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Abstract  

The increase in data diversity and the fact that database design is a difficult process make it practically 

impossible to design a unique database schema for all datasets encountered. In this paper, we introduce 

a fully automatic genetic algorithm-based relational database normalization method for revealing the 

right database schema using a raw dataset and without the need for any prior knowledge. For 

measuring the performance of the algorithm, we perform a simulation study using 250 datasets 

produced using 50 well-known databases. A total of 2500 simulations are carried out, ten times for each 

of five denormalized variations of all database designs containing different synthetic contents. The 

results of the simulation study show that the proposed algorithm discovers exactly 72% of the 

unknown database schemas. The performance can be improved by fine-tuning the optimization 

parameters. The results of the simulation study also show that the devised algorithm can be used in 

many datasets to reveal structs of databases when only a raw dataset is available at hand. 
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1 Introduction 

It is generally impossible to represent real-world datasets in a single data table (Gärtner, 2003). However, 

many data analysis methods require a data table as input. These two opposite goals require processes of 

tabulation of raw data and summarization of structural tables. Once the data at hand are tabulated or 

stored in a regular form, it is possible and straightforward to reproduce the raw data in any format. 

Relational databases are good and effective solutions for storing the data in regular forms, usually called 

entities (O’Mara et al., 2016). 

The relational model and database have been suggested by Codd after his relational data model 

suggestion (Codd, 1970). Relational databases, which are mostly used to store data in a structured form, 

have many advantages. Some of them are integrity, creating relationships, providing logical and physical 

independence, guaranteed consistency and accuracy, and retrieving data using queries easily and 

conveniently (Kraleva et al., 2018). However, designing the right database is a challenging task whether a 

raw dataset is available or not (Delplanque et al., 2018; Suranauwarat, 2017). 

There are two ways commonly used for preprocessing and storing data: either storing data as the format 

collected or importing them into a pre-designed database (Kraleva et al., 2018). Storing a dataset as it is 

collected is an easy and fast task; however, the performance in the searching and querying stage can be 

drastically reduced.  

Since individuals and organizations produce large volumes of data, and the numbers of data sources are 

steadily growing. On the other hand, the content of some of the available data sources is dynamic. Since 

the relational database design is not dynamic, it may be necessary to prepare new database designs for 

dynamic datasets. It has become a necessity to produce solutions that keep up with such features of 

datasets. 

Designing a relational database is a process that requires expertise. In addition to this, data should be well 

explained, and tests and maintenance should be done in order to prevent unexpected errors. Moreover, 

relational database design is a subjective process. Designers may suggest different designs for the same 

dataset and none of them can be chosen as the single best design. 

With this study, we propose a novel method that automatically provides a relational database design for 

an input dataset. We treat the relational database design as a multi-objective optimization problem and 

we use a genetic algorithm to solve this problem. Unlike the studies in the literature, the proposed method 

does not require any prior knowledge or custom settings except a dataset as input. Thus, the solution can 

be treated as a relational database design recommendation. 

In Section 2, we give brief information on relational databases. In Section 3, a literature review of 

automatic normalization is given. In Section 4, a brief description of the genetic algorithm used in this 

paper is presented. In Sections 5 and 6, we present the proposed algorithm in a great detail and we show 

our research method. In Section 7, results of the simulation study are presented. Finally, Section 8 

discusses and concludes. 

2 Relational Databases 

Relational databases are composed of tables (entities) and the relationships between these entities. An 

entity is an object which has attributes in its columns. Data are recorded in rows of an entity as tuples. A 

primary key, an attribute in an entity, ensures uniqueness of records. Designing a database schema based 

on the concepts of relational database can increase end users’ and programmers’ productivity (Codd, 1982; 

Kraleva et al., 2018; Read et al., 1992). With the development of relational databases, many advantages 

have been obtained over traditional file storage methods. Some of these advantages are: structured data, 

no data duplication, scalability, independence of content and method, data management, integration, 
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avoidance of inconsistency, multi-user support (Sumathi & Esakkirajan, 2007; Zhu, Zeng & Cao, 2010). 

However, the use of raw data sets brings with it many problems in terms of the advantages listed. 

