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Abstract  

Over the past few decades, the enormous expansion of medical data has led to searching for ways of 

data analysis in smart healthcare systems. Acquisition of data from pictures, archives, communication 

systems, electronic health records, online documents, radiology reports and clinical records of different 

styles with specific numerical information has given rise to the concept of multimodality and the need 

for machine learning and deep learning techniques in the analysis of the healthcare system. Medical 

data play a vital role in medical education and diagnosis; determining dependency between distinct 

modalities is essential. This paper gives a gist of current radiology medical data analysis techniques 

and their various approaches and frameworks for representation and classification. A brief outline of 

the existing medical multimodal data processing work is presented. The main objective of this study is 

to spot gaps in the surveyed area and list future tasks and challenges in radiology. The Preferred 

Reporting Items for Systematic Reviews and Meta-Analysis (or PRISMA) guidelines were incorporated 

in this study for effective article search and to investigate several relevant scientific publications. The 

systematic review was carried out on multimodal medical data analysis and highlighted advantages, 

limitations and strategies. The inherent benefit of multimodality in the medical domain powered with 

artificial intelligence has a significant impact on the performance of the disease diagnosis frameworks. 
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1 Introduction 

To begin with, healthcare multimodal knowledge visualization and depiction have a remarkable space in 

the medical information research outlook. They guide the rich information for doctors and medical 

research scholars to identify significant new challenges. In general, medical data exist in various formats, 

mainly structured and unstructured. Medical data are obtained from multiple sources such as electronic 

health reports, medical reports, signals and 2D and 3D images (Iakovidis & Christos, 2012; Chen et al., 

2017; Pai et al., 2021). It is necessary to systematically file and conventionally represent data to extract 

relevant knowledge for better efficacy in practical applications (Lawonn et al., 2017; Cai et al., 2019; 

Sultanum et al., 2023).  

The first step towards intelligent healthcare system usage of multimodal data was taken in the 1990s, and 

only a few works were recognized in the initial stage. Moderately, multimodal data became one of the 

necessary probe cases in the healthcare system. To briefly discuss the history, van der Putten et al. (1995) 

designed a transparent framework for the physician to access multimodal data from echocardiography, 

Cathlab databases, hospital information systems and an ECG management system. The workstation was 

built on UNIX using C language, and an Interbase database and a CD ROM were used as storage modules. 

In the early stage, the multimodal data analysis concept was a fresh perception, and many hurdles were 

encountered in integrating and upgrading multimodal data. The multimodal data storage was bulky and 

expensive, causing significant storage challenges. Wood et al. (1998) proposed a multimodal information 

system to extract and generate information from the different repositories based on requirements. They 

aimed to reduce the difficulty in coordinating data between different information sources from a vast pool 

of domains. To annotate selected data, an object analyser from IntextInc was used. However, the results 

of the object annotation were not satisfactory. With time, there has been a steady rise in the usage of 

multimodal data in the healthcare system. 

Later, a step ahead from storage to annotation of multimodal data was taken. Generally, medical 

specialists rely on comparison and interrelation among the data for more accurate clinical diagnosis and 

prediction. An et al. (2008) published their work on the visualization of multimodal data in the electronic 

health record. This was a later advance for classifying electronic data into numeric texts and images. 

Furthermore, the classified data were annotated in the proposed work. In 2010, data fusion, an idea for 

multimodal data retrieval from electroencephalogram (EEG), magnetic resonance imaging (MRI) and 

positron emission tomography (PET), was presented (Polikar et al., 2010). This work gave a new 

dimension to multimodal data processing in the healthcare system with a diverse ensemble classifier 

solution of 10% to 20% better accuracy than existing work. In 2013, many researchers gave a new insight 

into multimodal data in healthcare applications. Weibel et al. (2013) proposed an application that was 

built to analyse multimodal EHR data. The manual coding issues were reduced, and features such as 

audio track and gaze were augmented for outlined applications. Gradually, in 2016 many researchers 

started proposing their idea of open-source software for medical imaging to overcome the curse of 

dimensionality. A leap towards the convolutional neural network (CNN) classifier was observed in (Pinho 

& Costa, 2016). With the development and increase in storage and processing capacity, there has been a 

massive increase in healthcare data. Since 2016, significant research has been conducted for analysing big 

data in the healthcare domain pertaining to data obtained from heterogeneous sources (Amal et al., 2022; 

Kline et al., 2022; Rehman et al., 2022). 

From the 1990s to 2022, a radical change in the growth of multimodal data in the healthcare system is 

noted. We moved from a technique of storing multimodal data to analysing multimodal data using 

machine learning, which can be coined as colossal progress (Fleury et al., 2010). 
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1.1 Big data analysis in healthcare 

In recent years, there has been enormous growth in structured, unstructured and semi-structured data in 

various fields around the globe, including the healthcare industry. Collectively, these heterogeneous 

multimodal data generated are referred to as big data (Kumar & Singh, 2019; Fei et al., 2021). The notion 

of "big data" is not new but there has been a constant change in the way it is defined. Big data is an 

accumulation of data elements whose volume, velocity, variety and complexity necessitate design and 

development of new hardware or software that can collect, analyse and visualize the data (Lynch et al., 

2008; Jacobs, 2009; White et al., 2012; Batko & Ślęzak, 2022). The health sector is the best example of how 

the characteristics of the data generated are related to the 4 V's of big data, namely volume, velocity, 

variety and veracity (Raghupathi & Raghupathi, 2014; Jindal et al., 2018; Lv et al., 2020) (see Figure 1). 

 

Figure 1. Four V's of big data in healthcare. 

1.1.1 Big data and their 4 V's in healthcare 

1. Volume: Over time, a significant amount of healthcare data would be generated and accumulated, 

producing a massive volume of data. 

Example: Big data in the medical field include patient case history or clinical trial data, medical 

genetics and genome data, medical images such as X-ray, ultrasound, MRI, etc., and a few modern 

types of big data such as 3D imaging and biometric sensor readings.  

2. Velocity: Medical data are accumulated very quickly in real time, and the steady flow of new data 

stored at an unprecedented rate gives rise to new problems. 

Example: Routine monitoring such as multiple diabetic glucose measurements, blood pressure 

reading, ECG, bedside heart monitors, etc.  

3. Variety: Health data are collected in a variety of formats: structured, semi-structured or 

unstructured (Raghupathi & Raghupathi, 2014; Lv et al., 2020; Batko & Ślęzak, 2022). 

• Structured data: Data that are in a standardized format collected in electronic health records 

(EHR), which contain patient demographics, clinical lab readings, diagnosis list, family list, 

smoking status, etc., that can be efficiently organized, queried, analysed, recollected and 

visualized by a machine.  

• Unstructured data: Data that do not follow an exact format with no associated data model. 

Example: Radiology images (MRI, X-ray, PET, etc.), handwritten clinical notes/discharge 

summaries, etc. 



Acta Informatica Pragensia  Volume 11, 2022 

https://doi.org/10.18267/j.aip.202  426 

• Semi-structured data: Data that consist of semantic tags but do not adhere to the structure of 

specialized repositories such as a relational database. Example: Clinical narrative contents that 

use JSON or XML data structure. 

4. Veracity: The fourth characteristic focuses on data assurance; that is, the outcome of the data 

obtained should be credible or error-free. Since the medical field is concerned with life and death 

decisions, accurate, trustworthy information is vital. Notably, in the case of unstructured data, it 

is challenging to obtain a precise result as they are highly fluctuating. Example: translation of 

handwriting on clinical notes (Tabassum et al., 2022). 

1.1.2 Applications of big data in healthcare 

The benefits of big data in healthcare are demonstrated in three focus areas: (1) disease prevention (Razzak 

et al., 2020), 2) recognition of risk factors of a disease (Nasution et al., 2022), and (3) designing an 

intervening or recommendation tool for health behaviour change (Miron-Shatz et al., 2014; Dash et al., 

2019; Fei et al., 2021). Big data technology has many areas of application in healthcare, such as: 

• Clinical recommendation or decision support systems: Clinical recommendation systems or 

decision support systems are mainly used to assist clinicians and hospital administrators to make 

better decisions from the insights gained from the medical records with volume, velocity 

(including time notion), variety (different forms of data) and veracity (data correctness) (Comito 

et al., 2022). 

• Public health: Assessing the different diseases by analysing disease patterns and predicting the 

disease outbreaks. This helps in quicker development of resulting vaccines (Castiglione et al., 

2021). 

• Evidence-based medicine: Merging and analysing different forms of structured, unstructured and 

multimodal data from EHR, financial and operational data to predict the diagnosis for the clinical 

outcome (Abujaber et al., 2022). 

• Genomic analysis: The process of studying and examining the different gene sequencing and 

molecular biology to identify the inherited gene disorders to support medical care decisions (Atta-

Ur-Rahman et al., 2022). 

• Privacy and fraud analysis: Reducing fraud by assessing and analysing the massive set of claim 

data; velocity of claim requests handled is an issue (Hossain et al., 2021, Haque & Tozal, 2022). 

• Disease surveillance or device monitoring: Information-based activity involving capturing and 

analysing large real-time data originating from different origins, e.g., in-hospital and in-home 

devices for unfavourable event predictions (Taimoor & Rehman, 2022). 

