as the unavailability of brain images in clinical records. 

Future studies are recommended to analyse the effects of new variables such as insurance coverage, 

medications, quantity and quality of hospital services and comorbidities on the survival of stroke patients, 

include brain images (MRI and CT scans) in their study, and to review more records. 

5 Conclusion 

On a dataset of 4149 records, some data mining-based models were developed to automatically predict 

the survival of stroke patients concerning clinical data and history of comorbidities. Taking care of stroke 

patients is a difficult and complicated process that requires emergency clinical decisions in the first stage 

of the disease. The research findings allow early diagnosis of patients facing the risk of death from a stroke 

who need additional examinations and appropriate treatment before the disease worsens. The 

identification of such patients can be helpful in clinical, managerial and hospital decisions. The 

classification algorithm was employed due to the nature of the variable (survival), which contains two 

modes of survival and non-survival. The LR algorithm performed better than other ones.  

To further ensure the performance of the algorithms, a dataset from a separate hospital was used for 

external validation. Dataset A (Imam Khomeini Teaching Hospital) and dataset B (Imam Reza Hospital) 

were regarded as training and testing datasets, respectively. The results of external validation LR 

outperformed other algorithms with an AUC value of 0.80. The rules extracted by the RIPPER were 

clinically meaningful and clarify the hidden patterns of the datasets. 
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