Designing a relational database requires applying the normalization process and realizing the rules 

determined with normal forms. Normalization is the process of dividing a dataset into small entities with 

many attributes by analysing the dependencies between them in a conflict-free and well-structured way 

(Hoffer et al., 2016; Lee, 1995). The majority of the designing process consists of normalizing the data 

model. Normal forms are the focal point of subjectivity in database design because their implementation 

can be interpreted by the designer. For example, the third normal form states that the attributes in an 

entity cannot be functionally dependent on each other if none of them are primary keys (Bernstein, 1976). 

In order to define functional dependencies, it is necessary to understand the data and foresee possible 

problems. The discovery of functional dependencies is vital to the process of defining and normalizing 

entities (Riordan, 2005). 

Delplanque et al. (2018) mentioned six problems that arise in the architectural process of a relational 

database. These are dependencies between entities of the database, the impact of modifications on the 

database, stability on different instances of a database, testing process, synchronization between software 

and database itself, and the absence of automatic tools to define functional dependencies between entities. 

Relational databases are robust, effective and multiplatform solutions. Processes of designing and using 

a relational database are two different areas of expertise. When we focus on design, we find that functional 

dependence, automatic tools and the application of normal forms are important. These features are the 

main factors that make a database design difficult and require specialization, so much so that 

specialization can be considered a valuable talent and what most organizations need (Suranauwarat, 

2017). While some work has been done to automate the database design process, a fully automated 

method has not yet been proposed. This study tries to make these processes that are subjective and require 

expertise fully automated.  

3 Literature Review on Automatic Normalization 

In the age of big data, data storage techniques also need to be compatible with dynamic data sources and 

types. It will be beneficial to use more techniques such as relational databases for datasets that increase in 

volume and number. However, the difficulties brought by this process require the database preparation 

process to become easier and further to become automated. There is a vast amount of works on the subject 

of automatic database normalization. 

Du and Wery (1999) developed a utility called Micro. Micro can bring a relational database design to 

Boyce-Codd normal form using the information it receives from the user about attributes and functional 

dependencies between them. Dongare et al. (2011) developed a semi-automatic normalization tool called 

RDBNorma. The algorithm requires functional dependencies in order to design in third normal form. 

They compared RDBNorma with Micro and stated that RDBNorma had better performance than Micro. 

Yazıcı and Karakaya (2007) developed a normalization tool in Mathematica. The tool can suggest a 

relational database design in third normal form, taking attributes and functional dependencies as input. 

Bahmani et al. (2008) suggested an algorithm that requires a dependency graph diagram prepared by the 

user. The method generates a graph matrix using the dependency graph. After the steps of the method, a 

relational database design in Boyce-Codd normal form is obtained. The process depends on the 

dependency graph created by the user. 

Ahmad et al. (2014) suggested a method to build a relational database design using Microsoft Excel. Their 

method requires a raw dataset in Microsoft Excel format and the dependencies between attributes. They 

stated that the main risk for the method they proposed may be misidentification of functional 

dependencies. 
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Some researchers have studied database normalization teaching and suggested various methods to 

improve the process. Verma (2012) stated that defining the primary key and remembering the rules of the 

normal forms can be a challenging task for students. Mitrovic (2002) developed an online smart education 

system called NORMIT to teach the concepts of normalization. Similarly, Fanguy et al. (2005) used 

gamification in their teaching methods. Soler et al. (2006) developed a normalization problem generator 

and asked for a design in Boyce-Codd normal form. Ahmedi et al. (2014) developed an e-learning tool 

called NormalDB. In addition to these methods, there are many studies that suggest relational database 

schemas for specific datasets (Dimitrieski et al., 2015; Kurnianda, 2018; Mallig, 2010; Tessler, 2002). 

4 Genetic Algorithms 

Genetic algorithms (GAs) are parallel search and optimization techniques that mimic the natural selection 

principle of genetics. The basics of GAs were suggested by Holland (1992) and developed by his doctoral 

students (Goldberg, 1989; Koza, 1995). A population consists of candidate solutions or individuals called 

chromosomes. Each single candidate solution has a fitness or cost value depending on the problem. A 

fitness or a cost value is the measurement of how a candidate solution satisfies the objective function. 