1.2 Clinical recommendation systems (CRS) 

The Healthcare has massive volumes of data with time and variety attached to them, making it more 

complicated to handle all the above characteristics of data. There is a necessity to build a CRS that is 

devised to assist clinicians in making better decisions about a patient by handling various types of data 

with volume and velocity (Berner, 2010; Sreejith et al., 2022). The necessary characteristic of CRS is to assist 

in the investigation of diseases as misdiagnosis of conditions may cause adverse and risky effects (Institute 

of Medicine, 2000; Harada et al., 2021). A mistake in a diagnosis of a medical condition may be due to 

human error by ignoring minor details or physicians having lesser knowledge of the disease (Schiff et al., 

2009; Sutton et al., 2020). Effective decision support systems could significantly resolve this problem (Garg 

et al., 2005; Hak et al., 2022). CRS should effectively interpret the patient's medical data and assist 

clinicians in making better decisions by a proper investigation of patient conditions prior the medical care. 

Clinical recommendation or decision support systems are used in various medical tasks. Some of the 

common uses are as follows:  
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• Prognosis aid: An expert and knowledge-based recommendation system can assist clinicians or 

practitioners with no experience to diagnose a patient in intricate cases (Dramburg et al., 2020). 

• Warning or reminder: The CRS system could be linked to patient monitoring devices and can 

warn clinicians about any emergency or patient’s condition (Chien et al., 2022). 

• Medicine recommendation: The CRS can advise on prescription recommendations concerning 

drug-to-drug interaction and medicine overdose faults (Zhou et al., 2022). 

• Knowledge extraction: The recommendation systems can find and extract suitable and precise 

data that would be used for the prognosis of specific diseases (Saxena et al., 2021). 

• Medical image identification and analysis: The CRS can analyse from the available medical 

images such as X-Rays, ultrasound, PET or MRI and extract the relevant region of interest (RoI) 

for predictive modelling (Abubaker & Babayigit, 2022). 

1.3 Structured and unstructured healthcare data 

The rapid growth in healthcare data is with respect to the patient clinical traits, administrative and medical 

claim data and other various regulatory requirements. In 2009, Health Information Technology for 

Economic and Clinical Health (HITECH) Act was established to adopt EHR in the United States, which 

catered the incentives of $30 billion (Petersen, 2022). Adoption of EHR by office-based clinicians has 

increased dramatically from 21% in 2004 to 87% in 2022, while the adoption of essential EHR tripled from 

11% in 2006 to 54% in 2022 (ONC, 2016) 

EHR comprises a plethora of structured data such as (1) numerical quantities: patient demographics, clinical 

laboratory results such as height, weight and blood type; 2) categorical values: Current Procedural 

Terminology (CPT) procedures or International Classification of Disease (ICD) codes; (3) date/time objects: 

temporal events of birth or admission; as well as unstructured data such as (4) natural language free text, 

e.g., medical reports containing patient profiles, current health status, patient disease history and 

discharge summaries; (5) medical images such as X-ray, computed tomography (CT), magnetic resonance 

imaging (MRI), etc. (Gehrmann et al., 2018). In structured EHR, complex processing is not required before 

statistical or machine learning tasks. However, the majority of data found today are in an unstructured 

format (Joseph et al., 2021). An EHR consists of extremely large volumes of valuable information and 

researchers have therefore worked to establish data-driven models (Alqahtani et al., 2022). 

The widespread collection of clinical data and variety of data formats thus poses various challenges such 

as high uncertainty and missing values. This sets up a stage for development of effective and sophisticated 

techniques such as CRS or predictive analysis frameworks for providing helpful and enhanced 

information to clinicians. Predictive analysis is a part of data mining, where patterns from historical data 

are studied to predict an event or outcome (Sundararaman et al., 2018; Ramesh & Santhi, 2020). Predictive 

analysis has given a boost to many trends in the healthcare sector to help clinicians and patients by 

supporting better diagnosis or other medical tasks (Ros Maryana Sinaga & Putra 2022). EHR are used to 

extract disease diagnosis (Comito et al., 2022) and medication (Chen et al., 2020) with higher accuracy and 

lower expenses. 

1.4 Multimodal healthcare data 

In diverse disciplines, data about the same aspects or subjects can be captured in various modes under 

different conditions or through numerous experiments. The concept of "modality" refers to these kinds of 

data acquisition frameworks (Lahat et al., 2014; Acosta et al., 2022). A combined analysis of these fused 

multimodal data would promise a comprehensive prospect of a particular task and may provide new 

directions for an unanswered question during an analysis of unimodal data. AI has provided promising 

results in various applications such as speech recognition, natural image detection and recognition and 

language translation. However, AI in the healthcare domain is lagging behind due to the high complexity 
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of unique features or signals in the medical cohort (Acosta et al., 2022). There has been an increase in 

wearable sensor usage, and the ability to capture and aggregate data from multiple sources has been 

improved due to the wealth of multimodal data. These data can add value to identification, prognosis and 

prevention of various diseases. Most of the current AI research work focuses on disease discovery, 

classification and prediction from single modality data. In contrast, clinicians utilize a wide variety of data 

extracted from multiple sources for diagnostic evaluation and treatment planning. However, the AI 

models built on multimodal data accessible to clinicians for prognostic assessment have shown promising 

results in disease detection and prediction compared to unimodal data (Nunes et al., 2019; Soenksen et 

al., 2022). 

There are two basic multimodal fusion approaches for merging text and images: early fusion and late 

fusion methods (Huang et al., 2020a; Mohsen et al., 2020). Early fusion combines the text and image 

features into an individual vector, which is then supplied to the final classifier. The important advantage 

of early fusion is that it can exploit the correlation and communicate between the low-level features. 

Instead, late fusion utilizes the decision value from each model and then fuses them using different fusing 

techniques such as averaging, variance, voting schemes, etc., as shown in Figure 2. 

 

Figure 2. Early fusion technique (a) and late fusion technique (b). 

After reviewing some of the survey papers on multimodal data in the healthcare system, we noticed that 

few works reviewed the ideas, guidelines, challenges and different data fusion methodologies. Topics 

such as advances in multimodal machine learning, early and late data fusion with parallel, non-parallel 

and hybrid data sets, and data fusion mechanisms on cross-border approach and border association were 

discussed (Jiang et al., 2020; Zhang et al., 2020).  

1.5 Contribution 

The contribution of this systematic review is as follows: 

• A detailed overview of the multimodal medical data fundamentals is provided and essential 

characteristics are highlighted. 

• A comprehensive review showcasing various multimodal medical data analyses, including feature 

extraction, data fusion, classification and visualization, is presented. 

• The study discusses various data fusion strategies applied to heterogeneous medical data. 



Acta Informatica Pragensia  Volume 11, 2022 

https://doi.org/10.18267/j.aip.202  429 

• A case study on AI-based radiology text and image analysis is explained with limitations and 

future research directions. 

The paper is organized as follows: Section 2 presents the study methodology, including research 

questions, search strategy, selection criteria and data extraction. Section 3 mainly focuses on the 

methodology of multimodal medical data analysis and its current work. The radiology domain deals with 

a vast amount of multimodal data, including X-ray, CT, PET, unstructured clinical notes, radiology 

reports, ECG signals, etc. Hence, our survey focuses on data analysis in the radiology domain as a case 

study. In Section 4, different outcomes of radiology data and their analysis are outlined, and Section 5 

presents various challenges and future work in multimodal medical analysis. 

2 Methodology 

The systematic review was carried out as per the PRISMA guidelines (Page et al., 2021). The main objective 

is to select eligible articles on multimodal medical data analysis and provide a summary of various open 

issues and future research directions. Our study mainly deals with outlining the existing research efforts 

and understanding the ideas put forth by the researchers. Therefore, no quality assessment was conducted 

on different multimodal medical data analysis techniques. The following subsections present various 

steps involved in performing the comprehensive review of multimodal medical data analysis. 

2.1 Research questions 

The various research questions posed during the systematic review are presented in Table 1. 

Table 1. Research questions considered for systematic review. 

No. Research question (RQ) Justifications 
Sections and subsections 

dealing with the question 

RQ1 What are the various stages, 

techniques and strategies 

used to analyse multimodal 

medical data? 

A detailed study is carried out on the general 

architecture of multimodal medical data analysis 

comprising various stages, including feature 

extraction, classification, fusion and visualization. 

Section 3 deals with RQ1 

RQ2 What are the different data 

fusion strategies available to 

integrate multimodal medical 

data? 

We identify and summarize research gaps in the 

existing literature on different data fusion 

techniques for integrating multimodal data and 

provide information to healthcare researchers on 

the usage of multimodal data fusion. 

Section 3.2 deals with RQ2 

RQ3 How has AI–based 

multimodal data analysis 

impacted on radiology 

domain? 

The radiology domain deals with a vast amount 

of multimodal data, including X-ray, CT, PET, 

unstructured clinical notes, radiology reports, 

ECG signals, etc. Hence, the impact of various 

AI-based techniques involving radiology cohorts 

is discussed. 

Section 4 deals with RQ3 

2.2 Search strategy 

Table 2 shows various search strings used for finding the research articles for this study. We have included 

search strings by selecting one keyword from each column, and multiple combinations were used during 

the search process. For example: “medical + data fusion + machine learning + radiology data” would be 

one search string. The search strings were used to find relevant articles from various repositories and 

publishers such as Web of Science, Google Scholar, Springer Link, Scopus, Elsevier, IEEE digital library, 

PUBMED and ACM. 
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Table 2. Various search string keywords. 

