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Abstract  

The goal of this paper is to examine whether, in Q-system inventory control policy, a combination of 

the reorder point exceeding order quantity leads to minimal holding and ordering costs when dealing 

with sporadic demand. For this purpose, a past stock movement simulation is applied to a set of 

randomly generated data with different numbers of zero demand periods ranging from 10 to 90%. The 

outputs of the simulation prove that in situations where stock holding costs are too high, the simulation 

tends to reduce average stock by overcoming periods between two demand peaks with an increase in 

the numbers of small replenishment orders and reaches lower stock holding and ordering costs. 

Furthermore, the correlation analysis proves that there is a statistically significant relationship (r = .847, 

p = .004) between the number of time series that reach minimal holding and ordering costs under the 

control of reorder point (replenishment order) and the demand standard deviation affected by the 

evolving sporadicity. These findings can support decision making linked with inventory management 

of products with sporadic demand and contribute to development of business information systems. 
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1 Introduction 

Efficient inventory control has a direct impact on cost reduction, customer service levels and product 

quality, and so is critical to a company's economic and strategic success. In case demand is irregular and 

sporadic, inventory management becomes quite a challenging task. Sporadic demand represents an 

environment where demand patterns with very low demand frequency and demand size mean that very 

few items are required by customers (Gamberini et al., 2014). Examples of such demand can be found in 

car manufacturing (Do Rego & De Mesquita, 2015), maintenance (Zhu et al., 2022) or aviation (Şahin et al., 

2021). It also occurs when products reach the end of their life cycle (Hur et al., 2018). 

In inventory management literature, the three most common policies are fixed order quantity inventory 

control system (sometimes called Q-system or (R,Q)), periodic order up to policy (also known as P-system 

or (T,S)) and min/max (s,S) (Tao et al., 2017). These methods are frequently implemented in ERP systems, 

allowing businesses to provide automatic suggestions for what to order and when to order it. With an 

(R,Q) policy, a replenishment is requested for Q items when the inventory level drops below a threshold 

R (Dendauw et al., 2021). In a (T,S) policy, orders are placed periodically every T days and order quantity 

is calculated as the difference between order-up-to level S and the current inventory (Lagodimos et al., 

2012). Finally, in min/max, orders are placed as soon as the inventory drops below the minimum and the 

order size varies and equals the gap between the maximum and the current inventory (Qiu et al., 2017). 

To determine control variables in the Q-system, minimization of holding and ordering costs is usually 

applied (Chung & Cárdenas-Barrón, 2012). A frequent practice is to set the replenishment order as the 

economic order quantity (EOQ) and compute the reorder point accordingly (Vasconcelos & Marques, 

2000). As the reorder point represents inventory for covering demand during the order lead time period, 

its calculation is often based on a forecast of average consumption. If the demand is regular, standard 

demand forecasting methods such as moving average or single exponential smoothing and its 

modifications for demand with trend and seasonality perform well (see, e.g., Chatfield, 1978). Croston 

(1972) pointed out that exponential smoothing is not appropriate for inventory control of products with 

sporadic demand and suggested a modification. This modification combines estimation of mean demand 

with estimation of mean interval length between two non-zero demands, whereas these estimations are 

updated only when demand occurs. Through the years, many researchers have concluded that Croston’s 

method is robustly superior to traditional forecasting techniques and provides practitioners with 

significant benefits when dealing with sporadic demand (see, e.g., Willemain et al., 1994; Johnston & 

Boylan, 1996; Teunter & Duncan, 2009). Many researchers have also tried to improve the performance of 

Croston’s method; well-known are the modifications proposed by Syntetos & Boylan (2001) or Levén & 

Segerstedt (2004). 

Alternative approaches to obtain the reorder point when dealing with sporadic demand include mainly 

bootstrapping and also combinatorial optimization applied together with discrete-event simulation. The 

bootstrapping method developed by Willemain et al. (2004) samples from historical demand data to 

construct an empirical distribution of lead time demand using demand distribution over the 

replenishment lead time. Although the authors claim significant improvements in forecast accuracy over 

simple exponential smoothing or Croston’s method, this is contradicted for example by Gardner & 

Koehler (2005) or more recently by Syntetos et al. 2015. Dyntar & Kemrová (2011) presented a past stock 

movement simulation and its application to inventory control of products with sporadic demand. The 

main idea of their approach is to discretize time in which historical demand observations are available to 

periods and simulate decrease (i.e., meeting the demand) and increase (i.e., arrival of replenishment order) 

of inventory level under control policy. Control variables of the selected policy are discretized too, 

combined with each other and total holding and ordering costs and service level reached are calculated 

for each combination at the end of the simulation run. The authors proved that the total enumeration used 

to calculate both control variables in selected stock control policy leads to lower holding and ordering 
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costs than in the case of single exponential smoothing, Croston’s method and its modification suggested 

by Syntetos and Boylan and Levén and Segerstedt, and also bootstrapping application. The most recent 

development and application of the past stock movement simulation method can be found in Dyntar 

(2018, pp. 119–138). 

