
 

Acta Informatica Pragensia  

2022, Volume 11, Issue 2, pp. 179–204  

https://doi.org/10.18267/j.aip.179 

 

Citation: Ghorbani, M., Sharbaf, M., & Zamani, B. (2022). Incremental Model Transformation with Epsilon in Model-Driven Engineering.  

Acta Informatica Pragensia, 11(2), 179–204. https://doi.org/10.18267/j.aip.179 

Academic Editor: Stanislava Mildeova, University of Finance and Administration, Czech Republic 

Copyright: © 2022 by the author(s). Licensee Prague University of Economics and Business, Czech Republic. 

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution License (CC BY 4.0). 

Article Open Access 

 

Incremental Model Transformation with Epsilon  
in Model-Driven Engineering 

Marzieh Ghorbani, Mohammadreza Sharbaf , Bahman Zamani  

MDSE Research Group, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran 

 

Corresponding author: Mohammadreza Sharbaf (m.sharbaf@eng.ui.ac.ir) 

 

Abstract  

Model-Driven Engineering (MDE) is a software development paradigm that uses models as the main 

artifacts in the development process. MDE uses model transformations to propagate changes between 

source and target models. In some development scenarios, target models should be updated based on 

the evolution of source models. In such cases, it is required to re-execute all transformation rules to 

update the target model. Incremental execution of transformations, which partially executes the 

transformation rules, is a solution to this problem. The Epsilon Transformation Language (ETL) is a 

well-known model transformation language that does not support incremental executions. In this 

paper, we propose an approach to support the incremental execution of ETL transformations. Our 

proposal includes a process, as well as a prototype, to propagate changes to the target model. In the 

proposed approach, all the changes in the source model are detected to identify and re-execute the 

rules which deal with computing the required elements for updating the target model. We evaluated 

the correctness and performance of our approach by means of a case study. Compared to the standard 

ETL, the results are promising regarding the correctness of target models as well as faster execution of 

the transformation. 

Keywords 

Model-Driven engineering; Model transformation; Change propagation; Incremental transformation; 

Epsilon transformation language. 

 

 

 

 

 
  

https://doi.org/10.18267/j.aip.179
https://www.vse.cz/english/
https://orcid.org/0000-0001-5113-7689
https://orcid.org/0000-0001-6424-1442


Acta Informatica Pragensia  Volume 11, 2022 

https://doi.org/10.18267/j.aip.179  180 

1 Introduction 

Nowadays, software development approaches seek a solution to cope with the complexity of software 

systems. Model-driven engineering (MDE) (Brambilla et al., 2017) is one of the latest software 

development paradigms, which proposes the idea of increasing the abstraction level to facilitate the 

software development process. Models are first-class citizens of MDE, which describe software systems 

at a high level of abstraction (Balsamo et al., 2004). Model transformation is an integral part of modelling, 

which is used to produce new target models from existing source models (Sendall & Kozaczynski, 2003). 

Model transformation can be specified by various transformation languages such as QVT (OMG, 2016), 

VIATRA (Csertán et al., 2002), ETL (Kolovos et al., 2008), and ATL (Jouault & Kurtev, 2006). Each language 

is developed with different objectives and is based on various technologies. 

Due to the new requirements in model-driven software development, models are updated and evolved 

like other artifacts during the system development life cycle. Therefore, it is necessary to update the target 

models which are derived from the updated source models. Model transformation can be used to 

propagate changes between models. However, the typical batch transformation method, which re-

executes whole transformation rules to compute the updated target model, is not an appropriate method 

for change propagation between large models. In other words, for every change in the source model, all 

transformation rules are carried out to get the updated target model (Jouault & Tisi, 2010). Hence, for the 

source model, which contains too many elements, the transformation process takes a long time to apply 

changes to the target model. 

In this case, a solution is the incremental execution of model transformation to update the target model 

only based on the changes in the source model (Hearnden et al., 2006). In the incremental execution 

approach, the transformation is only executed for the elements that have been changed in the source 

model to generate the corresponding elements in the new target model. For example, if the name property 

of an element in the source model is changed, only the name of the corresponding element in the target 

model will be changed. In other words, in this approach, changes are propagated from the source model 

to the target model. This approach covers batch transformation drawbacks and is commonly known as 

incremental transformation (Jouault & Tisi, 2010). Incrementality is a key option for the execution of 

transformation that can enhance the power of batch transformation engines (Johann & Egyed, 2004). The 

Epsilon framework (Paige et al., 2009) provides a set of languages and tools for model management. The 

Epsilon Transformation Language (ETL) is a well-known model-to-model transformation language in 

MDE built upon the Epsilon framework. However, the standard ETL runs transformations in batch mode 

(Kolovos et al., 2008), and it does not support incremental execution of transformations. Moreover, with 

the advent of model-based software projects, efficient execution of ETL transformations for evolution of 

large models is important.  

In this paper, we propose a process for incremental execution of ETL transformations to support change 

propagation by ETL and achieve efficient execution of ETL transformations for model evolution. We aim 

to perform model transformations incrementally to only execute ETL transformations for changes applied 

to the source model. The ETL incremental execution process consists of four steps. In the first step, both 

initial and updated versions of the source model are compared to detect changed elements in the source 

model. In the second step, using the changed elements and given the input parameters of the rules, the 

process identifies the transformation rules which are related to the changed elements. In the third step, 

identified rules are executed separately. Finally, in the fourth step, the target model is updated based on 

the rule execution results by adding or removing elements. To evaluate the correctness and performance 

of our process, we run a case study. In the case study, we investigate the execution time and scalability of 

our approach to supporting incremental transformation over different sizes of source models and 

different numbers of changes. The results show that the proposed process is scalable for increasing the 

size of the source model and the number of applied changes.  
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The paper is organized as follows. Section 2 briefly provides background information on model 

transformation strategies and incremental execution techniques. This section also introduces the Epsilon 

Transformation Language. Section 3 introduces the research method used to carry out our research. 