Keyword 1 Keyword 2 Keyword 3 Keyword 4 

(“medical”) OR 

(“medicine”) OR 

(“health”) OR 

(“healthcare”) 

(“data fusion”) OR 

(“multimodal”) OR 

(“heterogeneous”) OR 

(“multi-view”) OR (“cross-

modal”) 

(“machine learning”) OR 

(“deep learning”) OR 

(“artificial intelligence”) 

(“radiology data”) OR 

(“medical imaging”) OR 

(“electronic health records”) 

OR (“medical data”) 

2.3 Selection criteria 

The inclusion and exclusion criteria for including the research articles for the final review process are 

presented in Table 3. The inclusion criteria for selecting relevant articles include AI-based multimodal 

medical data analysis, feature extraction, classification, visualization and fusion of multimodal medical 

data. The inclusion criteria also include articles pertaining to radiology data (report + images). The 

following are the exclusion criteria: articles with no results, partial information, review articles or letters 

and publications with unimodal medical data analysis are excluded. A detailed overview of selection 

criteria for the systematic review process is shown in Figure 3. 

 

 

Figure 3. PRISMA study inclusion process. 
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Table 3. Inclusion and exclusion criteria for review article selection. 

No. Inclusion criteria Exclusion criteria 

1. Original research articles published in peer-

reviewed journals and conference papers 

Articles not published in English. 

2. Articles published within the last 15 years 

(2007-2022) 

Review articles or letters 

3. Articles relevant to AI-based multimodal 

medical analysis 

Articles not dealing with multimodal analysis of medical 

data 

4. Publications matching the search strings Duplicate publications and articles with no practical 

results 

2.4 Data extraction 

We selected a few design parameters to complete the data extraction process. The data extracted from the 

included research articles are as follows: first author name, year, methodology for disease diagnosis, 

modalities, clinical outcome, feature extraction techniques, fusion strategies, classification, visualization 

methodologies and evaluation metrics. The advantages, drawbacks and future research directions were 

showcased under particular extracted topics. 

3 Multimodal Medical Data Analysis  

Data analysis is a systematic process that includes well-designed techniques such as data inspection, 

cleaning, transformation and modelling. In general, multimodal data analysis uses a well-defined 

multimodal learning model designed by combining two deep Boltzmann machines with a hidden layer 

on the top. Trained convolutional neural network models exhibit excellent performance and outcome in 

analysing the enormous medical datasets (Richard et al., 2022). The general architecture of multimodal 

medical data analysis is depicted in Figure 4. 

 

 

Figure 4. General architecture of multimodal medical data analysis. 
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3.1 Multimodal medical data extraction 

With the trend of informatization and mobilization in the healthcare domain, the amount of high-

precision multimodal medical data is multiplying. Making effective use of multimodal data helps analyse 

and solve many healthcare issues. Due to the numerous modalities of data such as text, image and signal, 

the effectiveness of data extraction algorithms is challenging. Data extraction is a process that includes 

fetching raw data from various data sources for further data processing and storage (Chaudhury et al., 

2017). Existing work presents diverse approaches to extracting application data. In Iakovidis and Christos 

(2012), an unsupervised data mining approach is practised for mining low-level data with their multiple 

features, extracted in an extorted multimodal repository, which is represented in a consolidated way. 

Wang et al. (2018) proposed a novel approach to representing complex medical data into a knowledge-

based graph model. Later, graph similarity search is applied to the knowledge graph and lazy learning 

algorithms, including dynamic time warping, are applied to find similarity between the graphs created. 

The proposed approach exhibits better accuracy compared to the baseline models. 

Today, data are available in various variants from contrasting resources in the healthcare domain (Bleyer, 

1997). The extraction and further processing of physiology data such as galvanic skin response, heart rate, 

facial expression, text and speech are achieved using various techniques such as pattern matching, 

similarity search, feature extraction, automated annotation, classification and clustering. Kurniawan and 

Pechenizkiy (2014) proposed a framework for stress analysis from multimodal affective data, such as 

physiological signals captured from sensors and external user data, including facial expression, speech 

and text. Pattern mining techniques were applied to extract features from various data models.  

Data associated with cardiology can be extracted from different algorithms. The feature extraction can be 

accomplished by an approach of assigning the same data label for a similar data solution (Syeda-

Mahmood et al., 2007). ECG signals can be auto-processed by detecting periodicity from ECG traces as 

images. The thick waveform peaks are considered the key features of this technique (Wang et al., 2009). 

Analysis of sub-cancer pixels from MRI and mammography images using a machine learning approach 

is quite popular. For feature extraction, the decision tree model, chi-square and automatic interaction 

detection are used (Wu et al., 2019).  

The traditional machine learning approaches utilized manual guidance in extracting specific features 

before passing them to the fusion or classification stage. The advent of the deep learning approach has 

allowed the automated extraction of features from multimodal medical data. Purwar et al. (2020) utilized 

an AlexNet CNN model to extract features from red blood cell (RBC) imaging and structured blood 

reports to detect microcytic hypochromia. The CNN features are concatenated before passing through the 

classification model. Faris et al. (2021) proposed a multimodal framework for medical diagnosis from 263, 

867 unstructured medical questions and structured symptom data. Term frequency (TF) and inverse 

document frequency (IDF), hashing vectorizer and doc2vec models were utilized to extract features from 

structured and unstructured data. The data extraction stage was followed by fusion and classification to 

predict disease diagnosis for telemedicine. Most deep learning feature extraction strategies apply CNN-

based models for retrieving features from various data modalities (Hilmizen et al., 2020; Carvalho et al., 

2021; Hamidinekoo et al., 2021). Table 4 shows an overview of various multimodal medical data extraction 

techniques.   
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Table 4. Summary of multimodal medical data extraction techniques. 

Paper Problem addressed Dataset 
Proposed methodology  

for data extraction 
Disease analysed Outcome 

Wood et al. 

(1998) 

Developing a 

multimodal 

information 

managing system 

Texts, images, maps 

related to communicable 

diseases 

Retrieval manager, key 

matching technique, HINT 

information extraction 

method 

Communicable 

disease 

Better 

efficiency 

compared to 

existing 

systems 

Syeda-

Mahmood et 

al. (2007) 

Designing decision 

support system for 

cardiology 

(i) ECG 

(ii) Echo videos 

(iii) PTB benchmark 

database 

(i) ECG processing: Extraction 

of ECG waveforms using 

variants of normalized 

correlation 

(ii) Audio mode: envelopes 

extracted from sound signal, 

shape features extracted from 

envelopes 

(iii) Echo video processing: 

heart chambers extracted 

from variation of multiscale 

normalized graph 

(iv) Spatio-temporal motion 

from video: deformable 

template registration model 

Cardiac problem Not 

mentioned 

Wang et al. 

(2009) 

Heart period 

predicting medical 

decision support 

tool 

ECG dataset from 

hospital 

ECG envelope extraction in 

the form of image segments 

Heart diseases 88% 

accuracy 

Iakovidis & 

Christos 

(2012) 

Model for mining 

multimodal 

information from 

healthcare 

information 

systems 

Anonymised data from 

patients admitted in ICU. 

Ex: blood gasses, body 

temperature, chest X-ray 

(i) Unsupervised data mining. 

(ii) Clustering: non-negative 

matrix factorization technique 

Pneumonia Promising 

results 

Kurniawan 

& 

Pechenizkiy 

(2014) 

Framework for 

stress analysis 

Physiological signals 

captured by sensors 

i. environmental 

ii. context 

external user-related 

data 

Pattern mining, feature 

extraction 

Stress Better 

results 

Wang et al. 

(2018) 

Knowledge graph-

based method to 

connect different 

types of 

multimodal data  

MIMIC III- public EMR 

database 

Semantic rich knowledge 

graph. 

Medledge: Q & A based 

approach to build medical 

knowledge graph 

Diabetes 62% 

accuracy 

Bu et al. 

(2017) 

3D feature learning 

framework for 

multimodal data 

(i) SHREC 2007 

watertight model 

(ii) SHREC 2011 non-

rigid watertight dataset 

(iii) McGill shape 

benchmark 

Convolutional neural 

networks, convolutional deep 

belief networks 

No disease 

analysed (general 

usage of 3D hand 

gesture dataset) 

Accuracy up 

to 94.5% 
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Paper Problem addressed Dataset 
Proposed methodology  

for data extraction 
Disease analysed Outcome 

Wu et al. 

(2019) 

Prediction of 

molecular subtypes 

of breast cancer 

MRI and mammography 

images 

Decision tree model with the 

chi-squared automatic 

interaction detector (CHAID) 

algorithm 

Breast cancer Accuracy of 

decision tree 

was 74.1% 

Purwar et al. 

(2020) 

To predict 

microcytic 

hypochromia 

detection 

(i) RBC images 

(ii) structured blood test 

reports 

AlexNet CNN model for 

feature extraction 

Hypochromia Fused 

features 

provided 

better 

accuracy 

than the 

unimodal 

features 

Faris et al. 

(2021) 

Disease diagnosis 

from patient 

questions and 

symptoms 

(i) unstructured patient 

questions 

(ii) structured symptoms 

and diagnoses 

Tf-Idf, hashing vectorizer and 

doc2vec 

Telemedicine 84.9% 

accuracy 

3.2 Multimodal medical data fusion 

Nowadays, in all disciplines, data are captured from distinct sources, which leads to multimodality. 