Since the GAs are blind and problem-independent, only the quality of a solution is considered. In GAs, 

each population forms a generation. The selection operator selects two individuals by considering their 

fitness or cost values. The crossover operator generates two offspring by combining the contents of the 

selected individuals. Random changes performed on the generated offspring are called mutations. The 

generated offspring form a new population called a generation. Many generations are created until a 

convergence criterion is met. The number of individuals in the population, the number of generations and 

the probability of applying mating operators determine the performance of a GA (Goldberg, 1989; Lim et 

al., 2017; Satman & Akadal, 2020). 

The classical GAs are mainly work on binary chromosomes. A binary chromosome is a candidate solution 

or individual which consists of either 0s or 1s. The length of a chromosome is problem-specific. In this 

study, we use a binary-coded or classical GA in which an individual represents a database design. In our 

GA, the fitness function takes a database design as a chromosome for each individual in the population. 

Basically, equal-length segments of the chromosome specify in which entity the variables in the raw 

dataset should reside. 

5 Proposed Algorithm 

The algorithm proposed in the scope of this study enables creation of a relational database schema by 

obtaining only a dataset as input. Thanks to the algorithm, a dataset can transform a relational database 

design without any user intervention. The process of converting a dataset into a relational database 

consists of three stages:  

• The first stage is to generate a database schema using genetic algorithms dependent on the given 

dataset.  

• The second stage is to define the types of relationships between entities in the database schema.  

• In the third stage, a fine-tuning process is applied to the result.  

The flow of the algorithm is given in Figure 1. Each step is explained in detail in the next sections. 
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Figure 1. Algorithm flow chart. 

5.1 Generating Database Schema 

In this stage, the algorithm generates relational database entities and their attributes using the dataset. 

Database design has some essential features defined by normal forms. For example, good database design 

should have distinct records. In other words, the number of duplicate records should be minimized. 

Another example is that functionally dependent attributes must be clustered into entities. 

In this study, database design process is considered a multi-objective optimization problem. It has been 

defined using a linear combination of four fitness functions to be minimized. We assume that the database 

schema with a minimum fitness function is considered an effective design. Fitness functions are explained 

in following subsections. 

5.1.1 Fitness Function 1: Number of Cells 

The first fitness function aims to minimize the number of cells in the generated database design. The 

definition of the function is  

𝑓1 =
∑ 𝑅𝑖𝐴𝑖

𝑛
𝑖=1

𝑅𝑟𝐴𝑟
 (1) 

where 𝑛 is the number of entities in a candidate database design, 𝑖 = 1, 2, … , 𝑛, 𝑅𝑖 is the number of records 

in the 𝑖th entity, 𝑅𝑟 is the number of records in the dataset, 𝐴𝑖 is the number of attributes in the 𝑖th entity, 

and 𝐴𝑟 is the number of attributes in the dataset. 

The numerator refers to the number of cells in the candidate database design, while the denominator 

indicates the dataset itself. 𝑓1 shows the number of cells in a candidate database design based on the size 

of the dataset. Therefore, the value of 𝑓1 is independent of the size of the dataset. 𝑓1 takes values in the 

range (0,1].  
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5.1.2 Fitness Function 2: Number of Repeated Records 

It is an important rule that the records are distinct in a relational database. This property is chosen as the 

second fitness function. 𝑓2 is defined as 

𝑓2 = ∑
𝑅𝑖 − (𝑅𝑑)𝑖

𝑅𝑖

𝑛

𝑖=1

 (2) 

where 𝑛 is the number of entities in a candidate database design, 𝑖 = 1, 2, … , 𝑛, 𝑅𝑖 is the number of records 

in the 𝑖th entity, and (𝑅𝑑)𝑖 is the number of distinct records in the 𝑖th entity. If a candidate entity includes 

distinct records, because of the equality of 𝑅𝑖 = (𝑅𝑑)𝑖, the contribution of the entity to 𝑓2 would be 0. If 

the entity has the same value in all its records, the contribution would be almost 1 because of 

𝑅𝑖 − 1

𝑅𝑖
≅ 1 (3) 

for a large dataset. 𝑓2 takes values in the range [0,1). 