Section 4 presents a running example of incremental transformation. Section 5 describes the steps of the 

proposed approach, which includes an overview of the approach and a brief description of its 

implementation. Section 6 discusses the experimental results of a descriptive case study and assesses the 

correctness, performance and scalability of our approach. Section 7 reports the related work; and we 

conclude the paper and outline some future lines of work in Section 8. 

2  Background 

In this section, we first review different strategies for the execution of a model transformation, including 

batch, incremental, lazy and reactive. Then, we investigate the characteristics of existing methods for 

incremental execution of model transformation in the case of change propagation from the source model 

into the target model. Finally, we introduce ETL, a hybrid model transformation language that supports 

model-to-model transformation in the Epsilon framework. 

2.1 Execution strategies for model transformation 

Software evolution is possible by propagating changes from one or more developed artifacts into other 

related artifacts. In model-driven engineering, model transformation plays an essential role in the 

development process, but efficiently propagating changes between artifacts is significant, which has been 

the subject matter of several studies (Hearnden et al., 2006; Jouault & Tisi, 2010). In batch strategy, as a 

common model transformation approach, all of the source model elements are loaded, and by matching 

and executing all the transformation rules, the target model is produced. However, in the software 

evolution process, re-execution of the transformation for all elements of the model is not efficient (Le 

Calvar et al., 2019). 

Therefore, the incremental transformation strategy has been introduced, working based on the changed 

elements and ignoring the re-execution of transformation rules for other elements. In the last decade, 

several incremental approaches to model transformation have been proposed, focusing on the efficient 

propagation of changes in different transformation languages. Most of these approaches can be 

characterized in three distinct phases, including change detection, impact analysis and change propagation, 

which is executed dedicatedly (Kusel et al., 2013). 

Another execution strategy is the lazy transformation strategy, which uses the idea of lazy evaluation. It 

is an approach that calculates the value of the expression if needed. It will speed up the execution of the 

transformation program. The lazy evaluation approach is used when a lot of data are modified. Applying 

a lazy evaluation strategy to transformation causes the transformation engine to delay accessing the model 

element until the transformation does not need that element. When a lazy transformation is executed, the 

transformation engine only creates the required elements or properties, which reduces the transformation 

execution time for large models. The lazy transformation strategy is usually used to create a part of the 

target model in other transformation strategies (Tisi et al., 2011). 

Another well-known execution strategy is the reactive transformation strategy, in which a transformation 

engine reacts to each change applied to the source model at the moment (Martínez et al., 2017). In the 

reactive strategy, the transformation engine instantly detects any changes applied to the source model, 

then it identifies and executes the desired transformation rule. Sometimes, to execute the transformation 

rules, references to other elements and some information about elements in the target model are required. 

To this end, the reactive engine ran a "request" query on the target model to take related elements and 

required information.  
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Therefore, a reactive transformation engine only executes rules that are absolutely required for 

responding to the "request" queries or updating elements in the target model (Martínez et al., 2017). The 

reactive transformation strategy combines the lazy and incremental strategies (Kolovos et al., 2013). 

2.2 Incremental execution techniques 

The incremental transformation is used when the target model already exists (Jouault & Tisi, 2010). Based 

on the transformation execution method, the incremental techniques are divided into three types 

(Czarnecki & Helsen, 2006): 

• Target incrementally: in this technique, first, all transformation rules are executed, then the new 

version of the target model is created. After that, the new target model is merged with the previous 

target models. 
 

• Source incrementally: in this technique, change propagation is made based on the changed 

elements, and only some rules of the transformation are executed. In this method, when a change 

occurs in the source model, the rule which is related to that changed element is detected first. Then, 

by executing the detected rule, the corresponding elements in the target model are generated. 
 

• Preservation of user edits in the target: in this technique, it is up to the user to detect and execute 

the required transformation rules. The user only re-runs the transformation for changes that have 

occurred in the source model. The user must synchronize the existing target model with a changed 

source while maintaining user edits. 

 

In this paper, the proposed process to execute ETL transformation incrementally is based on the 

incremental source technique, which will be discussed in its entirety in Section 5. 

2.3 Epsilon Transformation Language (ETL) 

ETL is one of the languages of the Epsilon family, which is provided for model-to-model transformations. 

ETL has been designed based on the hybrid language style, which brings both declarative and imperative 

advantages (Kolahdouz-Rahimi et al., 2020; Kolovos et al., 2008). The rule-based execution scheme of ETL 

supports a task-specific rule definition for model-to-model transformation that can transform an arbitrary 

number of source models into an arbitrary number of target models. Each module of ETL transformation 

has many rules which are specified by a unique name. Also, each rule consists of an input parameter and 

several destination parameters. ETL transformation can be used to propagate changes between source 

and target models conforming to different modelling languages. However, ETL only supports the batch 

transformation strategy, which is generally less efficient than the incremental strategy for change 

propagation. 

3 Research Method 

The main objective of our research is to build a process to execute ETL model transformation 

incrementally. Therefore, we followed the design science research methodology (DSRM) presented by 

Peffers et al. (2007). This methodology starts with recognizing the problem that should be tackled, then 

proposes the solution as a design artifact and finally, assesses the utilization of the created solution with 

an appropriate scenario. From a top-level methodological perspective, our research methodology is based 

on five steps, in which we utilize different actions to support our overall objectives. In the following, we 

investigate the actions necessary to accomplish each step of this research. 
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• Problem identification and motivation: We investigated the problem space and background to 

overview requirements for incremental execution of a model transformation and have a detailed 

description of the problem using an illustrative example. 
 

• Define the objectives of a new solution: We translated the obtained requirements to define our 

objectives for the design of a new process for incremental execution of the ETL transformations. 
 

• Design and development: We designed an execution process based on the structure of ETL by 

following the changes that are applied to the source model and identified different transformation 

rules that are appropriate for each change regarding the previously derived requirements and 

objectives.  
 

• Demonstration: We developed a graphical toolkit for the designed incremental execution process 

of the ETL transformations. 
 

• Evaluation: We evaluated the correctness, execution time and scalability of the incremental 

execution process of the ETL transformations using a case study following the guidelines proposed 

by Runeson and Höst (2008). 
  