Inventory management policies based on EOQ usually assume that the order quantity is larger than 

demand during lead time, which means that order quantity is set to exceed the reorder point (Axsäter, 

2000). The goal of this paper is to examine whether, in a Q-system, a combination of the reorder point 

exceeding order quantity leads to minimal holding and ordering costs when dealing with sporadic 

demand. For this purpose, a past stock movement simulation is applied to a set of randomly generated 

data with different numbers of zero demand periods ranging from 10 to 90%. The outputs of the 

simulation provide answers to two major questions: 

• Does the extension of the number of simulated combinations of control variables lead to lower 

holding and ordering costs and at what cost in terms of computational time consumption? 

• Is the changing variability of demand caused by the increase in the number of zero demand 

periods somehow related to the number of cases where a combination of the reorder point 

exceeding order quantity leads to minimal holding and ordering costs? 

The answers to these questions can help increase efficiency in decision making linked with inventory 

management of products with sporadic demand and contribute to development of business information 

systems.  

2 Research Methods 

First, in the MS Excel environment, the RANDBETWEEN() function is applied to generate a data set 

consisting of 10,000 time series. Each series contains 50 periods with a demand ranging from 1 to 10 pieces. 

Then, using a macro (see Appendix A), the randomly selected demand values in the time series are 

replaced with zero so that the total number of zeros in the time series corresponds to the request (i.e., 10-

90% with a step of 10%). The demand characteristics for 10-90% of the period with zero demand are shown 

in Table 1. For 10,000 time series with a certain proportion of periods with zero demand, two scenarios 

are simulated using past stock movement simulation in the form described by Dyntar (2018, pp. 125–128). 

The first scenario (Scenario 1) represents fixed order quantity inventory control system (i.e., Q-system), 

where the combination of the replenishment order (Q) and the reorder point (Signal) is not constrained 

by: 

𝑄 ≥ 𝑆𝑖𝑔𝑛𝑎𝑙 (1) 

Table 1. Demand characteristics. 

Zero demand periods Average demand [pcs] Demand standard deviation 

10% 4,945 3,184 

20% 4,404 3,383 

30% 3,846 3,481 

40% 3,300 3,493 

50% 2,745 3,414 

60% 2,195 3,245 

70% 1,646 2,966 

80% 1,099 2,547 

90% 0,549 1,882 
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This scenario in the form of an MS Excel macro is shown in Appendix B. The second simulated scenario 

(Scenario 2) includes only those combinations of Q-system control variables in which the replenishment 

order is greater than or equal to the reorder point. A total of 10,000 ∙ 9 ∙ 2 = 180,000 simulations are 

performed with the following parameters. 

 

Table 2. Simulation parameters. 

Price 185 €/piece 

Holding costs 25% % of average stock in €/period 

Ordering costs 37 €/1 order 

Required fill rate 98% % 

Lead time 3 Periods 

 

To avoid a stock-out at the very beginning of a simulation run, the initial stock for each time series is set 

as: 

 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑜𝑐𝑘 = ∑ 𝐷𝑒𝑚𝑎𝑛𝑑𝑡

𝐿𝑒𝑎𝑑 𝑡𝑖𝑚𝑒

𝑡=1

 (2) 

 

where t represents a period. Multiple orders during the lead time are not allowed as well as back-ordering 

if the inventory level is insufficient to meet the demand during a period. In that case, the demand is 

satisfied partly and the missing quantity is recorded negatively affecting the reached fill rate. For a 

combination of a replenishment order and a reorder point that ensures at least the required fill rate, total 

holding and ordering costs (Nc) are calculated as: 

 

𝑁𝑐 = 𝐴𝑣𝑔𝑆𝑡𝑜𝑐𝑘 ∙ 𝑇 ∙ 𝑐 ∙ 𝑛𝑠 + 𝑂 ∙ 𝑛𝑜 (3) 

 

where AvgStock represents average stock, T the length of simulation, c is price, ns is holding costs, O is the 

number of orders and no is ordering costs. At the end of the simulation, for each time series the 

combination of the replenishment order and the reorder point with minimal total holding and ordering 

costs is written down and becomes the subject of further processing and analysis. Together with the 

optimal combination of control variables for each time series, the consumption of computational time for 

the simulated scenario and the set of time series with a certain amount of zero demand periods (i.e., for 

10,000 time series) is recorded with the help of MS Excel function NOW(). 