5.1.3 Fitness Function 3: Number of Entities 

The previous fitness functions 𝑓1  and 𝑓2  can cause the algorithm to locate separate entities for each 

attribute. Thus, a database design is reached in which all entities contain an attribute, which is not a 

desirable solution. While we expect 𝑓1 and 𝑓2 to be minimized, we also look for the attributes in the entities 

to be grouped effectively. The third fitness function aims to reduce the number of entities. 𝑓3 is defined as 

𝑓3 =
𝑛

2𝑚
 (4) 

where 𝑛 is the number of entities, the maximum number of entities based on the value m calculated using 

the chromosome size 2𝑚. A candidate solution has at least one entity and has a maximum of 2𝑚 entities. 

𝑓3 takes values in the range (0,1]. It may not be the perfect solution that reduces both the cell count (𝑓1) 

and the number of entities. So, 𝑓1 and 𝑓3, as in many other multi-objective optimization problems, may 

not have a common optimum solution. However, a good database design is chosen from Pareto-optimal 

solutions, which cover a set of solutions that are not comparable but are definitely better than others. 

5.1.4 Fitness Function 4: Number of Numerical Entities 

Some attributes only contain numerical values. If they take discrete values, the value of 𝑓2 will increase 

due to the duplicate values. An attribute that holds age values is an example of this phenomenon. For a 

dataset with thousands of records, it is inevitable that the attribute containing the age records will contain 

duplicate records. Therefore, 𝑓4  aims to avoid this situation. A numerical attribute expression is an 

attribute that takes numerical values; numerical entity refers to an entity whose records take numerical 

values. 𝑓4 is defined as 

𝑓4 =
𝑛𝑁

𝑛
 (5) 

where 𝑛𝑁 is the number of numerical entities and 𝑛 is the number of entities in the candidate solution. 

Since it is possible that all entities are numerical or not, 𝑓4 takes values in the range [0,1].  

5.1.5 Genotype and Phenotype 

In this study, binary-coded GA is used. With the binary-coded GA, each chromosome is represented as a 

string of binary numbers which takes either 0 or 1 in each gene. Each binary-coded chromosome 

represents a candidate database design. Since the chromosome size differs by the number of attributes in 

the dataset, we have formulized the chromosome size as below. 

2𝑚 = 𝐴 (6) 
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𝑚 = 𝑙𝑜𝑔2𝐴 (7) 

In Equations 6 and 7, 𝐴 represents the number of attributes in the dataset and 𝑚 is a function of 𝐴. The 

value 𝑚 refers to the size of the genes and is used to indicate locations of attributes. Each attribute in the 

dataset is represented by 𝑚-sized genes in a chromosome. The 𝑐ℎ𝑠𝑖𝑧𝑒 is defined as 

𝑐ℎ𝑠𝑖𝑧𝑒 = ⌈𝑚⌉ × 𝐴 (8) 

where ⌈𝑚⌉ is the smallest integer that is greater than or equal to 𝑚. In the algorithm, before starting of the 

GA search, chromosome size is calculated using Equation 8. In the fitness function, chromosomes are 

divided into 𝑚-sized parts and each single part represents the attributes’ location in the entities. 

5.1.6 Weights of Fitness Functions 

The algorithm is based on a multi-objective genetic algorithm with a weighted sum of fitness functions. 

We tried various methods to define the best weights, but a global set of weights was not available for all 

cases. Therefore, we used equal weights in the study. Also, depending on the type of the dataset, we can 

use different weights to increase the success rate. 

5.2 Defining Relation Types 

The first stage enables creation of the entities that include the attributes of the dataset given as the input. 

A relational database schema includes some connections between the entities to reveal the integrity of the 

data. At this stage, the algorithm handles all binary combinations to expose potential relationships. 

Step 1: Defining the abstract table: The algorithm produces a table called the abstract table. The abstract 

table allows representation of entities in terms of data repetition. The table includes two attributes for each 

entity. Attributes symbolize the values of the dataset in the same row. The records in the abstract table are 

representative. Regardless of the record itself, each record stands for a different record in the dataset. 

 

Figure 2. Example of abstract table. 
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Figure 2 shows an example of the abstract table. Assume that there is a dataset that includes five attributes. 

