7 PRAGUE UNIVERSITY Acta Informatica Pragensia
\SE/ OF ECONOMICS 2023, Volume 12, Issue 2, pp. 379-399

AND BUSINESS https://doi.org/10.18267/].aip.223

Article Open Access

ck-means and fck-means: Two Deterministic Initialization
Procedures for k-means Algorithm Using a Modified
Crowding Distance

Abdesslem Layeb

LISIA Laboratory, NTIC Faculty, University of Constantine 2, Constantine, Algeria

Corresponding author: Abdesslem Layeb (abdesslem.layeb@univ-constantine2.dz)

Abstract

This paper presents two novel deterministic initialization procedures for k-means clustering based on
a modified crowding distance. The procedures, named ck-means and fck-means, use more crowded
points as initial centroids. Experimental studies on multiple datasets demonstrate that the proposed
approach outperforms k-means and k-means++ in terms of clustering accuracy. The effectiveness
of ck-means and fck-means is attributed to their ability to select better initial centroids based on the
modified crowding distance. Overall, the proposed approach provides a promising alternative for
improving k-means clustering.

Keywords

Clustering; k-means; k-means++; Initialization; Crowding distance; Heuristics.

Citation: Layeb, A. (2023). ck-means and fck-means: Two Deterministic Initialization Procedures for k-means Algorithm Using a Modified
Crowding Distance. Acta Informatica Pragensia, 12(2), 379-399. https://doi.org/10.18267/j.aip.223

Academic Editor: Stanislav Vojir, Prague University of Economics and Business, Czech Republic

Copyright: © 2023 by the author(s). Licensee Prague University of Economics and Business, Czech Republic.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution License (CC BY 4.0).

https://doi.org/10.18267/j.aip.223
https://www.vse.cz/english/
https://orcid.org/0000-0002-6553-8253

Acta Informatica Pragensia Volume 12, 2023

1 Introduction

k-means is a popular clustering algorithm that divides a dataset into k clusters based on similarity of data
points. The algorithm is efficient and easy to implement but has some limitations, such as sensitivity to
initial cluster centres, local optima and assumptions about cluster shapes. The algorithm proceeds by
initializing k centroids, assigning data points to the nearest centroid, computing the mean of the data
points in each cluster, and repeating until convergence (Ikotun et al., 2023; Hastie et al., 2009)

Despite its advantages, k-means clustering has some important considerations. The initial placement of
centroids can affect the final clustering result, so multiple runs with different initializations may be
necessary. The choice of "k" is also crucial and can be determined by domain knowledge or using
techniques such as silhouette analysis or the elbow method. k-means may not always converge to the
global optimal solution and is sensitive to outliers, which can lead to biased clustering results. Scaling of
features is also necessary to avoid biased clustering results.

The initialization of k-means is a well-known challenge in the clustering community. In this paper, we
address this challenge by proposing two novel initialization procedures for k-means: ck-means and
fck-means. The ck-means procedure uses a modified crowding distance approach, inspired by the multi-
objective optimization literature (Deb et al., 2002), to select the most representative initial centroids. The
fck-means procedure, on the other hand, selects the furthest crowded points as initial centroids. Both
procedures aim to provide a good deterministic initialization procedure that can improve the clustering
results of k-means.

ck-means and fck-means are designed to address the limitations of standard initialization methods, such
as the sensitivity to the initial placement of centroids and the assumption of spherical clusters with equal
variance. The experimental results presented in Section 4 demonstrate the superiority of our proposed
procedures over standard initialization methods, such as k-means++ and random initialization, in terms
of clustering accuracy and stability.

Our proposed procedures have potential applications in various fields, such as image and text clustering,
where the performance of k-means depends heavily on the initialization of centroids. Section 2 provides
an overview of existing k-means initialization procedures. Section 3 presents a detailed description of the
proposed initialization procedures and their implementation.

2 k-means algorithm

The k-means algorithm is a popular and widely used clustering algorithm that aims to divide a given
dataset into k distinct clusters. It is an iterative algorithm that assigns each data point to the nearest
centroid based on their distance and then updates the centroids based on the newly formed clusters. The
algorithm searches for the minimum within-cluster sum of squares, also known as the inertia or distortion.
The algorithm proceeds as follows:

1. Initialize k centroids randomly or using a more sophisticated initialization method, such as
k-means++ (Arthur & Vassilvitskii, 2007).