4 Running Example 

In this section, to illustrate more precisely the proposed approach to incremental transformation, we 

introduce "OO2DB" as a short running example of ETL model transformation, which translates an object-

oriented class model into a database model. The ETL transformations should be defined based on the 

source and destination meta-models. The partial view of OO and DB meta-models, which describe the 

definition of source and destination models of the OO2DB transformation, are shown in Figure 1 and 

Figure 2, respectively. 

 

 

Figure 1. Excerpt of OO metamodel. 
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Figure 2. Excerpt of DB meta-model. 

The OO meta-model consists of the basic elements of a class model, including classes, attributes, references 

and datatypes. A class contains a set of features, including attributes and references, which can be associated 

with a referenced classifier, which is a class or datatype. Each feature can have many values, which means it 

can be associated with an unbounded number of elements. The DB meta-model describes a minimal 

database model, which consists of tables, columns, and foreign keys. A table contains a set of columns, and an 

arbitrary number of them can be identified as the primary key. Moreover, each foreign key can be defined 

as a multivalued relationship that is used to associate tables based on their columns. 

The simplified ETL transformation to translate a class model to a database model is composed of four 

rules. Each ETL rule associates elements in the source model to elements in the target model. The transform 

part defines source elements, and the to part specifies target elements. For instance, Listing 1 shows the 

Reference2ForeignKey rule, which is used to translate object-oriented references into foreign keys of the 

database and their related columns. 

 
1  rule Reference2ForeignKey 

2   transform r : OO!Reference 

3   to fk : DB!ForeignKey, fkCol : DB!Column { 

4    fkCol.table ::= r.type; 

5    fkCol.name = r.name + "ID"; 

6    fkCol.type = "Integer"; 

7    fk.name = r.name; 

8         fk.child = fkCol; 

9    fk.parent = r.owner.equivalent().primaryKeys.first(); 

10 } 

Listing 1. Sample rule: Reference2ForeignKey. 

An ETL rule can specify the number of binding assignments that are used to compute the value of the 

generated element attributes. In the Reference2ForeignKey rule, three bindings are used to assign values to 

the table, name and type properties of a generated column, which is referenced using the variable fkCol. 

Lines 7 to 9 also specify three bindings to set the values of the name, child and parent properties for a 

generated foreign key, which is referenced using the variable fk. 
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The Class2Table rule in Listing 2 is responsible for transforming object-oriented classes to corresponding 

database tables with associated columns as primary keys. This rule generates a table and a column for each 

class. The attributes of the generated table and column, which are referenced using the variables t and pk, 

are valued in lines 4 to 8 of Listing 2. Also, the generated table and column should be associated with each 

other. This rule describes the connection between t and pk in lines 8 and 9, which show two bindings for 

performing the association of them to each other. 

 

1  rule Class2Table 

2   transform c : OO!Class 

3   to t : DB!Table, pk : DB!Column { 

4    t.name = c.name; 

5    pk.name = t.primaryKeyName(); 

6    pk.type = "Integer"; 

7    t.columns.add(pk); 

8    t.primaryKeys.add(pk); 

9  } 

Listing 2. Sample rule: Class2Table. 

The SingleValuedAttribute2Column rule in Listing 3 translates a single-valued attribute into a corresponding 

database column. The input pattern of this rule expresses a guard in line 4 to filter the single-valued 

attributes based on the value of their isMany properties. This rule has to generate a column for every single-

valued attribute, which is referenced using the variable c. Lines 5 to 7 specify required bindings to 

compute the value of the name, table and type properties for the generated column, according to the 

corresponding value of properties for the input attribute and some transformation rules and operations. 

 

1  rule SingleValuedAttribute2Column 

2   transform a : OO!Attribute 

3   to c : DB!Column { 

4   guard : not a.isMany 

5    c.name = a.name; 

6    c.table ::= a.owner; 

7    c.type = a.type.name.toDbType(); 

8  } 

Listing 3. Sample rule: SingleValuedAttribute2Column. 

Finally, the MultiValuedAttribute2Table in Listing 4 transforms a multi-valued attribute into a 

corresponding table with a database foreign key and two associated columns as primary and foreign keys. The 

multi-valued attributes are specified by the input pattern guard in line 6. For each multi-valued attribute, 

the rule first creates a new table (variable t) and computes its name by executing the valuesTableName() 

operation in line 7. Then, the rule creates two new columns (variables pkCol and fkCol) and specifies a set 

of bindings in lines 9 to 14 that assign values of the name, table and type properties for the generated 

columns. After that, the rule creates a new foreign key (variable fk) and associates the generated foreign key 

to the generated columns, pkCol, and fkCol, according to the bindings in lines 16 and 17 for the parent and 

child properties, respectively.  
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1  rule MultiValuedAttribute2Table 

2   transform a : OO!Attribute 

3   to t : DB!Table, pkCol : DB!Column, 

4     fkCol : DB!Column, fk : DB!ForeignKey { 

5 

6   guard : a.isMany 

7    t.name = a.valuesTableName(); 

8 

9    pkCol.name = "ID"; 

10   pkCol.table = t; 

11   pkCol.type = "Integer"; 

12   fkCol.name = a.name + "ID"; 

13   fkCol.table ::= a.owner; 

14   fkCol.type = "Integer"; 

15 

16   fk.parent = pkCol; 

17   fk.child = fkCol; 

18 } 

Listing 4. Sample rule: MultiValuedAttribute2Table. 

In the first execution of the described transformation, all rules should be run to generate the target model 

elements. To keep the target model synchronized with the source model, we need to propagate changes 

between models. However, re-executing whole transformation rules to compute all target model elements 

is time-consuming and inefficient. In this case, the incremental execution of transformation can be useful 

to achieve the updated target model without wasting time and efficiently. 

As an example, consider Figure 3, which shows the source and target models for the OO2DB 

transformation. The initial version of the source model (Figure 3.a) is an instance of the OO meta-model, 

including Student, Course, Class and Professor classes, that describes the structure of a Course Management 

System. Using the OO2DB transformation, the initial version of the source model will be translated into 

the initial version of the target model (Figure 3.c). The initial version of the target model is an instance of 

a DB meta-model, including Student, Course, Class and Professor tables, that describes the scheme of a 

relational database for the mentioned Course Management System. 