The abstract table was created for two entities which are composed by using the dataset. We examined 

the relation between two entities. The first entity has 𝑣1  and the second entity has 𝑣4  and 𝑣5 . 𝑎1 

represents 𝐸𝑛𝑡𝑖𝑡𝑦 1 while 𝑎2 represents 𝐸𝑛𝑡𝑖𝑡𝑦 2, which includes 𝑣4 and 𝑣5 together. Since 𝑎1 depends 

on 𝑣2, the similarity of the values can be considered easily, but 𝑎2 is related to 𝑣4 and 𝑣5 together. In case 

𝑣4 and 𝑣5 take the same value in a record and it is represented by a single value in 𝑎2. The example shows 

an abstract table for two entities which includes 𝑣2 for the first entity and 𝑣4 and 𝑣5 for the second entity. 

The content of records in the abstract table is not important for the process of defining the relations. The 

table just shows the repeats in the given entities. 

Step 2: Number of transitions: In this step, the abstract table is analysed to reveal the transition between 

entities. We calculate two transition values called 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛1, which shows the transition from 𝐸𝑛𝑡𝑖𝑡𝑦 1 

to 𝐸𝑛𝑡𝑖𝑡𝑦 2, and 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛2, which shows the opposite of 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛1. The values can be easily calculated 

by using an SQL query. For 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛1: 

SELECT COUNT (distinct(a1))  

FROM ‘Abstract Table’  

GROUP BY a2  

HAVING COUNT (distinct(a1)) > 1 

can be used. Similarly, for 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛2: 

SELECT COUNT (distinct(a2))  

FROM ‘Abstract Table’  

GROUP BY a1  

HAVING COUNT (distinct(a2)) > 1 

can be used. The numbers of transitions show the type of relation. Table 1 shows the relation types 

dependent on the number of transitions. 

Table 1. Relation types by number of transitions. 

𝒕𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏𝟏 𝒕𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏𝟐 Relation type 

0 0 One to one 

> 0 0 One to many 

0 > 0 Many to one 

> 0 > 0 Many to many 

 

Step 3: The success rate of relation: Relation types are searched for each combination of the entities. The 

algorithm can report wrong relationships. In step 3, we calculate a success rate to show the quality of 

relationships. Although this may not produce a definitive solution, it is a guiding method for choosing 

the right relationships. The success rate is calculated as  

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒 =
𝑛

𝑛 + 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛12
×

𝑛

𝑛 + 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛22
 (9) 

where n indicates the number of rows in the given dataset as the input. The success rate takes values in 

the range (0,1]. Lower values point out much more transition, so the relationship may be quite likely valid 

with such a rate. 

5.3 Fine-Tuning 

The one-to-one relationship is rare, and it is seen as a special type of the one-to-many relationship 

(Sumathi & Esakkirajan, 2007). This type of relationship is mostly used for logical purposes depending on 

the database designer’s decision. Therefore, it does not make sense for the output reported by the 

algorithm to have a one-to-one relationship. In the last step, the algorithm aggregates the entities which 
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have a one-to-one relationship. In the experimental stage of the study, this approach provides an 

improvement in the success of the algorithm. 

6 Method 

In order to measure the success of the suggested algorithm, we compare the output of the algorithm with 

a real database design for an input dataset. As a result of an extensive literature and web research, a 

sufficient number of datasets with the best database design could not be reached. Thus, we generate 

datasets using well-known and well-designed database designs in conjunction with the normalization 

process. For the generated datasets, the output of the algorithm can be compared to the best case, as the 

best solution would be pre-denormalization of database designs. 

6.1 Data Collection 

It is difficult to label a database design as a well-designed database because the normalization process is 

subjective and can be changed by the designer. In the database design selection process, Abantecart1, 

Drupal2, Joomla3, Moodle4, Opencart5 and WordPress6 open-source tools are used, which are developed 

by a wide community and are widely used to benefit from web-based systems. They have a high usage 

rate and are improved by the communities in terms of being bug-free and showing better performance. 

Thus, it is assumed that these database designs can be considered well-designed. Since database schemas 

have many entities, it is not easy to denormalize an entire database. For example, Abantecart and Opencart 

are e-commerce systems and have a large number of entities for various purposes such as management 

of customers, products, orders, content, etc. As a whole, not all entities produce a rational dataset. In the 

scope of this study, we split the comprehensive database designs into relatively small ones. Table 2 shows 

the database designs used. 

Table 2. Sample databases. 