All experiments are carried out in the MS Excel 2016 environment using a computer with an Intel Core i7 

7600U – 2.9 GHz processor, 16 GB RAM.  
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3 Solutions and Results 

Based on the outputs of the simulation, the difference between best reached total holding and ordering 

costs for a time series in Scenarios 2 and 1 is calculated as: 

 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑁𝑐,𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 2 − 𝑁𝑐,𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1 (4) 

 

to find out the number of time series where the total cost difference is greater than 0 and therefore  

a combination of reorder point > replenishment order leads to minimal costs (see Figure 1).  

 

Figure 1. Number of time series with total cost difference > 0. 

It can be seen in Figure 1 and also the correlation analysis proves that there is a statistically significant 

relationship (r = .847, p = .004) between the number of time series with total cost difference > 0 and the 

demand standard deviation affected by the evolving sporadicity. For data sets containing 10-90% zero 

demand periods, the number of time series with total cost difference > 0 ranges from 4,558 to 5,591. 

For each time series, the percentage difference of best reached total holding and ordering costs in the 

Scenario 2 and Scenario 1 is calculated as: 

 

% 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡𝑠 =
𝑁𝑐,𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 2 − 𝑁𝑐,𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1

𝑁𝑐,𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 2
∙ 100% (5) 

 

The percentiles for % differences are shown in Table 3. 
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Table 3. Percentiles for % differences in total costs. 

 Zero demand periods in time series 

Percentile 10% 20% 30% 40% 50% 60% 70% 80% 90% 

10% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

20% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

30% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

40% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

50% 1% 2% 3% 3% 2% 1% 0% 0% 0% 

60% 5% 6% 7% 7% 7% 6% 5% 3% 6% 

70% 9% 10% 11% 12% 12% 11% 11% 9% 12% 

80% 13% 15% 16% 17% 17% 17% 16% 15% 18% 

90% 19% 20% 22% 24% 24% 24% 23% 23% 26% 

100% 50% 55% 63% 53% 74% 59% 74% 62% 76% 

 

For all data sets with 10-90% zero demand periods, the 50-90% percentiles involve a relatively stable 4-8% 

increase in total cost difference, while 10% of the time series show a significantly faster change ranging 

from 29 to 51%.  

The main reason that there are so many time series with total cost differences > 0 is expensive stock holding 

when compared to ordering. In this situation, the simulation overcomes periods between two demand 

peaks with gradual increase of inventory based on small replenishment orders. This is shown in Figure 2. 

 

Figure 2. Distribution of replenishment orders between demand peaks. 

The higher the number of zero demand periods, the more the simulation tends to compensate expensive 

stock holding with the increasing difference between reorder point and replenishment order (see Table 

4). 
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Table 4. Average reorder point – replenishment quantity difference. 

Zero demand periods Average Signal - Q difference 

10% 4.34 

20% 4.71 

30% 5.41 

40% 5.76 

50% 6.09 

60% 6.25 

70% 6.27 

80% 6.46 

90% 6.28 

 

When compared to Scenario 2, the extension of the number of simulated combinations of reorder point 

and replenishment order in Scenario 1 also brings an up to twofold increase in computational time 

consumption, as shown in Figure 3. That is because the number of simulated combinations for a time 

series based on total demand for the entire length of the simulation (S) increases from 
𝑆∙(𝑆−1)

2
 to S2 .  

 

 

Figure 3. Consumption of computational time. 
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4 Discussion 

The outputs of past stock movement simulation prove that in a Q-system, under some circumstances the 

extension of the number of simulated combinations of control variables leads to lower holding and 

ordering costs. It is because the simulation tends to reduce average stock in situations where stock holding 

costs are too high by overcoming periods between two demand peaks with an increase in the number of 

small replenishment orders. For example, when simulating scenarios with stock holding costs at 1% of 

average stock in €/period and ordering costs of 370 €/order, no significant number of combinations of 

reorder point > replenishment order leading to minimal stock holding and ordering costs is observed no 

matter how many zero demand periods the time series contain.  