For instance, suppose that the initial version of the source model is changed to the updated version of the 

source model (Figure 3.b) by adding the courseDesc attribute to Course, removing the classDesc attribute 

from Class, and adding the taught-by reference between Class and Professor. In this case, the initial version 

of the target model requires to be updated only according to the source model changes. Since the 

mentioned changes are related to the update of references and single attributes in the source model, an 

optimal solution to update the initial version of the target model is only re-execution of the rules 

Reference2ForeignKey and SingleValuedAttribute2Column for the updated elements. 

Consequently, based on the added courseDesc attribute, the courseDesc column is added to the target 

model. Also, due to the addition of the taught-by reference, the taught-by foreign key and taught-byID 

column are added to the target model. Finally, based on the deletion of the courseDesc attribute, the 

corresponding column is deleted from the initial version of the target model to create the updated version 

of the target model (Figure 3.d). 
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Figure 3. Models of running example. 

 

5 ETL Incremental Execution Process 

To address the lack of an approach to incremental execution of ETL transformations, we have introduced 

a new process to execute only the required ETL transformation rules based on the changes that are applied 

to the source model. The main objective of this process is to improve ETL transformation performance to 

propagate changes from source to target model in the evolution of models with a large number of 

elements. The ETL incremental execution process consists of four complementary phases: Change 

Detection, Rule Selection, Rule Execution and Target Extraction. Figure 4 shows the proposed process that 

needs the updated, the initial version of the source model, the initial version of the target model and the 

ETL transformation script. The source and target models are arbitrary meta-models, which are named 

Source Metamodel and Target Metamodel, respectively. These meta-models are required throughout the 

process. This process, which is built as an Eclipse plug-in on top of the Epsilon framework, automatically 

executes the required transformation rules.  

In the following, we explain all consecutive phases of the ETL incremental execution process. For each 

phase, we sketch the OO2DB running example to investigate in more detail how that phase works. 

Furthermore, at the end of this section, we demonstrate the plug-in developed to support the proposed 

incremental ETL process. 
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Figure 4. ETL incremental execution process. 

 

5.1 Change Detection 

The Change Detection phase is started when the user submits the updated version of the source model. In 

the first step, we need to detect changes applied to the initial source model to re-execute only the required 

ETL transformation rules. This phase is in charge of detecting elements that are changed (added or 

deleted) in the initial source model using an atomic change operation. We assume that the update of an 

element is equivalent to deleting an old element and adding a new one.  

To detect the changes, a model comparison using Epsilon Comparison Language (ECL) (Kolovos, 2009) 

or EMF Compare1 will be performed against elements of both initial and updated versions of the source 

model according to Algorithm 1. In the comparison, the type of elements, the value of attributes for each 

element, and the relationships between elements can be regarded as identity metrics. By removing null or 

unmatched pairs at the comparison output, a match trace consisting of the matched elements of both 

versions of the source model is obtained. The obtained match trace only contains common elements 

between initial and updated source models, and the added and deleted elements in the updated source 

model are missing. Hence, the match trace can be used to find elements that are added to the updated 

version or deleted from the initial version, respectively, by subtracting common elements from the 

updated version or initial version.  

The model comparison will be performed based on Algorithm 1. This algorithm receives two versions of 

the same model as inputs (e.g., Left and Right) and returns a list of matched elements named MatchTrace 

as output. In this algorithm, the isMatch function checks the similarity of two elements of the same type, 

according to the EMF Compare or ECL rules. For every two elements in the Left and Right models that are 

identified as matched elements, the algorithm adds a new couple of (left element, right element) to the 

MatchTrace. 

  

 

1 See, https://www.eclipse.org/emf/compare/  

https://www.eclipse.org/emf/compare/
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Algorithm 1. Model comparison algorithm 

Input initial version of source model as Left, updated version of source  

 model as Right 

Output list of matched elements as MatchTrace 

procedure Matching Method 

   for each e1 ∈ Left do 

     for each e2 ∈ Right  and  e2 → isTypeOf(e1) do 
         if isMatch(e1, e2) then 

       add couple(e1, e2) to MatchTrace 

       end if 

     end for 

   end for 

end procedure 
 

 

To extract the added and deleted elements, we proposed Algorithm 2 and Algorithm 3; respectively. The 

MatchTrace is an input of both algorithms. According to the computed MatchTrace, Algorithm 2 searches 

all elements of the updated source model to detect the missing elements, which determine the added 

elements. Conversely, Algorithm 3 searches all elements of the initial source model to detect the missing 

elements, which determine the deleted elements. 

 

Algorithm 2. Addition detection algorithm 

Input updated source model as Updated, the match list of initial and   

 updated source models as MatchTrace 

Output list of added elements as AddedElements 

procedure Add Detection Method 

  for each e1 ∈ Updated do 
   e2 = findMatch(MatchTrace → right, e1) 

    if isEmpty(e2) then 

       add e1 to AddedElements 

    end if 

 end for 

end procedure 

 

Algorithm 3. Removal detection algorithm 

Input initial source model as Initial, the match list of initial and  

 updated source models as MatchTrace 

Output list of deleted elements as DeletedElements 

procedure Delete Detection Method 

   for each e1 ∈ Initial do 
  e2 = findMatch(MatchTrace → left, e1) 

       if isEmpty(e2) then 

          add e1 to DeletedElements 

        end if 

   end for 

end procedure 

 

Figure 5 shows the result of performing the Change Detection phase for the running example (see Section 

4). The double-headed arrows show the matched elements, which is the result of Algorithm 1 for initial 

and updated source models. In this example, the taught-by reference and the courseDesc attribute are two 

new elements in the updated source model, which are detected and added to the Added Elements list by 

Algorithm 2. Moreover, classDesc is the only removed element, which is detected and added to the Deleted 

Elements by Algorithm 3. 
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Figure 5. Detection of added elements and deleted elements for running example. 