# 
Source 

database 

Number of 

entities 

Number of 

attributes 
 # 

Source 

database 

Number 

of entities 

Number of 

attributes 

1 Abantecart 8 25  26 Joomla 3 36 

2 Abantecart 5 20  27 Moodle 9 69 

3 Abantecart 2 15  28 Moodle 6 33 

4 Abantecart 3 17  29 Moodle 6 109 

5 Abantecart 5 32  30 Moodle 8 54 

6 Abantecart 2 45  31 Moodle 4 22 

7 Abantecart 6 60  32 Moodle 2 15 

8 Abantecart 2 10  33 Opencart 5 23 

9 Abantecart 5 43  34 Opencart 5 22 

10 Abantecart 13 57  35 Opencart 3 48 

11 Abantecart 17 66  36 Opencart 4 14 

12 Abantecart 8 23  37 Opencart 4 32 

13 Drupal 4 22  38 Opencart 2 23 

14 Drupal 2 23  39 Opencart 3 12 

 

1 See, https://www.abantecart.com/ 

2 See, https://www.drupal.org/  

3 See, https://www.joomla.org/  

4 See, https://moodle.org/  

5 See, https://www.opencart.com/  

6 See, https://wordpress.org/  

https://www.abantecart.com/
https://www.drupal.org/
https://www.joomla.org/
https://moodle.org/
https://www.opencart.com/
https://wordpress.org/
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# 
Source 

database 

Number of 

entities 

Number of 

attributes 
 # 

Source 

database 

Number 

of entities 

Number of 

attributes 

15 Drupal 2 18  40 Opencart 6 19 

16 Drupal 2 9  41 Opencart 3 11 

17 Drupal 4 23  42 Opencart 2 11 

18 Joomla 3 31  43 Opencart 3 5 

19 Joomla 3 23  44 Opencart 2 4 

20 Joomla 2 34  45 Opencart 4 9 

21 Joomla 3 57  46 Opencart 2 22 

22 Joomla 3 61  47 Wordpress 6 49 

23 Joomla 3 14  48 Wordpress 2 30 

24 Joomla 2 16  49 Wordpress 3 32 

25 Joomla 3 22  50 Wordpress 4 34 

 

During the dataset generation process, the datasets are produced for a total of 250 cases with five different 

versions of 50 database designs. 

6.2 Measuring the Success of Output 

In order to measure the performance of the algorithm, we perform a simulation study based on an 

environment where the best solutions of 250 datasets are searched ten times. Thus, 50 different scenarios 

are tested for each database design. The output of the algorithm and the real database designs are 

compared. Each binary attribute combination in the output design is compared with a real dataset. Figure 

3 demonstrates an example. 

 

Figure 3. Example of assessing algorithm output. 

The example given in Figure 3 includes two entities and five attributes. The left side shows an example of 

a real design, while the right side shows a representative solution. Five attributes can be grouped with ten 

different forms. 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒 measures the quality of the output and is defined as 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒 =
∑ ∑ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑣𝑖, 𝑣𝑗)𝑛

𝑗=𝑖+1
𝑛−1
𝑖=1

(
𝑛
2

)
 (10) 

where 𝑛 is the number of attributes in the design, 𝑣𝑖 and 𝑣𝑗 are the attributes, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙( ) is a function that 

returns either 0 or 1, 𝑖 = 1, 2, … , 𝑛 − 1, and 𝑗 = 𝑖 + 1, 𝑖 + 2, … , 𝑛. The 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 function returns the binary 

state whether two attributes are in the same entity or not. For example, the success rate for the design 

showed in Figure 3 can be calculated as in Equation 11. 

0 + 1 + 1 + 1 + 0 + 0 + 0 + 1 + 1 + 1

10
= 0.6 (11) 
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If the output and the actual design are the same, the success rate will be 1. Thus, the value is in the range 

[0,1]. 

6.3 Mutation Operator 

A mutation operator is developed and integrated into the algorithm to enrich the search capabilities. Five 

different mutation operators are performed with equal probability at each turn. 

1. The standard mutation operator of the GA is applied. 

2. A randomly selected gene is replaced with a randomly generated gene. 

3. Two arbitrarily selected genes are replaced. 

4. A randomly selected gene is replaced with another randomly selected gene. 

5. The chromosome is reconstructed using random sampling with replacement from a set of all 

genes. 