Fusion of multimodal data in the medical field can improve decision support systems with impressive 

results. Data fusion is a study of data sets from various sources communicating with each other (Lahat et 

al., 2015). The present study suggests that fusion of multimodal data enhances the performance of the 

methodology or algorithm applied in the data analysis phase. These techniques pose significant 

challenges in combining and analysing modes of different frequencies and noise. In general, the 

multimodal data analysis is achieved using a multimodal learning model, which will connect two deep 

Boltzmann machines with a hidden layer on the top. The model aims to identify missing information from 

the learnt information (Srivastava & Salakhutdinov, 2014). 

Many researchers use data fusion as a proper technique in multimodal data analysis in various 

applications. Different data fusion approaches such as data fusion for hybrid BCI, rhythm-based BCI and 

fusion of multiple heartbeat physiological signals (Chandra et al., 2018) have been studied using 

comparative analysis (Fazli et al., 2015). Most multimodal data contain multiple views, and the multi-

view classification of the various subset proves helpful. In Shachor et al. (2020), a novel fusion framework 

is designed using a neural network where a mixture of views is used for data processing, and proves to 

perform better. The multimodal medical data fusion also bolsters the 3D neuroanatomical database 

analysis. Identifying the anatomical structure, feature analysis and labelling approach are used by Barillot 

et al. (1993). Techniques such as a Markov-Penrose diagram of tensor network notation, Bayesian DAG 

and coupled matrix tensor factorization are likewise advised as reliable for fusion in the case of 

neuroimaging. In recent research, even fusion of multi-band images is brought about using a deep-gate 

convolutional neural network. Fusion of low and high-frequency components gives outstanding results 

compared to existing systems (Lin et al., 2020). It is shown that MRI, EEG and SMRI can also be fused 

using joint independent component analysis and transposed independent vector analysis models (Adali 

et al., 2015). For high spectral information MRI, PET fusion is advised (Abdulkareem, 2018), wherein a 

low multimodal dataset gives better results. One step ahead, multi-band image fusion offers a wide 

application in image quality enhancement; filters such as Gaussian (Mohd et al., 2017) and singular value 

decomposition (Nischitha & Padmavathi, 2017) perform well with fair results.  

In general, the multimodal fusion concept is classified into two categories, (i) model agnostic approaches 

and (ii) model-based approaches. Further classification of multimodal fusion is shown in Figure 5. Model 

agnostic approaches indicate that any methods/models can be applied and treat the overall approach as a 
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black box, mainly focusing on the fusion stage. Model-based approaches here focus primarily on the type 

of methods used for fusion. The model-based approaches are further subdivided into early fusion, late 

fusion and hybrid fusion techniques (Bayoudh et al., 2021). In early fusion or feature-level fusion 

techniques, the handcrafted features or features obtained from the neural network models are joined 

before passing on to the classification or prediction model. Li and Fan (2019) applied an early fusion 

strategy by concatenating the CNN features obtained from MRI and structured clinical test records to 

predict Alzheimer's disease. Purwar et al. (2020) proposed an early fusion strategy using concatenation to 

fuse red blood cell (RBC) imaging features and structured lab reports to detect hypochromia. Huang et al. 

(2020b) presented a neural network-based early fusion strategy by concatenating CNN features extracted 

from 2500 chest CT images and structured EHR data collected from the Stanford Medical Centre to predict 

pulmonary embolism. Most early fusion strategies focus on concatenating features obtained from CNN 

models to form a single vector. The major drawback of concatenation is missing inter-modal interaction 

between the various features obtained from multiple sources. 

The late fusion strategy combines features obtained from multiple classifiers to produce the final 

prognostic outcome. Reda et al. (2018) presented a late fusion framework to detect early diagnosis of 

prostate cancer by fusing MRI and clinical biomarkers using the Stacked Nonnegativity Constraint Sparse 

Autoencoders (SNCSAE) technique. The individual features are passed through two classifiers, and the 

final fusion technique yields diagnostic probabilities. Faris et al. (2021) proposed a late fusion strategy 

including summation, ranking and multiplication to fuse unstructured features extracted from patient 

questionnaires and structured symptom data. Features extracted are separately passed through various 

machine learning models before being merged for prediction. Hamidinekoo et al. (2021) showcased a 

fusion of a deep convolutional network (DCN) feature obtained from MRI and whole slide imaging (WSI) 

pictures using a late fusion technique including majority voting. The existing late fusion strategies focus 

on combining features from various classifiers using averaging, maximum or majority voting. Similar to 

early fusion, the main disadvantage of late fusion is minimum intermodal interaction between features 

from various modalities. 

The hybrid fusion strategy combines the early and late fusion approaches to obtain the results. A deep 

neural network (DNN) is a building block for the hybrid fusion strategy, where the joint representation 

of the multimodal data is learnt. In hybrid fusion, the loss is propagated back to the feature extraction 

stage during the training phase. The features from various modalities are learnt at intermediate layers of 

the neural network, and these learnt features are fused before feeding them into the final model for the 

prognostic outcome. Hilmizen et al. (2020) presented a joint fusion multimodal framework for predicting 

COVID-19 from chest X-ray (CXR) and CT images. The imaging features from the CXR and CT images 

were extracted using the VGG16 and ResNet50 models. The features were further concatenated and 

passed to the classification model for prediction. Carvalho et al. (2021) proposed a joint fusion strategy for 

skin cancer detection from dermoscopic images and ABCD pseudo non-imaging features from the ISIC 

2017 challenge dataset. The EfficientNet B3 model was used for feature extraction, and concatenation was 

applied for the fusion. It is seen that the joint fusion strategies provide promising results compared to the 

early and late fusion techniques in various medical applications. It is also observed that multimodal 

prediction is superior to unimodal prediction. It is due to the fact that the complementary knowledge 

gained through the associated alternate features has significantly impacted on the overall performance of 

the model. Table 5 summarizes the multimodal medical fusion strategies. 

  



Acta Informatica Pragensia  Volume 11, 2022 

https://doi.org/10.18267/j.aip.202  436 

Table 5. Summary of multimodal medical data fusion techniques. 

Paper Modality Contribution 
Methodology and 

classifier 
Anatomy Remarks 

Barillot et al. 

(1993) 

CT, MRI, DSA, 

PET, SPECT, MEG 

Framework for 

interpretation of 

multimodal 3D 

neuro-anatomical 

databases 

Image analysis 

methods: stereotactic 

framework 

Brain disease Final result not 

claimed 

Fazil et al. 

(2015) 

EEG, EMG, NIRS Framework for 

sensorimotor 

rhythm-based 

BCIs 

Novel approach hybrid 

BCI 

Data fusion:  

1. ECG-EEG 

2. EEG-NIRS 

 

Brain disease Not mentioned 

Adali et al. 

(2015) 

fMRI, sMRI, EEG Application of two 

novel fusion 

models are 

discussed 

Joint independent 

component analysis and 

transport vector 

analysis model in fully 

multivariate and 

symmetric manner. 

Brain disease, 

schizophrenia 

Fusion gave 

better result 

compared to 

fMRI and sMRI 

data fusion 

Karahan et al. 

(2015) 
Functional MRI, 

EEG, NIRS 

Proposed model  

Markov-Penrose 

diagram for fusion 

of multimodal 

brain images 

Coupled matrix-tensor 

factorization, multiway 

partial least squares 

Brain disease Not discussed 

Bernal et al. 

(2018) 

ISI dataset Proposed a 

procedure for 

multimodal fusion 

for medical image 

using wearable 

sensors 

Temporal fusion with 

multi-layered LSTM 

Not 

mentioned 

Achieved 90% 

accuracy for 

fused data 

Denzil Bosco et 

al. (2017) 

CT, MRI Proposed a fusion 

technique for 

brain tumour 

images 

Enhanced differentiated 

wavelet co-efficient 

technique 

Brain 

tumours 

The proposed 

system 

showcased fusing 

two medical 

images, CT and 

MRI. The 

combination of 

the two images 

provided 

promising results. 

Mohd et al. 

(2017) 

Speech and 

myoelectric signals 

Approach to 

increase the 

efficiency of the 

myo band 

Designed a robot with 

Arduino board 

Myo band 95.92% accuracy 

Nischitha & 

Padmavathi 

(2017) 

MRI, PET scan 

images 

Fusion approach 

for abdominal 

cancer 

(i) Laplacian pyramid 

fusion rule. 

(ii) Multi-resolution 

singular value 

decomposition 

Abdominal 

cancer 

After fusion 

classification 

accuracy is 85% 

Abdulkareem 

(2018) 

MRI normal axial, 

MRI normal 

coronal and MRI 

Alzheimer 

Proposed 

fusion using 

discrete wavelet 

transform 

(i) Gaussian filter to 

enhance quality of fused 

images 

(ii) DWT 

Alzheimer’s 

brain disease 

90% to 95% 

accuracy without 

losing spectral 

and anatomical 

data 
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Paper Modality Contribution 
Methodology and 

classifier 
Anatomy Remarks 

Chandra et al. 