 

5.2 Rule Selection 

In order to incrementally apply changes of the updated source model to the initial target model, we have 

to detect the changes in the source model and determine the changes that should be applied to the target 

model along with the corresponding transformation rule. In the Rule Selection phase, each added and 

deleted element detected in the Change Detection phase is mapped to a specific rule of ETL transformation. 

ETL rules can be mapped to the changes based on the type and properties of their source elements, which 

are respectively defined in the transform and guard parts of each transformation rule. To this end, 

Algorithm 4 receives all transformation rules and the added and the deleted elements as changes. Then, 

it maps each change to the relevant transformation rule by analysing the following conditions. First, the 

compliance of the transform part with the type of element which is changed, and after that, the evaluation 

result of the guard part for the changed element. Therefore, a transformation rule is mapped to a changed 

element if both conditions are satisfied by that element. Finally, Algorithm 4 returns a map list of changed 

elements and their relevant rules as a result.  

By applying Algorithm 4 to the detected changes of the running example, the Reference2ForeignKey rule is 

mapped to the added taught-by reference. Also, as the isMany property is false for the added courseDesc 

and the deleted classDesc attributes, the SingleValuedAttribute2Column rule is selected for both of them.  
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Algorithm 4. Rule selection algorithm 

Input all of the Added Elements and Deleted Elements as ChangedElements,  

 ETL transformation rules as Rules 

Output list of relevant rules to changes as Result 

procedure Selection Method 

  for each e0 ∈ ChangedElements do 
        mRules = findMatchRules(Rules → transform, e0) 

        for each rule ∈ mRules do 
          if e0 → isSatisfied(rule → guard) then 

             add map(rule, e0) to Result 

          end if 

        end for 

   end for 

end procedure 

 

5.3 Rule Execution 

In the incremental execution of a transformation, only rules which are mapped to changed elements 

should be executed. Hence, the Rule Execution phase executes only ETL transformation rules based on the 

mapping list created in the Rule Selection phase. To this end, we create two intermediate target models, 

one for the Added Elements and the other for the Deleted Elements. After that, we automatically create the 

context module and prepare the required information based on the mapping list and initial version of the 

target model for each selected rule. Then, we execute the transformation rule for the changed element, 

and finally, we save the result to the Added or Deleted intermediate target model according to the type of 

changed (Added or Deleted) element. 

The output of the Rule Execution phase for the running example is the execution of three transformation 

rules and the creation of four elements. The SingleValuedAttribute2Column rule is executed for the 

courseDesc and classDesc attributes that create the courseDesc and classDesc columns. The courseDesc column 

is created for an added element, so it is saved in the Added intermediate target model. Instead, the classDesc 

column is the result of the removed attribute and saved in the Deleted intermediate target model. As well, 

the Reference2ForeignKey rule is executed for the taught-by reference, which creates the taught-by foreign 

key and the taught-byID column as results. Both created elements are saved in the Added intermediate 

target model since the taught-by reference was an Added element. 

5.4 Target Extraction 

After the execution of relevant transformation rules, the target model should be extracted based on the 

created results, which are saved in the intermediate target models. To this end, we first subtract the Deleted 

intermediate target model from the initial target model. In addition, for some deleted elements, 

dependencies such as relationships and references have to be deleted in the updated target model. After 

that, we merge the result with the Added intermediate target model to create the updated version of the 

target model. In order to implement the Target Extraction phase, we use Algorithm 5. This algorithm 

receives both the Added and Deleted intermediate target models and the initial version of the target model 

as input. Then, the initial target model is manipulated according to the Added and Deleted target elements 

with change model operations. Finally, the updated version of the initial target model is stored as output. 

Figure 3.d shows the updated version of the target model, which is the output of the Target Extraction 

phase for the running example. As shown in this figure, instead of creating 22 elements using batch 

transformation, which needs the execution of 15 transformation rules, we create only four elements by 

incremental execution of only three transformation rules according to the new changes. The ETL 

incremental execution process also reduced the execution time by about 73% for the running example. 
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Algorithm 5. Target extraction algorithm 

Input added intermediate target model as TargetAdded, deleted intermediate  

 target model as TargetDeleted, and initial target model as InitialTarget 

Output updated target model as UpdatedTarget 

procedure Integration Method 

   copy InitialTarget to UpdatedTarget 

   for each e0 ∈ TargetDeleted do 
     depList = findDependency(InitialTarget, e0) 

     for each e1 ∈ depList do 
       delete e1 from UpdatedTarget 

     end for 

   delete e0 from UpdatedTarget 

   end for 

 for each e0 ∈ TargetAdded do 
   e1 = findOwner(UpdatedTarget, e0) 

    if ¬isEmpty(e1) then 
     add e0 to below of e1 in UpdatedTarget 

    else 

     add e0 to UpdatedTarget 

  end if 

 end for 

end procedure 

 

5.5 Toolkit prototype 

To show the applicability of the ETL incremental execution process, an Eclipse toolkit plug-in is 

implemented on the Epsilon framework. The source code of our plug-in is available from GitHub2 under 

the EPL 2.0 license. The implemented plug-in, as shown in Figure 6, can be started from the Eclipse menu 

by clicking on "Run Transformation" and opening the "Model Selection" window (Figure 7). The Model 

Selection window allows the user to select the initial and updated versions of the source model and the 

initial version of the target model. By going to the next window (Figure 8), the user should select the 

source and target meta-models, ETL transformation file and comparison strategy, and go to the next 

window (Figure 9) to see the address of the updated target model and the transformation execution time. 

 

 

Figure 6. Implemented toolkit: start menu. 

 

2 See, https://github.com/Marzieh-Ghorbani/IncrementalETL  

https://github.com/Marzieh-Ghorbani/IncrementalETL
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Figure 7. Implemented toolkit: model selection. 

All GUIs and the proposed process are coded using the Java language; however, algorithms more 

specifically rely on the Epsilon Object Languages (EOL). Our prototype is able to incrementally transform 

UML and EMF-based models. Moreover, the proposed process can work well for any standard ETL 

transformation, which strongly depends on the Epsilon transformation interpreter. 