6.4 Software 

An R library is developed to perform the simulation study. The library depends on the GA package to run 

the genetic algorithm search (Scrucca, 2013, 2017). The fitness function is as mentioned in the section 

Generating Database Schema. The number of iterations is 500, the core count for the parallelization is 39, 

the weights of the sub fitness functions are equally 1, and the mutation probability is 0.1. The other 

parameters are used with the default settings for the GA package.  

7 Findings 

We performed a test suite to measure the performance of the suggested algorithm. We investigated 250 

different datasets consisting of 50 different databases schemas with their five random variations. These 

calculations are repeated ten times. 

Table 3. Simulation results of algorithm by databases. 

Database 
Number of 

attributes 

Success rate 

Min. Max. Mean Median Std. dev. 

1 25 0.15 1 0.45 0.41 0.21 

2 20 0.33 1 0.62 0.62 0.14 

3 15 0.86 1 0.99 1 0.03 

4 17 0.37 1 0.78 0.8 0.2 

5 32 0.58 1 0.7 0.69 0.07 

6 45 0.93 1 0.99 0.99 0.01 

7 60 0.27 0.68 0.45 0.45 0.11 

8 10 0.76 1 0.91 1 0.12 

9 43 0.24 0.62 0.42 0.41 0.09 

10 57 0.05 0.32 0.17 0.17 0.06 

11 66 0.18 0.55 0.36 0.36 0.09 

12 23 0.13 1 0.31 0.28 0.15 

13 22 0.33 1 0.88 1 0.18 

14 23 0.54 1 0.91 1 0.12 

15 18 1 1 1 1 0 

16 9 1 1 1 1 0 

17 23 0.18 0.76 0.38 0.33 0.13 

18 31 0.36 1 0.73 0.76 0.21 
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Database 
Number of 

attributes 

Success rate 

Min. Max. Mean Median Std. dev. 

19 23 0.87 1 0.99 1 0.02 

20 34 0.88 1 0.98 1 0.04 

21 57 0.58 1 0.74 0.72 0.1 

22 61 0.38 0.82 0.62 0.64 0.09 

23 14 0.79 1 0.99 1 0.04 

24 16 0.85 1 0.99 1 0.03 

25 22 0.28 0.88 0.55 0.52 0.14 

26 36 0.68 0.98 0.89 0.9 0.07 

27 69 0.19 0.68 0.41 0.39 0.12 

28 33 0.12 0.41 0.25 0.24 0.07 

29 109 0.1 0.31 0.18 0.18 0.05 

30 54 0.12 0.73 0.27 0.21 0.14 

31 22 0.34 0.87 0.49 0.47 0.12 

32 15 0.72 1 0.99 1 0.04 

33 23 0.31 1 0.61 0.64 0.19 

34 22 0.35 1 0.7 0.72 0.15 

35 48 0.78 1 0.99 1 0.03 

36 14 0.46 1 0.79 0.8 0.2 

37 32 0.31 0.85 0.45 0.45 0.1 

38 23 0.79 1 0.91 0.89 0.08 

39 12 0.55 1 0.92 0.94 0.09 

40 19 0.24 1 0.6 0.55 0.19 

41 11 0.47 1 0.94 1 0.12 

42 11 0.78 1 0.87 0.78 0.11 

43 5 1 1 1 1 0 

44 4 1 1 1 1 0 

45 9 0.44 1 0.96 1 0.1 

46 22 1 1 1 1 0 

47 49 0.21 0.59 0.37 0.35 0.08 

48 30 0.93 1 0.98 1 0.03 

49 32 0.89 1 0.93 0.92 0.03 

50 34 0.43 1 0.76 0.75 0.15 

Mean 30.08 0.52 0.9 0.72 0.73 0.09 

 

We calculated the success rates as in Equation 10. The success rates take values in the range [0,1]. We 

listed the minimum, maximum, mean, median, and standard deviation of the success rates. Each cell 

shows the success rates of ten retries of the five different variations of the database given in the first 

column in the table. After 2500 runs of the algorithm, the minimum, the maximum, the mean, the median, 

and the standard deviation are 0.52, 0.9, 0.72, 0.73, and 0.09, respectively. The findings show that the 

success of the algorithm is 72% with a standard deviation of 0.09. In addition, the perfect solution is 

reached for 35 out of 50 databases with a success rate of 100%. 