(2018) 

(i) ECG and BP 

signals of 

PhysioNet 2014 

database  

(ii) lECG channels 

of MIT-BIH 

arrhythmia 

database 

Proposed a 

heartbeat 

detector 

(i) CNN-based 

information fusion (CIF) 

algorithm 

(ii) Fusing multiple 

signal without 

intermediate estimates 

Cardiac 

disease 

Achieved 94% to 

99% accuracy 

Lin et al. (2020) (i) ImageNet IL 

SVRC2013 

(ii) TNO image 

fusion dataset 

Designed 

framework for 

fusion of multi-

band images 

(i) Deep stack 

convolutional neural 

network 

(ii) Hybrid MDR-DDR 

image fusion network 

Not 

mentioned 

PSNR achieved to 

36% to 37% 

Shachor et al. 

(2020) 

DDSM dataset Illustrated a 

fusion 

framework for 

classification of 

multi-view data 

Probabilistic 

framework: A multi-

view data fusion 

classification 

Breast cancer Cross-validation 

recall value 0.693 

Purwar et al. 

(2020) 

(i) RBC images 

(ii) Structured 

blood test reports 

To predict 

microcytic 

hypochromia 

detection 

AlexNet CNN model 

for feature extraction 

and concatenation for 

fusion 

Hypochromia Fused features 

provided better 

accuracy than 

unimodal 

features 

Huang et al. 

(2020b) 

(i) CT images 

(ii) Structured 

EHR 

Framework to 

predict pulmonary 

embolism 

Straightforward 

concatenation is applied 

to CNN features 

Pulmonary 

embolism 

Comparatively 

poor performance 

compared to the 

late fusion 

strategy 

Faris et al. 

(2021) 

(i) Unstructured 

patient questions 

(ii) Structured 

symptoms and 

diagnoses 

Disease 

diagnosis from 

patient 

questions and 

symptoms 

Late fusion techniques 

including ranking, 

summation and 

multiplication 

Telemedicine Multiplication 

fusion technique 

obtained superior 

performance of 

84.9% accuracy 

Hamidinekoo 

et al. (2021) 

(i) MRI 

(ii) WSI 

Deep learning 

framework for 

glioma 

detection 

Late fusion strategy of 

majority voting 

Brain tumour Promising results 

for multimodal 

fusion 

Carvalho et al. 

(2021) 

(i) Dermoscopic 

images 

(ii) ABCD pseudo 

features 

Multimodal 

fusion 

framework for 

skin cancer 

prediction 

Joint fusion strategy 

using concatenating 

features extracted using 

EfficientNet B3 

Skin cancer Multi-tasking 

improved the 

performance of 

the prediction 

outcome 

Mohammad et 

al. (2022) 

CT, MRI, PET and 

SPECT 

AI based 

multimodal 

medical image 

fusion model 

(i) Modified DWT 

(ii) CNN network with 

hybrid optimization 

dynamic algorithm 

Not 

mentioned 

73% fusion factor 

and 58% standard 

deviation 

Liu et al. 

(2022a) 

CT and MRI CNN based 

image fusion 

technique to 

preserve 

functional 

information 

Multiscale mixed 

attention medical image 

fusion technique with 

mixed attention block 

and multiscale 

convolution block 

(encoder) 

Brain disease Achieved 0.8179 

linear correlation 
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Paper Modality Contribution 
Methodology and 

classifier 
Anatomy Remarks 

Amal et al. 

(2022) 

EMR and CT Survey on 

existing work in 

multimodal 

data fusion 

techniques in 

cardiovascular 

medicine field 

Survey work Cardiovascul

ar disease 

Comparative 

analysis of 

existing work in 

fusion techniques 

 

 

Figure 5. Overview of multimodal medical data fusion. 

3.3 Multimodal medical data classification 

The multimodal data fusion is followed by the classification and visualization task. The classification is a 

supervised learning approach used to determine the class of new data (Skowron et al., 2005). Data 

classification is essential in healthcare to analyse different diseases and categorize them accordingly. 

Multimodal medical data classification can be performed using machine learning and deep learning 

algorithms. Machine learning algorithms such as Ranklet transform, LSP Ranklet transform and support 

vector machine (SVM) have been used for breast cancer classification (Xi et al., 2017), whereas ECG, MRI 
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and EEG signal compression classification can be achieved using an encoder-decoder layer followed by a 

least-square algorithm (Zhang et al., 2017).  

Aydin et al. (2019) presented a multimodal deep learning-based binary classification of chest diseases 

from CXR and associated unstructured radiology reports collected from the Indiana University (IU) 

dataset. The imaging features were extracted using a pre-trained CNN model, and the textual features 

were retrieved using a GloVe embedding model. The concatenated features were passed through a fully 

connected network for classification. Lopez et al. (2020) compared the classification performance of a 

multimodal model and a unimodal model. The textual and imaging features were extracted using the 

word2vec and Densenet121 models from CXR and associated radiology reports collected from the IU 

dataset. The fused features were further passed to a fully connected deep neural network for classification. 

The outcome of the research also showed a reduction of annotation burden through multimodal learning. 

Data classification is not restricted only to visual and textual data. Its application and benefits have been 

widespread in various fields. Data classification techniques play a significant role in designing a 

supporting system for Parkinson's patients based on their handwriting. Heidarivincheh et al. (2021) 

proposed a multimodal classification of Parkinson's disease (PD) in the home environment by extracting 

features from raw data acquired through a wrist-worn accelerator and RGB-D camera. The silhouette 

images and the accelerometer signal were passed through data preprocessing stages and classified into 

PD or healthy using an encoder-decoder CNN model. 

Ribeiro et al. (2013) developed an approach to classifying chronic liver disease stages using clinical 

laboratory and ultrasound data. Techniques such as SVM, Bayes and K-mean clustering were used in the 

paper. Yi et al. (2022) proposed a multimodal classification framework for categorizing the severity of 

glaucoma from fundus and grayscale images collected from the Kunming Medical University. CNN-

based classifiers were used for the classification task. Hilmizen et al. (2020) used a CNN-based classifier 

for classifying COVID-19 disease from multimodal CXR and CT features extracted using pre-trained 

VGG16 and ResNet models.  

Multimodal classification has a wide range of applications in various medical domains. Machine learning 

and deep learning classifiers are applied to categorise data for prognosis outcomes. As we know, machine 

learning classifiers require supervised learning, which means that human interventions are much needed 

to manually pick features before passing them through the classifiers. DL classifiers do not require 

handcrafted features before feeding them into the fully connected layers for classification. Also, ML 

models do not learn on an incremental basis, and DL classifiers overcome this shortcoming by 

incrementally learning features. Table 6 presents a systematic review of multimodal medical data 

classification. 

Table 6. Review of multimodal medical data classification. 

Paper Modality Contribution 
Methodology and 

classifier 
Anatomy Remarks 

Bloch (1996) MR images Discussed concepts of 

dumpster-Shafer 

evidence theory 

Dumpster-Shafer 

evidence theory 

Brain diseases Not 

mentioned 

Valova & 

Kosugi (1997) 

MR images Classification 

approach for brain 

images using a neural 

network 

MMPT neural 

network adopting 

depth first 

searching technique 

Brain diseases Accuracy 

achieved 89% 

for grey 

white block 

classification 

and 90.5% for 

border block 

classification 
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Paper Modality Contribution 
Methodology and 

classifier 
Anatomy Remarks 

Meng et al. 

(2010) 

Three 

benchmarks from 

IICBU Biological 

Image Repository 

Designed a 

framework to solve 

the challenges in 

general histology 

image classification 

and labelling 

C-RSPM classifier Liver disease Accuracy 

achieved 

92.70% 

 

Zhang & Shen 

(2011) 

(i) MR brain 

images 

(ii) ADNI 

database 

Classification of AD 

patients data 

Multimodal 

Laplacian 

regularized least 

squares technique 

Alzheimer’s disease 

(AD) 

Accuracy 

achieved 

98.5% 

Ribeiro et al. 

(2013) 

Clinical 

laboratory 

ultrasound data 

Approach to classify 

and stage chronic 

liver disease 

(i) Bayes Parzen 

classifier 

(ii) SVM 

(iii) K nearest 

neighbour 

Chronic liver disease Accuracy 

achieved 

98.67% for 

normal 

detector 

 

Wu & He 

(2015) 

CT, MR, PET 

from Journals of 

Radiology and 

Radiographics 

Tool for automatic 

classification of 

modality in medical 

image 

p-norm multiple 

learning kernel 

technique 

Not mentioned Accuracy 

achieved 

95.15% 

Drotar et al. 

(2015) 

Medical 

prescriptions 

Designed framework 

for a decision support 

system for 

Parkinson’s disease 

SVM classifier with 

radial Gaussian 

kernel 

Parkinson’s disease Accuracy 

achieved 

88.13% 

Xi et al. (2017) Breast ultrasound 

Qianfushan 

hospital 

Robust texture 

feature analysis 

medical multimodal 

data using LSP-

Ranklet and multi-

task learning 

(i) SVM classifier 

(ii) LSP-Ranklet 

(iii) Multi-task 

learning 

 

Breast Tumour Efficiency 

achieved 96% 

Ben Said et al. 

(2017) 

(i) EMG and ECG 

signals 

(ii) DEAP Dataset 

Designed 

compression and 

classification 

approach for EMG 

and ECG signals 

Unimodal stacked 

autoencoder with 

intra correlation 

Not mentioned Accuracy 

achieved 

78.1% 

van der Voort 

et al. (2017) 

MRI Classification 

approach for 1p/19q 

status in presumed 

low-grade gliomas 

Support vector 

machine 

Not mentioned 95% 

confidence 

interval for 

sensitivity 

and 

specificity 

Aydin et al. 