 

Figure 8. Implemented toolkit: requirement selection. 
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Figure 9. Implemented toolkit: requirement selection. 

 

6  Evaluation 

The proposed incremental model transformation introduced in Section 5 aims to execute ETL 

transformation more efficiently than standard ETL execution for updating source models with some new 

changes. Therefore, we conducted a descriptive case study following the guidelines defined by Runeson 

and Höst (2008) to assess the correctness, execution time and scalability of our approach. To this end, we 

performed both an ETL incremental execution process and a standard batch (non-incremental) ETL 

strategy for Families2Persons and OO2DB, which are two well-known examples in the model 

transformation area. In the following, we first introduce the research questions that we aimed to answer 

with the case study. Then, we focus on the design of the case study. Finally, we present and discuss the 

results of the case study concerning the mentioned research questions. 

6.1 Research questions 

The first goal of this study is to evaluate the correctness of our incremental execution process and the 

implemented tool when used for a real-world scenario. Another goal is to quantitatively assess the 

execution time of our approach compared to the standard batch execution of ETL. It also aims to explore 

the scalability of our approach when expanding the size of models and increasing the number of changes. 

Therefore, we conducted an experiment in order to investigate the following research questions. 

RQ1. Correctness: Does the proposed incremental execution process as well as the implemented toolkit 

produce a valid model? 

RQ2. Execution time: Does the proposed process reduce the time of transformation re-execution for 

updated source models? 

RQ3. Scalability: What are the effects of expanding the size of the source model and increasing the 

number of changes on the incremental transformation execution time? 
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6.2 Case study design 

As an appropriate input to this case study, we needed EMF models for our transformations. These models 

must have an extensive evolution history. We further required information on the change operations that 

have been applied to each source model. According to the source models, the correctness of the 

incremental execution process and resulting target models can be ensured manually by spot-checking. To 

this end, we first performed Families2Persons and OO2DB transformations step by step for two real-world 

models using the incremental execution process. After each step, we immediately checked the accuracy 

of the intermediate outputs. Subsequently, we executed the standard ETL transformation. Finally, we 

compared target models for both incremental and standard strategies using EMF Compare. The same 

results for both strategies show that the incremental process operates correctly. 

Moreover, to investigate execution time and scalability, we required large-scale source models with a 

specific number of change operations that had been applied to source models. To achieve this, we used 

Ecore Mutator3 to randomly mutate EMF models conforming to the source meta-models (i.e., the Family 

and OO meta-models). Consequently, we produced several models of small to large size, including source 

models with 100 to 45,000 elements. We also created five test models with 8, 16, 32, 64, and 128 changes 

for each source model. All the created test models were transformed to the target models using both 

incremental and standard ETL execution strategies. During the experiments, the time for doing each 

transformation was measured independently. Therefore, by comparing the data obtained from our 

experiments, the research questions related to the execution time and scalability could be answered 

appropriately. The results are discussed in the next section. 

6.3 Results 

In this section, we present the results of our case study. In particular, we indicate the collected data, then 

we proceed with analysing them, and finally, we discuss and draw some conclusions for each research 

question raised in Section 6.1. Note that all the experiments were carried out on a standard Windows 8 

laptop using an Intel®CoreTM i7 with a 3.6 GHz processor and 8GB RAM. Moreover, all the reported times 

were computed as the average for ten independent executions. 

RQ1. Correctness: With the first research question, we aimed to investigate the correctness of the 

incremental ETL process as well as an implemented toolkit. To this end, we rely on the result of our 

experiment based on the experience gained from the Families2Persons and OO2DB transformations for 

real-world modelling scenarios. 

In the first scenario, we focused on Families2Persons transformation, which includes two independent 

rules. As an initial version of the source model, we used an extended version of the “Families to Persons”4 

source model, including six families. We applied all the different change cases introduced in the “TTC 

2017 Families to Persons” case study (Anjorin et al., 2017) to the forward direction. After each change, we 

ran the incremental ETL process to check the target model and ensure the correctness of the 

transformation. After applying all changes to the initial source model, we also executed standard ETL to 

produce the target model. Finally, we used EMF Compare to check the similarity of the target model 

produced by standard ETL, and the target model was updated with an incremental ETL process. This test 

scenario indicated that the incremental ETL process produced the expected output for each change, and 

the final target model was valid and quite similar to the target model produced by standard ETL. For our 

purposes, a valid target is a model that only consists of the respective elements without any missing 

elements and conforms to the target meta-model. 

 

3 See, https://code.google.com/archive/a/eclipselabs.org/p/ecore-mutator  
4 See, https://www.eclipse.org/atl/atlTransformations/  

https://code.google.com/archive/a/eclipselabs.org/p/ecore-mutator
https://www.eclipse.org/atl/atlTransformations/
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In the second scenario, we followed a procedure similar to the first scenario for OO2DB ETL 

transformation. The OO2DB transformation has a different structure with more complex and 

interdependent rules that help us indicate the correctness of our approach for any ETL transformations. 

In this scenario, we used the original model, and changes were applied in the evolution of the “Order 

Management System” case study (Sharbaf & Zamani, 2020) to prepare the initial and updated versions of 

the source model for OO2DB transformation. The initial source model had more than 50 elements, 

including classes, attributes, references and datatypes. We modified the initial source model using 11 

changes consisting of five additions, three updates and three deletions. Then we transformed the update 

source model using standard ETL and incremental ETL processes. The manual spot-checking shows that 

the incremental ETL process has correctly found eight additions and six deletions since this process 

considers each update as a sequential deletion and addition. Moreover, EMF Compare confirms that the 

resulting target model for both incremental and standard ETL are the same. However, the incremental 

ETL process re-executed transformation rules for only 14 elements, while standard ETL executed 

transformation rules for 51 elements. 

Regarding the results of these two scenarios, we can conclude that, in general, our approach is able to 

support incremental execution for different ETL transformations correctly. However, more advanced 

transformation should also be investigated, and we will continue to conduct more experiments and 

evaluations. 

RQ2. Execution time: The second research question concerns the overall time of executing the incremental 

ETL process compared to standard ETL transformation execution time. To this end, we conducted an 

experiment including two parts to investigate execution time for incremental and standard ETL in two 

different ETL transformations. 