2. Assign each data point to the nearest centroid based on a distance metric, such as Euclidean
distance.

3. Recompute the centroids of the clusters by taking the mean of all data points assigned to each
cluster. This step moves the centroids to the new centre of their respective clusters.

4. Repeat steps 2 and 3 until convergence, which is usually defined as the point when the positions
of the centroids no longer change significantly.

https://doi.org/10.18267/j.aip.223 380

Acta Informatica Pragensia Volume 12, 2023

The aim of k-means is to minimize the within-cluster sum of squares (WCSS):

K Ny
14
Wwess = Z(xi,- —me)?,
=
= (X:jzik)

where K is the number of clusters, nk is the number of observations of the kkt cluster and p is the number
of features in a given dataset; xij is the value of the jt" feature of the i*" datapoint, x: is the vector representing
the i datapoint; m; : specifies the location of the k" centroid.

The k-means algorithm is efficient and easy to implement but has some limitations, such as sensitivity to
initialization, local optima and assumptions about cluster shapes. To address these limitations, several
improvements have been proposed, such as advanced initialization methods, variations of the k-means
algorithm, and integration with other clustering algorithms (Celebi et al., 2013; Liu et al., 2015; Hamerly
& Elkan, 2003). One of the most critical challenges of k-means is the initialization of centroids, which can
significantly affect the final clustering result. k-means++ is a popular initialization method that
selects initial centroids that are far apart from each other and can improve the convergence rate of the
algorithm and quality of the final clustering result (Arthur & Vassilvitskii, 2007).

Another critical limitation of k-means is that k-means works well with clusters having spherical shapes
with equal variance, which may not hold for datasets with irregular shapes or different variances. To
overcome this limitation, several variations of k-means have been proposed, such as fuzzy k-
means, spectral clustering and hierarchical clustering, which can handle more complex data structures
and cluster shapes (Xu & Wunsch, 2005; Franti & Sieranoja, 2019).

In recent years, deep learning techniques, such as autoencoders and neural networks, have also been used
to learn a better initialization for k-means. These methods can capture more complex
relationships between data points and provide a more robust initialization procedure than traditional
methods (Xie et al., 2016; Yang et al., 2017).

3 Initialization k-means methods

k-means is a popular clustering algorithm used in machine learning and data analysis. The algorithm
requires the initialization of k centroids before it can partition the data points into k clusters. The quality
of the initialization can significantly affect the performance and final clustering results of the algorithm.
In this section, we will discuss several initialization methods for the k-means clustering algorithm.

One of the most popular initialization methods is k-means++, which was proposed by Arthur and
Vassilvitskii in 2007. The k-means++ algorithm selects the first centroid randomly from the data points,
and then selects the next centroids with a probability proportional to the distance from the data point to
the nearest existing centroid. This approach tends to choose centroids that are well-spaced and can lead
to better clustering results.

Another initialization method is the MaxMin method (Celebi et al., 2013), which selects the first centroid
randomly from the data points, and then selects the subsequent centroids by choosing the data point with
the maximum distance to the nearest previously selected centroid. This approach can also lead to well-
spaced centroids, but it can be sensitive to outliers.

The PCA part method (Liu et al., 2015) starts with a single cluster containing all data points and completes
the process in k-1 steps. In each step, it selects the cluster with the largest partial sum of squared Euclidean
distances and divides it into two separate sub-clusters using a hyperplane that passes through the cluster
centroid and is orthogonal to the direction of the principal eigenvector of the covariance matrix.

https://doi.org/10.18267/j.aip.223 381

Acta Informatica Pragensia Volume 12, 2023

The global k-means (GKM) (Hamerly & Elkan, 2003) method starts with two centres and adds a centre
each time by considering each data point as a candidate for the next centre. The data point that leads to
the minimum value of the objective function, which is the sum of squared Euclidean distances to the
closest centre, is selected as the next centre. The modified GKM (MGKM) method proposes a different
way to minimize an auxiliary cluster function to select the starting point of the next centre. The fast MGKM
(FMGKM) method exploits information gathered in previous iterations of the incremental algorithm to
decrease memory usage and increase speed.