(2019) 

X-ray and 

medical report 

Indiana 

University and 

Alfred Hospital 

Classifier for 

multimodal medical 

data under a small 

dataset situation 

CNN-based 

classifier 

Chest disease Accuracy 

increased by 

4% to 7% 

compared to 

baseline 

models 
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Paper Modality Contribution 
Methodology and 

classifier 
Anatomy Remarks 

Lopez et al. 

(2020) 

X-ray and 

medical report 

Indiana 

University and 

Alfred Hospital 

Reducing data 

burden using 

multimodal learning 

Densenet121 model 

for image feature 

extraction and 

word2vec for 

textual features and 

fully connected 

DNN for 

classification 

Chest disease Multimodal 

classification 

showed 

better 

accuracy than 

unimodal 

Hilmizen et al. 

(2020) 

CXR and CT 

images 

Classification of 

COVID-19 disease 

VGG16 and ResNet 

model for image 

feature extraction 

and CNN-based 

classifier was used 

COVID-19 Significantly 

higher 

accuracy 

compared to 

baseline 

models 

Heidarivincheh 

et. al. (2021) 

(i) raw 

accelerometer 

signal 

(ii) silhouette 

images 

Classification of PD  Encoder-decoder-

based classification 

model 

Parkinson’s disease Precision of 

60% achieved 

by proposed 

model 

Qu & Xiao 

(2022) 

MRI image – 

RSNA MICCAI 

dataset 

Classification model 

for multimodal data 

using deep learning 

approach 

(i) Lite attention 

mechanism  

(ii) Recurrent 

neural network 

model 

Brain tumour 3% better 

accuracy than 

existing 

systems 

Yi et al. (2022) Fundus and 

grayscale images 

Multimodal 

classification of 

severity of glaucoma 

CNN-based 

classifier 

Glaucoma severity 97% accuracy 

by proposed 

model 

 

3.4 Multimodal medical data visualization 

Data visualization is the practice of visualizing extracted data acceptably and cleanly with graphical 

representation or graphs. The main objective of data visualization is to deliver data efficiently without 

any ambiguity or complexity. Data visualization generally consists of processing, evaluating and 

communicating the data. This section delineates data visualization for multimodal medical data using 

various algorithms, software or hardware components. Lavin et al. (2005) designed hardware to visualize 

4D cardiac data using motion-based segmentation, which produced significant performance. Data 

visualization can also be achieved using software such as EHR data multimodal analysis using 

chromatogram plots. For visualizing the essential data features, OpenCL, C++ and GUI toolkits are 

adopted; iterative visualization and MVC pattern are some well-noticed algorithms that can be used 

(Manssour et al., 2000). For MRI, SPECT, CAT and PET data visualization, 2D or 3D image visualization 

is recommended, and it is tested using inertial moment 3D visualization as it gives a better view. In Joshi 

et al. (2010) radar plots are used to enhance the saturation and transfer function to visualize multimodal 

data of image-guided neurosurgery. Trend charts, timelines and data tables can also be practised to 

visualize EHR and clinical data (An et al., 2008). In Song et al. (2021), a quantitative analysis is performed 

by integrating the Grad-CAM visualization technique into a multimodal fusion framework applied to 

MRI and PET images for diagnosing Alzheimer's disease. Table 7 depicts a review of multimodal medical 

data visualization. 
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Table 7. Review of multimodal medical data visualization. 

Paper Modality Contribution Methodology  

Mealha et al. 

(1994) 

CT, SPECT Approach for 3D visualization for 

multimodal clinical data 

Raycaster philosophy 

Nunes et al. 

(1996) 

CAT, MRI, SPECT, PET Presented various technique for 

multimodal clinical data visualization 

2D integrated visualization-slice by 

slice representation. 

Semi 3D integrated visualization 

(one modality represented in 3D 

and other in 2D displayed as a cut 

plane). 

Manssour et 

al. (2000) 

MRI and PET Framework for medical data 

visualization 

• Registration 

• Segmentation  

• Visualization 

Levin et al. 

(2005) 

CT, MRI 3D visualization of multimodal cardiac 

data 

• Volume rendering  

• Interactive 4D motion 

segmentation 

An et al. 

(2008) 

EHR data Proposed a procedure for integrated 

visualization for EHR data 

• Numeric EHR data 

• Data table 

• Trend chart and timeline. 

Cooper et al. 

(2009) 

CT-scan, X-ray, MRI Designed a client interface for 

multimodal image analysis system 

• DojoFish tree-control 

• RadLex tree 

Joshi et al. 

(2010) 

MRI and CTA data Improvise multimodal visualizations 

for image-guided neurosurgery 

• Ambient illumination 

monitoring 

Weibel et al. 

(2013) 

EHR Data Proposed a technique for EHR data 

visualization 

• chromogram plots 

Kozlovszky 

et al. (2016) 

Sensor data Approach for multimodal biophysical 

data visualization 

• For single modality- 

generic numeric data 

visualization.  

• For multimodal data – 

graphical visualization 

with continuous modality 

Song et al. 

(2021) 

MRI, PET Proposed 3D Grad-CAM visualization 

technique 

• Class-specific heatmaps 

generated on disease 

contours  

 

4 Radiology Data Processing Case Study 

Over the years, medical imaging has inclined from clinical routine to progressive human psychology due 

to its vast application in disease prognosis. The revolution in medical imaging has changed the practice 

of disease diagnosis through imaging the human body with various electromagnetic waves. The image 

acquired from shorter and longer wavelengths generates multimodal images with unique characteristics. 

Radiology is a medical discipline which includes a wide variety of data obtained from heterogeneous 

sources. As a case study for multimodality in medical AI, we will review various existing works in the 

area of radiology data processing. 

This paper reviews state-of-the-art techniques in medical imaging across various modalities. The general 

image modalities in radiology include MRI, X-ray, ultrasound and computed tomography. X-ray imaging 

is a quick, low-cost and popular imaging technique of injecting iodinated contrast agents to the interested 

region in applications such as cardiovascular, mammography and abdominal imaging. Ultrasound 

imaging is a fast, non-invasive technique which uses the backscattering effect of acoustic pulses typically 

used in imaging arteries, blood flow, tissue stiffness, etc. The MR imaging technique applies a magnetic 
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field in a conjunction radio filter, which generates spatial resolution volumetric images. In practice, each 

of these imaging modalities has varied methodology and characteristics (Panayides et al., 2020). These 

modalities can be utilized with its associated radiology reports and structured lab data to predict diseases 

(Shetty & Mahale, 2022). Deshpande et al. (2018) came up with a supporting framework named the 

"integrated radiology image search engine" to improve search interpretation. The prime requirement of 

this approach is extracting relevant and meaningful information from the diverse data set, and it is 

summarised by combining pathology and radiology to give a better diagnosis. 

Many researchers have taken surveys on different radiology techniques. Some papers have surveyed CT 

dose level evaluation using five multi-slice systems (Waidi et al., 2011), and others on enhancing MRI 

resolution (Akcakaya et al., 2011). Overall, research into medical imaging has recently taken an increasing 

pace. Radiology has multimodal data consisting of radiology images and accessible text radiology reports. 

This section discusses different contemporary techniques for radiology data processing. We will delineate 

various approaches associated with radiology report processing, radiology image processing and data 

processing of multimodal radiology images with associated reports. 

4.1 Radiology report processing 

Radiology reports provide information supporting radiologists to envision disease and health conditions. 

Most radiology reports are free text; therefore, retrieving these unstructured data without a decent text 

mining technique is troublesome. Radiology free-text processing can be categorised into a rule-based 

approach (based on pattern matching) and a conventional ML-based method. Our previous work (Shetty 

et al., 2020) incorporated analysis of radiology reports in low data conditions using an improvised GloVe 

word embedding technique, a knowledge base and a deep learning framework. Many researchers practise 

text mining using information retrieval systems such as NeuRadIR, CBIR and MedLEE, which prove to 

be efficient. 

In our studies, we consider medical images of contrasting modalities such as CT, MRI and X-ray and every 

modality requires distinct functionalities and algorithms to work upon. Setting up a firm framework is 

mandatory to envision the narrative medical content. Maghsoodi et al. (2012) considered an automatic 

sentence classification from radiology reports. Based on three features including modality, literality and 

recommendation, annotating sentences into seven classes is the core methodology of the proposed work 

and post tags are used for relevant processing.  

The association rule can also be considered a favourable EHR data processing approach. Text weighted 

schemes such as inverse document frequency prove to be efficient weighted approval for text encoding 

from radiology reports (Alodadi, 2017). Converting frequent words into a feature vector using the bag-of-

word and fuzzy c-mean clustering algorithms is a noted approach. Identifying similar reports would be 

more accessible using this approach (Turkeli et al., 2017). Adopting a text analysis system is a suitable 

technique for further improvement in report mining. The MEDAT text analysis system employs annotated 

system index with propositions. This approach helps identify identical sentences with the same symbols 

(Friedlin et al., 2011). In recent work, Niu et al. (2021) and Momoki et al. (2022) have illustrated different 

approaches to labelling radiology reports. In Niu et al. (2021), a labelled dependent attention model is 

designed with the idea of jointly embedding labels and words, where both the modules will learn from 

the word weight. In Momoki et al. (2022), an image classifier is built using a pseudo label from a radiology 

report. Both techniques prove to be efficient compared to the existing methods. Liu et al. (2022b) used the 

N-gram technique to extract word vectors from liver radiological reports with colorectal cancer and 

ensemble learning classification algorithms including random forest (RF), logistic regression (LR), etc., 

were proposed for disease categorization. Table 8 depicts a summary of radiology report data processing. 
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Table 8. Summary of radiology report data processing. 