In the first part of our experiment, we considered various versions of the source model for Families2Persons 

transformation, including models with 100 to 45,000 elements. We duplicated each version and applied 

eight change operations on one version and 128 change operations on another version. We ran the 

incremental ETL process and standard ETL transformation for all updated versions of the source model 

to measure the overall execution time for every transformed model. The results of our experiment for 

increasing the source model size for 8 or 128 change operations are illustrated in Figure 10. The results 

show that the execution times for the incremental ETL process are approximately less than or equal to the 

runtimes of standard ETL. Moreover, the execution time for incremental ETL has a linear growth 

compared with the execution time for standard ETL, which has a polynomial (quadratic) complexity. 

 

 

Figure 10. Comparison of execution time for incremental vs. standard ETL in Families2Persons transformation. 
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In the second part of our experiment, we followed the same path for OO2DB transformation, including 

more complex rules. The results of our experiment for increasing the source model size for 8 or 128 change 

operations are depicted in Figure 11. The results again show very clearly that the time taken for the 

incremental ETL process does not increase more than the execution time for standard ETL as the size of 

the source model increases. Moreover, the time complexity for the incremental ETL process is linear again, 

while the differences between the runtime of standard ETL and incremental ETL for large models are 

growing more quickly. However, the results show that the incremental ETL process for source models 

with less than 25,000 elements has a high overhead when the size of change operations increases. 

Overall, the results of this experiment indicate that for source models that have been updated with a small 

number of change operations, the incremental ETL process is a better choice than the standard ETL. 

However, for small source models which are updated with a large number of change operations, the 

standard ETL works better. But when we aim to propagate changes over large-scale models or execute 

complex transformations with many interdependent rules, it is more reasonable to use the incremental 

ETL process and re-execute the transformations. 

 

Figure 11. Comparison of execution time for incremental vs. standard ETL in OO2DB transformation. 

RQ3. Scalability: The last research question aims to investigate the scalability of our incremental ETL 

process when expanding the size of models and increasing the number of change operations. To assess 

the scalability of our approach, we measured the required overall time to re-execute Families2Persons and 

OO2DB ETL transformations for several source models and different changes. To achieve this, we used 

models from small to large sizes for both mentioned ETL transformations, including 100; 700; 4000; 10,000; 

15,000 20,000; 25,000; 30,000; 35,000; 40,000 and 45,000 elements in the source model. We also updated 

each source model with 8, 16, 32, 64 and 128 change operations. This configuration led to five test sets of 

source models for Families2Persons transformation and five other test sets for OO2DB transformation. 

The results of our experiment for increasing the source model size in Families2Persons test sets are shown 

in Figure 12. Also, Figure 13 represents the results for increasing the source model size for OO2DB 

transformation. These figures indicate that, when stepwise increasing the model size in the different 

numbers of change operations, the execution time for the incremental ETL process in both transformations 

has a linear complexity.  



Acta Informatica Pragensia  Volume 11, 2022 

https://doi.org/10.18267/j.aip.179  198 

 

 

Figure 12. Execution time of incremental ETL for different number of source model elements in Families2Persons. 

 

 

Figure 13. Execution time of incremental ETL for different number of source model elements in OO2DB. 

Moreover, the results of our experiment for increasing the number of change operations applied to source 

models for Families2Persons transformation are illustrated in Figure 14. Also, Figure 15 depicts the overall 

execution times that are required for the re-execution of OO2DB transformation for all the test sets. 

Regarding the results, the measured execution times for OO2DB transformation are longer than the 

execution times for Families2Persons transformation since the OO2DB has some interdependent rules that 

call each other. However, as the number of change operations increases, the execution time follows a linear 

growth rate for both transformations. 

Consequently, we conclude that the incremental ETL process is scalable for increasing the size of source 

models. Moreover, the smooth growth of the execution time with increasing the number of change 

operations indicates that the proposed process is scalable when increasing the number of change 

operations. However, the change detection in the incremental ETL process depends on ECL or EMF 

Compare, the limitations of which can affect the scalability of incremental ETL. 
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Figure 14. Execution time of incremental ETL for different number of changes applied to the source in 
Families2Persons. 

 

 

Figure 15. Execution time of incremental ETL for different number of changes applied to the source in OO2DB. 

 

7 Related Work 

In recent years, various approaches have been proposed to improve the performance of model 

transformation execution. However, we could not find any research on incremental execution of ETL 

transformations. Therefore, we will restrict ourselves to efforts that introduce approaches to propagating 

changes from the source to the target for model transformation. In the following, we first investigate 

works proposing approaches to execute model transformation incrementally. Then, we introduce some 

other existing approaches to propagating changes based on incremental strategies, which include 

methods such as incremental model-to-text transformations, reactive model transformations, and 

incremental bidirectional transformations. 

7.1 Incremental model transformation 

This section reviews the most relevant approaches to our work which have implemented an incremental 

transformation engine or proposed a technique to incrementally re-execute different model 

transformations such as ATL, QVT and VIATRA. 

In the context of incremental model transformation, the first approach was proposed by Hearnden et al. 

(2006). They present a live propagation mechanism for changes to a source model of a declarative rule-
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based transformation. To this end, they proposed to extend a transformation engine based on the 

interpretation of logic languages. They used a tree structure to represent the trace of a transformation 

execution. The created tree is also used to detect rule dependences to re-transform source model changes 

to a mapped element in the target models. Unlike our approach, this work is not applicable to large-scale 

models and only supports live change propagation for simple model transformations without 

interdependent rules. 

Jouault and Tisi (2010) presented a solution for supporting live and incremental model transformations 

in the ATL engine. To achieve this, they proposed an incremental execution algorithm for ATL, which 

relies on dependency tracking of OCL expressions and individual rule execution control mechanisms. 

Tracking of dependencies helps determine which OCL expressions are impacted when a change takes 

place in the source model. Finally, the collected information is used only to control rule execution based 

on the parts of the model that are impacted by incremental changes. Although this work is very similar to 

our approach, the proposed execution algorithm is based on the ATL transformation engine, which has a 

structure different from the ETL engine. 