The question therefore arises whether to include an EOQ-based procedure before the simulation itself, by 

means of which it would be possible to quickly compare the holding and ordering costs of the optimal 

order quantity and decide whether to devote additional computational time to verifying the extended 

number of combinations of control variables. This is important if a large number of simulated periods or 

too high demand will lead to the need to examine a large number of combinations of control variables. In 

the case of sporadic demand, the literature talks about lumpiness (see, e.g., Kukreja & Schmidt, 2005; 

Lowas III & Ciarallo, 2016). A more efficient examination or reduction of search space could then be 

achieved by combining past stock movement simulation with metaheuristics such as tabu search 

(Ghnatios et al., 2019), simulated annealing (Yuan et al., 2022) or an evolutionary algorithm (Pasandideh 

et al., 2011). This represents the direction for further development of our solution and challenges for future 

work. 
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Appendix A 
Sub generator() 

For aa = 1 To 10000 

 Zeros = Round(Sheets("Timeseries").Range("B2") * 50, 0) 

 While Zeros > 0 

  Position = Round(1 + Rnd() * 49, 0) 

  If Sheets("Timeseries").Cells(Position + 1, aa + 3) > 0 Then 

   Sheets("Timeseries").Cells(Position + 1, aa + 3) = 0 

   Zeros = Zeros - 1 

  End If 

 Wend 

Next 

End Sub 
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Appendix B 
Sub Qsystem() 

 Dim Demand(50) 

'Set the length of simulation 

 T = 50 

 For xx = 1 To 10000 

'Import timeseries with demand and set total demand 

  For aa = 1 To T 

   Demand(aa) = Sheets("Timeseries").Cells(aa + 1, xx + 3) 

   S = S + Demand(aa) 'total demand 

  Next 

'Import parameters of simulation 

 c = Sheets("Timeseries").Range("B8") 'price 

 ns = Sheets("Timeseries").Range("B9") 'holding costs 

 no = Sheets("Timeseries").Range("B10") 'ordering costs 

 SL = Sheets("Timeseries").Range("B11") 'required fill rate 

 LT = Sheets("Timeseries").Range("B12") 'lead time 

 'Set initial stock level 

  For aa = 1 To LT 

   InitialStock = InitialStock + Demand(aa) 

  Next 

  Stock = InitialStock 

  Ncbest = 1000000000 'best reached total holding and ordering costs 

 'Past stock movement simulation 

  For aa = 1 To S 

  Signal = aa 'Set reorder point 

   For bb = 1 To S 

    Q = bb 'Set replenishment order quantity 

     For cc = 1 To T 

      'Replenishment order arrival 

      If cc = Ointransit Then 

       Stock = Stock + Q 

       Ointransit = 0 'order in transit 

      End If 

      'Demand satisfaction 

      If Stock >= Demand(cc) Then 

       Stock = Stock - Demand(cc) 

      Else 

       MQ = MQ + (Demand(cc) - Stock) 'missing quantity 

       Stock = 0 

      End If 

      'Replenishment order placement 

      If Stock < Signal And Ointransit = 0 Then 

       Ointransit = cc + LT 

       O = O + 1 'number of orders 

      End If 

      'Add inventory level in average stock 

      AvgStock = AvgStock + Stock 

     Next 

    'Calculate total holding and ordering costs 

    If 1 - (MQ / S) >= SL Then 

     AvgStock = AvgStock / T 

     Nc = AvgStock * T * c * ns + O * no 

     'Improve the best reached solution 
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     If Nc < Ncbest Then 

      Ncbest = Nc 

      Qbest = Q 

      Signalbest = Signal 

      SLbest = 1 - (MQ / S) 

      AvgStockbest = AvgStock 

      Obest = O 

      MQbest = MQ 

     End If 

    End If 

    'Reset variables of simualtion 

    Stock = InitialStock 

    AvgStock = 0 

    O = 0 

    MQ = 0 

    Ointransit = 0 

   Next 

 Next 

 'Export the best reached solution 

 Sheets("Outputs").Cells(xx + 1, 2) = Ncbest 

 Sheets("Outputs").Cells(xx + 1, 3) = Qbest 

 Sheets("Outputs").Cells(xx + 1, 4) = Signalbest 

 Sheets("Outputs").Cells(xx + 1, 5) = SLbest 

 Sheets("Outputs").Cells(xx + 1, 6) = AvgStockbest 

 Sheets("Outputs").Cells(xx + 1, 7) = Obest 

 Sheets("Outputs").Cells(xx + 1, 8) = MQbest 

 'Reset variables of simualtion 

 S = 0 

 InitialStock = 0 

Next 

End Sub 
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