Paper Modality Contribution Methodology Outcome 

Friedlin et al. 

(2011) 

RoentGen 

corpus dataset 

(radiology 

report) 

 

Text analytic 

system with 

annotated semantic 

index 

i. Parsing [word→keybased index, 

sentence→semantic index]  

ii. Segmentation  

iii. Semantic annotation 

60% of corpus 

annotated 

Maghsoodi 

et al. (2012) 

Breast cancer 

radiology report 

Automated 

sentence 

classification for 

breast cancer report 

i. Decide laterality and modality using 

seven classes 

ii. Feature extraction  

iii. Four different feature set extracted 

[stm, domain knowledge list, 

MedLEE, stm+DKL+MedLEE] 

iv. Konstanz information miner for 

classification and evaluation 

coreference resolution  

92% to 98% accuracy 

for different classes 

Turkeli et al. 

(2017) 

457 MR and CT 

radiology report 

from thorax and 

abdomen 

Identify similar 

radiology report 

i. Feature extraction-Bag of words 

representation of vocabulary by 

frequency 

ii. Clustering method [Fuzzy C-mean 

algorithm, K-mean clustering]  

iii. Training  

iv. Evaluation 

Similarity rate 

77.46% 

Alodadi  

(2017) 

Radiology note 

from EHR 

Automated system 

to read radiology 

notes 

i. Concept-based representation- 

association rule 

ii. Extract medical terminology [bag of 

words concept]  

iii. Data transformation 

v. Apply weight schema [TF, IDF] 

calculate interestingness criteria 

generate candidate rule from apriori 

algorithm  

Not mentioned 

Shetty et al. 

(2020) 

Indiana 

University chest 

X-ray reports 

Disease 

classification from 

radiology reports 

Knowledge-based text modelling is 

applied for text feature extraction 

followed by DNN for classification 

90% accuracy by 

proposed model and 

obtained superior 

results compared to 

baseline models 

Liu et al. 

(2022b) 

Radiology 

reports 

Colorectal cancer 

classification from 

liver radiological 

reports.  

(i) N-grams word embedding technique 

(ii) Ensemble classifier 

Proposed model 

achieved 96% 

accuracy 

4.2 Radiology report data and image processing 

We outlined a detailed literature review on radiology report data analysis in the previous section. We 

observed that researchers practising radiology data analysis have claimed that radiology report analysis 

with imaging modality produces better accuracy. In the 1990s, radiologists used video for data analysis 

using the stream of behaviour chronicles technique (Ramey et al., 1991), which was proven to be efficient 

in the early days. Gradually, radiology data analysis has taken a new direction towards text and image 

data analysis (Zhu et al., 2022). To handle text and image feature analysis, a match report approach using 

a knowledge base was developed. The medical finding extractor with SVM classifiers have been utilized 

for text prediction and standard image feature extraction techniques have been used for image analysis 

(Bodile & Kshirsagar, 2015). Pre-processing of unstructured reports using basic NLP techniques such as 

lemmatization, stemming, stop word removal, etc., has significantly improved the performance of the 
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overall disease classification tasks (Gong et al., 2008; Wang et al., 2020). According to the survey, a full 3D 

image is difficult to process. Authors demonstrated that using a primary form or image slice with text 

scalar and vector labels simplifies the task. An unsupervised LDA approach was recommended for 

generating semantic tags in text, and DCNN was considered for mapping generated labels to images (Shin 

et al., 2015). 

There has been significant research in the field of cross-modal retrieval of radiology reports from given 

input images. Alfarghaly et al. (2021) presented a cross-modal retrieval task to extract radiology reports 

from CXR images collected from the IU dataset. The CheXNet model was proposed to extract image 

features and the word2vec model was used for word embedding features. Ramirez-Alonso et al. (2022) 

reviewed various existing research on radiology report generation techniques using DenseNet, ResNet 

and VGG models with long and short-term memories (LSTM) and attention models. Sirshar et al. (2022) 

proposed attention-based report generation, which uses an encoder-decoder model containing VGG 16 as 

the encoder and LSTM as the decoder. The proposed model has achieved a bilingual evaluation 

understudy (BLEU) score ranging from 0.155 to 0.58. Table 9 presents a summary of multimodal radiology 

report data and image processing. 

Table 9. Summary of radiology report data and image processing. 

Paper Modality Contribution Methodology Outcome 

Shin et al. 

(2015) 

780k radiology report 

stored in PACS 

(CT/MRI) 

Deep learning 

system for 

text/images 

Text processing Image processing Rate of 

predicted 

disease is 

0.56 for 

recall at k=1 

Caffe framework 

i. Sentence 

tokenization 

ii. Word/number 

matching  

iii. Stemming 

iv. Rule-based 

information 

extraction 

i. NLP to extract key 

image  

ii. Image 

categorization using 

LDA 

iii. Image to text 

description [vector 

modelling] 

iv.  Image to word 

description [deep 

CNN regression] 

Bodile & 

Kshirsagar 

(2015) 

Radiology report 

[MRI and abdominal] 

Statistical 

machine 

translation 

approach for 

the radiology 

report 

Text processing Image processing Not 

mentioned 
i. Statistical 

machine 

translation 

ii. Text, hypertext 

categorization 

[SVM] 

iii. NLP technique 

[stemming, term 

mapping, 

semantic rules] 

i. Image feature 

extraction (colour 

feature extraction, 

edge detection, text 

extraction) 

Gong et al. 

(2008) 

Brain CT radiology 

report  

Mining data 

from the 

radiology 

report 

Text processing Image processing Similarity 

rate is 

77.46% i. Brain CT 

radiology 

ii. Term mapper 

iii. Parser 

iv. Finding 

extractor 

v. Report 

constructor 

i. Image registration  

ii. Abnormality area 

selection 

iii. Contour generation 

and segmentation 

iv. Feature extraction 
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Paper Modality Contribution Methodology Outcome 

Wang et al. 

(2020) 

Functional MRI Multisite 

adaption 

framework for 

Austin 

spectrum 

i. Data preprocessing [2 baseline method]  

ii. Classification using SVM 

iii. Low-rank representation using SVM/KNN 

robust domain adaption 

iv. Geodesic flow kernel 

SVM and 

KNN 

combining 

gives better 

accuracy of 

71.88% to 

73.44% 

Alfarghaly 

et al. (2021) 

Chest X-ray and 

radiology reports 

Radiology 

report 

generation 

i. Word2Vec for report feature extraction. 

ii. CheXnet for image feature extraction. 

iii. LSTM for report generation 

Produced 

significantly 

higher 

BLEU score 

Sirshar et al. 

(2022) 

Chest X-ray and 

radiology reports 

Radiology 

report 

generation 

i. Proposed model uses CNN and LSTM for 

report generation. 

ii. Encoder used : VGG16 (CNN); decoder used 

: LSTM, followed by attention 

Proposed 

model 

achieved 

BLEU score 

ranging 

from 0.155 

to 0.58 

4.3 Radiology image processing 

The current advancement in technology and the digitised world has paved the way for image processing 

and computer vision in the medical domain. The massive growth of technology and innovation has made 

data acquisition so easy and cost-reliable that capturing high-resolution images has become a simple step 

(Khoo et al., 1997). According to a survey of enhancing radiology image quality to 3D resolution (Danzhou 

et al., 2008), solving integration problems and minimising high-quality issues (Deshpande et al., 2018) has 

become a practical research interest for radiology image processing. Many researchers have presented 

various approaches to radiology image processing. In Danzhou et al. (2008), the index assignment 

approach, enhancing only the ROI slice or bucket are the ideas described to reduce time demands. In 

Philipsen et al. (2015), processing images from multiple sources, including image enhancement, is 

presented. Normalising the ideas by decomposing them into different bands has proven to be a better 

solution and technique;  e.g., the average Jaccard index overlap is used for segmentation. 

However, dataset complexity and size play a significant role in radiology data processing. Two-class 

classifiers, known as linear and non-linear classifiers, can simplify the problem, as discussed in Chen et 

al. (2010). Criteria such as region mean, region variance, weighted least square and inverse filtering are 

calculated to estimate unbiased parameters in Muzic et al. (1998). Implementation of the Bayesian least 

square and Gaussian scale mixture approaches to reduce blurring and other acquisition artefacts in MRI 

modality is discussed (Megalooikonomou & Kontos, 2007; Chen et al., 2010).  

Modern machine learning algorithms have a colossal potential for improving the segmentation approach. 

These approaches consider complete meta-features for evaluation, classification and solution of properties 

such as confidence connectedness of intra-region intensity to increase the robustness. Setio et al. (2016) 

proposed a framework for pulmonary nodule detection. Candidate detection, patch extraction and false-

positive reaction were the techniques addressed. In Jacenkow et al. (2022), image classification is achieved 

based on the indication field. The application of self-gating is observed in Rosenzweig et. al. (2020). 