Jouault and Beaudoux (2016) proposed the use of an active operation framework to implement OCL-based 

incremental model transformations. The active operation provides fine-grained change propagation and 

the preservation of collection ordering that supports transformation incrementality. The proposed 

approach has been implemented as an incremental framework and optimized to support large-scale 

models. While our approach focuses on ETL model transformation, their approach is applicable to OCL-

based model transformation approaches such as QVT and ATL. 

Le Calvar et al. (2019) presented efficient ATL incremental transformations by compiling an ATL 

transformation script to Java code. They proposed the ATOL compiler using the active operations library. 

The ATOL compiler can handle a significant subset of ATL. This compiler also supports incremental 

refining in-place ATL transformations, which are used to compute derived properties. The authors also 

proposed another approach (Le Calvar et al., 2020) to augment incremental transformation rules with 

constraints. This approach provides a mechanism to explore a set of constraints corresponding to a specific 

view model when executing transformation incrementally. However, both the proposed approaches only 

focused on ATL transformation and did not support ETL transformation. 

Ráth et al. (2008) proposed an approach to support live model transformation using an incremental 

pattern matching engine (Bergmann et al., 2008). The RETE-based pattern matcher detects source model 

changes using a graph pattern. The RETE network tracks changes and executes the action sequences as 

triggers to update the target model. Although this approach has been proposed for both declarative and 

imperative transformations, it is only implemented for the VIATRA 2 model transformation framework 

and does not support ETL transformation.  

Boronat (2021) presented incremental execution of rule-based model transformations based on a 

dependency injection and standardized model changes. In this work, a model change propagation 

mechanism for execution of change-driven model transformations was implemented in YAMTL. The 

change propagation mechanisms are designed to support consistency between large models. Each source 

model change is directly performed by injecting the dependency, which transforms changes to 

corresponding changes in the target model. However, unlike our approach, the proposed mechanism 

depends on model changes recorded using EMF change and cannot support change propagation for 

models that are updated in different model editors. 
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7.2 Incremental change propagation 

In this section, we provide a brief overview of works that have focused on using incremental strategies 

for model synchronization and other transformation mechanisms (i.e., bidirectional model transformation 

or reactive model transformation), as well as model-to-text transformations. 

Giese and Wagner (2006) presented an incremental model synchronization based on the Triple Graph 

Grammars (TGG). They proposed a declarative specification formalism that was employed to achieve an 

incremental execution of the transformation rules by exploiting the known dependencies between the 

transformation rules. The proposed approach was implemented as a plug-in in the Fujaba Tool Suite. 

Moreover, the authors extended their work and proposed a new approach (Giese & Wagner, 2009) to 

support incremental bidirectional model synchronization using update propagation attributes and 

corresponding dependencies. However, both approaches are proposed for graph transformation, which 

has a different structure in comparison to the ETL transformation. 

Samimi et al. (2018) proposed a new approach to bidirectional transformation based on Epsilon Validation 

Language, which can synchronize source and target models at the same time. This approach works based 

on a specific tracing meta-model that allows change propagation according to the stored references to 

corresponding elements. Weidmann et al. (2019) proposed another incremental bidirectional model 

transformation based on TGG. They combine an incremental graph pattern matcher and an integer linear 

programming (ILP) solver to determine a set of solution rules and choose the optimal one from the 

candidate solutions. In these approaches, models are not created from scratch, and both employ 

incremental strategies to support bidirectional transformation. 

Ogunyomi et al. (2014) presented the use of a signature for incremental model-to-text transformation. The 

signature is a lightweight mechanism to determine a subset of model-to-text transformation rules that 

must be re-executed for each change in the source model. Ogunyomi et al. (2019) proposed another 

incremental model-to-text transformation approach using property access traces. The approach used 

runtime analysis to identify changes in source models and provide a property access trace for determining 

which subset of the transformation must be re-executed. Although both proposed approaches are 

implemented upon the Epsilon platform, they are not applicable to the ETL engine that supports model-

to-model transformations. 

Bergmann et al. (2015) proposed a reactive model platform built on top of incremental graph queries for 

EMF models, where transformations are executed continuously as reactions to changes in the underlying 

model. In this context, Varró et al. (2016) introduced three generations of the VIATRA framework to 

support reactive and incremental model transformation using incremental graph pattern matching 

techniques over an imperative programming language such as Java. Martínez et al. (2017) presented a 

reactive model transformation engine for ATL, which defines a persistent data flow among models to take 

care of activating only the strictly needed computation in response to updating of source models. Horváth 

et al. (2020) recently proposed multi-tenant and parallel reactive model transformation as new research 

lines to generate reactive model transformation on a low-code platform. Similar to our approach, these 

approaches also use continuous re-execution of transformation rules to propagate source model changes. 

However, they aim to provide reactive model transformation. 

8 Conclusion and Future Work 

In this paper, we proposed the incremental ETL process, an approach to re-executing an ETL 

transformation to propagate changes from the source models to the target models. We introduced 

algorithms to identify the source model changes, select and only execute the relevant transformation rules, 

and update the target model based on the corresponding target elements. We described the incremental 

ETL process step by step using a running example. The proposed process was implemented as a toolkit 
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on top of the Epsilon platform. We assessed the correctness of our approach for real-world modelling 

scenarios and different ETL transformations with a descriptive case study. We also evaluated the 

performance of incremental ETL using an experiment assessing the speed of our process in comparison 

to standard ETL. Moreover, the results of our experiment are promising regarding the scalability of 

incremental ETL for increasing the size of source models and the number of applied changes. 

As future work, we plan to extend the change detection phase to support composite change operations 

such as refactoring. We will carry out more detailed experiments to investigate further transformation 

cases to evaluate the generalizability of the incremental ETL process and the implemented toolkit. We also 

intend to integrate the incremental execution process with the Epsilon platform to provide a new engine 

for incremental transformation. Furthermore, complementary work is required to provide support to 

reactive model transformation on top of the Epsilon platform. 
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