The findings show that the number of attributes can affect the success rate. To investigate the relation 

between the number of attributes and the success rate, we tested the null hypothesis  

𝐻0: There is no correlation between the number of attributes and the success rate. 
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in contrast to the alternative hypothesis 

𝐻𝑎: There is a correlation between the number of attributes and the success rate. 

using Spearman Nonparametric Correlations Test. We obtained a p-value of 0.01. Therefore, there is 

sufficient evidence for rejecting the null hypothesis. The correlation coefficient is estimated as 𝑟 = −0.581, 

so the number of attributes and the success rate are negatively correlated. The variables are shown in the 

scatter plot of Figure 4.  

 

Figure 4. Graph of success rates by number of attributes. 

In Figure 5, it is shown that the standard deviations of the success rates take values approximately 

between 0 and 0.2, but means are scattered over a larger range. 

 

Figure 5. Success rates and their standard deviations. 

8 Discussion and Conclusion 

Designing a database, with or without prior knowledge, is a process that does not have an ideal solution 

and requires great skill and experience. Due to the constantly increasing data in terms of both variables 

and observations, creating a new design or updating the changing designs is a costly process in terms of 
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both budget and time. Automating this process can help reduce costs. In this study, we propose a new 

algorithm for creating a relational database design for any given dataset. 

Our findings show that the suggested fully automatic database normalization algorithm performs with a 

success rate of 72% for various sizes of different datasets. We examined 250 datasets generated from 50 

databases which are used in real projects and continuously being developed by a large community. We 

assumed that these databases had been well optimized by professionals for years. 

Our suggested algorithm can generate a relational database design for a given dataset without any prior 

information and user input. However, since the success rate of the algorithm is not 100%, we cannot claim 

that it offers a definitive and ready-to-use solution. Nevertheless, the proposed algorithm can be a good 

support at the beginning of the design process, offering useful advice to designers and a shortened path. 

The number of entities in database designs used in the simulations varied between 2 and 17, and the 

number of attributes of the datasets obtained by denormalization varied between 2 and 109. We 

performed a correlation test to measure the effect of the change in the number of attributes on the success 

rate and concluded that these two values are significantly correlated. A different set of optimization 

parameters can influence search results in terms of achieving a high success rate for a high number of 

attributes, and this can be regarded as a topic for future study. 

In the proposed algorithm, we considered the normalization process as an optimization problem. Since 

our optimization problem consisted of four fitness functions, we used the weighted sum method. The 

method requires defining four weights for each fitness function. However, we could not come up with a 

valid weight set for each problem, and we used equal weights for each. Searching and finding topic-

specific or global weights can result in a higher success rate. It can also be viewed as potential future work. 

We designed the algorithm to create a database design with an input dataset. Using a handled database 

as an input to normalize again is impossible. Alternatively, however, users can denormalize a database of 

any size and normalize it with the proposed algorithm again. With this approach, a validation process can 

be executed. This may be the subject of future work. 

The genetic algorithm used in the proposed algorithm is population-based and uses iterations. The 

algorithm creates a candidate database design for each candidate solution, and places input data into the 

database. Then the fitness functions are calculated based on the handled database. The size of input data 

affects the duration of the preparation process for each candidate solution, but it is not crucial in terms of 

calculation of the fitness function. The algorithm may run more slowly with big datasets, but using a 

sampling method may reduce the search duration. So, the algorithm can be used for input raw datasets 

of any size. Devising a novel sampling method can be the subject of future work too. 

As another limitation of the study, the dataset entered must be in the first normal form. The first normal 

form requires each cell in the dataset to have atomic data. This arrangement should be performed by the 

user as a preprocessing step. As a result, it is not easy to specify what normal form the output is in. Since 

the steps of the algorithm do not contain normal form rules, the output can be in any normal form. 

The algorithm can be performed for denormalized datasets that do not contain complex relationships such 

as star schema database designs. We also recommend increasing the number of iterations and population 

size for large datasets. As a future work, we plan to publish an implementation of the algorithm as an R 

package on the CRAN repository of R.  
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