In Chun-An et al. (2014), mutual information and practical least square regression are implemented to 

solve the voxel classification problem for an fMRI dataset, and the accuracy of the results obtained was 

satisfactory. Using a convolutional neural network to classify radiology images can improve data accuracy 

up to 89.5%. The ResNet-based neural network model was designed to classify breast cancer effectively. 

The model utilizes the large data cohort, including 10,00,000 breast-cancer screening mammography 
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exams with breast-level and pixel-level labels. The proposed hybrid model containing both neural 

networks and radiologists provided superior results compared to the individual outcomes (Wu et al., 

2020). Shetty and Mahale (2022) proposed the MS-CheXNet model using a depth-wise convolutional 

neural network with a multi-channel dilation layer to extract and learn imaging features from radiology 

CXR. Table 10 presents a summary of radiology image processing. 

Table 10. Summary of radiology report image processing. 

Paper Modality Contribution Methodology Outcome 

Muzic et al. (1998) PET data Methodology for 

quantification of 

the region to 

reduce 

degradation 

i. Using Huesman’s 

Region of Interest 

(ROI) analysis method, 

image pixels are 

reconstructed using 

projection filter 

ii. Calculate region 

variance 

iii. Scaling 

iv. Inverse filter 

Small error of 

4% in ROI for 

myocardium 

with 10.5 cm 

thick 

Chen et al. (2001) Ultrasound images Proposed hybrid 

two-class 

classifier suits 

datasets of all 

sizes 

i. Two-class classification 

[hybrid linear/ non-

linear classifier, 

binormal ROC theory, 

Fisher’s linear 

discriminant function] 

Not mentioned 

Megalooikonomou 

& Kontos (2007) 

fMRI dataset for 

Alzheimer’s disease 

Identifies similar 

radiology report 

i. Divide image into 

smaller sub-region 

dynamic progressive 

partition till ROI found  

ii. test significance  such 

as T-test or rank-sum 

test  

iii. P-value threshold to 

determine 

discriminative power 

of statistical image 

Accuracy of 

DDRP test 94% 

Danzhou et al. 

(2008) 

MRI A framework for 

processing 3D the 

high-resolution 

for the internet-

based application 

i. Partition of high 

resolution 3D image 

into bucket  

ii. Removing duplicate 

buckets 

iii. Compress each bucket 

independently 

iv. Store the compressed 

buckets in a Hilbert 

curve on disk 

Processing time 

of new 

technique is 

twice faster 

than the old 

Akcakaya et al. 

(2011) 

MRI Reconstruction 

method to 

improvise 

blurring and 

reconstruction 

artifacts  

i. MRI acquired in two 

different subject 

cohorts 

ii. Construction technique 

[CS threshold, BLS-

GSM thresholding, 

minimization 

thresholding]  

iv. Soaptool bubble 

framework with 

At lower RSNR 

lower MSE 
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Paper Modality Contribution Methodology Outcome 

Deriche algorithm on 

RCA for evaluation 

Chun-An et al. 

(2014) 

fMRI A framework to 

select robust 

feature using 

partial least 

square regression 

and mutual 

information 

i. Extract weight from 

fMRI using GLM 

ii. Generate feature 

importance 

iii. Index apply voxel 

select strategy (MI and 

PLS)  

iii. Classify testing 

instance based on 

voxel selected 

Improves 

overall 

classification 

performance 

Zwettler & 

Backfrieder (2015) 

CT and MRI Improvise 

segmentation in 

medical dataset 

using a 

classification 

approach 

i. Calculate and analyse 

feature from all region 

ii. Assign class and label 

to each feature based 

on Gaussian shape, 

normal distribution 

and similarity 

iii. Multivariate feature 

analysis using wavelet 

transform 

iv. Local meta feature 

v. Multivariate similarity 

calculation 

Not mentioned 

 

Philipsen et al. 

(2015) 

Six datasets with 100 

posterior-anterior CXR 

A framework to 

normalize the 

image acquired 

from a varied 

source 

i. Localised energy-based 

image normalization 

using Gaussian kernel  

ii. CXR normalization 

(ROI is detected), lung 

segmentation 

algorithm 

Average area 

under the 

receiver 

operating curve 

increased from 

0.72±0.14 and 

0.79±0.06 

Setio et al. (2016) LIDC-IDRI dataset CAD system for 

pulmonary 

module detection 

using multi-view 

convolution 

network 

i. Extract 2D patches of 

the volumetric object 

using nine views 

ii. Candidate detection 

iii. Patch extraction 

iv. False-positive 

reduction 

v. Fusion method 

(committee fusion, late 

fusion, mixed fusion) 

vi. Training 

vii. Evaluation 

Combining 

multiple 

candidate 

detection 

algorithm 

boosts 

sensitivity from 

85.7% to 93.3% 

Rosenzweig (2020) Cardiac MRI Novel self-gating 

method to acquire 

data 

i. Correction of AC data 

ii. Dimensionality 

reduction method 

(principal component 

analysis, SSA-FARY 

iii. Binning 

Not mentioned 

Wu et al. (2020) 1,000,000 mammogram 

images 

A framework for 

breast cancer 

screening exam 

classification 

i. Assign label for images 

ii. Classification using 

multitask learning 

framework 

iv. CNN based on ResNet 

architecture 

89.5% accuracy 

in predicting 

presence of 

cancer 
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Paper Modality Contribution Methodology Outcome 

Shetty & Mahale 

(2022) 

Chest X-ray images 

from IU dataset and 

data collected from 

private hospital 

Multi-channel 

framework for 

predicting 

pulmonary 

diseases from 

CXR 

Multi-channel dilation layer 

with depth-wise separable CNN 

for image feature extraction 

Better accuracy 

compared to 

state-of-the-art 

DL models 

5 Discussion and Conclusion 

This paper reviewed the existing state-of-the-art methods of medical multimodal data analysis. It 

discussed various multimodal health analysis techniques and research work on radiology data 

processing. Research into multimodal data has taken different views. Some applications work on 

clickstream data, eye tracking, video and EEG to check learning performance (Giannakos et al., 2019) and 

some on video event detection using temporal analysis and multimodal data mining methods (Min Chen 

et al., 2006; Richard et al., 2022). Various application-oriented works have also been observed based on 

multimodal medical data (Mieloszyk et al., 2017) for fixing appointments in hospitals, etc.  

In the medical data analysis domain, AI contributes very much to enhance algorithm accuracy 

(Baltrušaitis et al., 2019). We can say that the use of AI and mainly CNN is changing the research direction 

of medical data analysis. We outlined a comparative study for each data analysis approach. The main 

conclusions related to current procedures and algorithms observed during the survey are stated in Table 

11. 

Table 11. Main conclusions related to current procedures and algorithms. 

No. Conclusions 

1.  It is noticed that in multimodal health data classification, data volume is a significant problem. 

Sometimes data sets are extensive, and features are fewer or a small data group with many 

elements. The execution speed of the algorithm is affected by this issue.  

2.  In most of the approaches, only essential features are picked up for classification, which increases 

the chance of lowering the accuracy and precision value of the designed technique. 

3.  A notable observation is that most of the designed techniques prefer the late fusion method for 

multimodal classification. This technique reduces the execution time and increases the speed, but 

the precision value is affected. 

4.  Image processing techniques and algorithms are proven to enhance multimodal image quality 

and features. In current multimodal medical data visualization, significantly lower usage of image 

processing algorithms or tools is observed.  

5.  The current visualization technique is hardware-based with the requirement for a graphics card. 

Most graphics cards cost more and have higher system specifications, which are challenging to 

maintain and not cost-efficient. 

6.  In multimodal data analysis, multimodal data fusion is a challenging task to achieve. It is observed 

that most of the fusion process is carried out using a data-driven approach, and handling data of 

low quality is problematic. 

7.  In multimodal fusion, it is observed that most of the fusion techniques such as early, late and joint 

fusion rely on straightforward concatenation techniques to fuse heterogenous features. A major 

drawback of this approach is missing intermodal interaction during the fusion process. 

8.  It is seen that fusing unstructured clinical notes, reports or structured lab records with radiology 

images has significantly improved the performance compared to unimodal image analysis. 

9.  Very limited work is performed on various medical data such as speech, text, image and video. It 

is noticed that the algorithm efficiency for speech-text fusion or text-text fusion is lower compared 

to multimodal image fusion. 
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No. Conclusions 

10.  Multimodal data benchmarking and publishing of the cohort would significantly improve 

multimodal medical research as the heterogeneous open source datasets currently available are 

scarce in numbers or they are restricted to private organizations. 

 

As a case study for multimodal medical AI, we reviewed various research work in the radiology domain. 

We surveyed papers on unimodal radiology report analysis, image analysis and multimodal radiology 

image and report analysis. The major limitation observed in radiology data processing is that minimal 

work on data analysis using radiology text and images is carried out. Usage of unimodal radiology reports 

or images turned out to be less effective compared to multimodal report and image analysis. Based on the 

study, a conclusion can be drawn that considering radiology reports and images followed by late or early 

fusion can give remarkable efficiency. Fusion techniques with intermodal interaction between radiology 

images and reports can be addressed. The cross-modal retrieval of report generation has achieved a BLEU 

score up to 0.50–0.60. The unstructured nature of the radiology report poses a severe challenge with 

respect to the performance of the cross-modal retrieval. Hence, there is a need to develop a practical 

framework to generate accurate radiology reports. 
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