To tackle initialization problems of the k-means algorithm, the MinMax (Tzortzis et al., 2014) version of k-
means changes the objective function and uses maximum intra-cluster variance (emax) as a potential
objective function to be minimized. The MinMax assigns a weight to each cluster, such that clusters with
larger intra-cluster variance are allocated higher weights, and these weights are learned automatically.
This approach is less affected by initialization and can discover high-quality solutions, even with bad
initial centres.

Kumar & Kumar (2017) presented a kernel density-based method to compute the centroids for the k-means
algorithm. The idea is to select an initial point from the denser region because they truly replicate the
property of the complete dataset. Subsequently, the outliers are not selected as an initial seed value.

The tri-level k-means (TKM) (Yu et al., 2018) method starts with a coarse clustering of the data points into
m clusters using k-means++, where m is smaller than k. Then, it selects k clusters from the m clusters based
on their sizes and distances; and assigns the remaining data points to the nearest selected cluster. Finally,
it applies k-means++ to each selected cluster to obtain finer sub-clusters. The advantage of TKM is that it
can reduce the computational complexity and memory requirement of k-means by dividing the data into
smaller subsets. The disadvantage is that it may lose some information in the coarse clustering step.

The bi-layer k-means (BKM) (Yu et al., 2018) method is another improved k-means algorithm that
addresses the problem of sensitivity to the initial cluster centers. It works by clustering the data into two
layers: rough and fine. The rough layer clustering is performed using a smaller number of clusters (m)
than the desired number of clusters (k). The fine layer clustering is performed on the rough layer clusters
using the desired number of clusters (k). The advantage of BKM is that it can preserve more information
than TKM by applying k-means++ to each coarse cluster. The disadvantage is that it requires more
computations and memory than TKM.

The entropy-based initialization (EBI) (Chowdhury et al., 2021) method starts with a random selection of
k data points as the initial centroids. Then, it computes the entropy of each data point based on its distance
to the centroids and assigns it to the cluster with the minimum entropy. Next, it updates the centroids by
taking the mean of all the data points assigned to each cluster. It repeats these steps until no data point
changes its cluster assignment or a maximum number of iterations is reached. The advantage of EBI is that
it can handle clusters of different sizes and densities by using entropy as a measure of similarity. The
disadvantage is that it may be sensitive to outliers.

4 Presentation of ck-means and fck-means

4.1 Crowding distance

Crowding distance is a popular multi-objective optimization technique that measures the density of non-
dominated solutions within a particular region of the objective space. The primary purpose of this
technique is to maintain diversity in the population of solutions, preventing them from clustering around
a particular region.

We adapt the concept of crowding distance as a criterion for selecting the most representative centroids
in the k-means algorithm. In this adaptation, each data point represents a solution, and each feature

https://doi.org/10.18267/j.aip.223 382

Acta Informatica Pragensia Volume 12, 2023

corresponds to an objective function. The rationale behind this initialization procedure is to choose the
densest (most crowded) points as the initial centroids for k-means clustering.

The crowding distance for k-means works by calculating the average side length of the rectangle formed
by the neighbouring points for each point. The crowding distance is the sum of the average side lengths
in all the features. In general, the points with the lowest crowding distances are considered the most
representative and are preferred over other points as initial centroids. Finally, the crowding distance of
the points with the lowest and highest feature values is assumed to be infinite.

To illustrate the concept of crowding distance, Figure 1 can be used. The concept can be visualized using
a scatter plot of points in a two-dimensional feature space. Each data point x; is represented by a point in
the plot. The crowding distance is calculated for each point based on its neighbouring points. The
neighbouring points can be defined using a distance metric, such as Euclidean distance, where the closest
point is considered a neighbour. To compute the crowding distance of each point xi of a given feature j, all
the points are sorted in ascending order. The crowding distance of each point x is calculated by averaging
the side lengths of the rectangles formed by the neighbouring points xi1and xi adjacent to it.

dj(x;) = X(41) — X(i-1)

This value represents the crowding distance of the point xifor the feature j. As can be seen from Algorithm
1, the points in the dense regions have small crowding distances, indicating that they are crowded, while
those in the sparse regions have large crowding distances, indicating that they are more diverse. The
pseudo-code of the crowding distance for k-means initialization is given in Algorithm 1.

By quantifying the crowding distance, we gain insights into the density of points within the feature space,
thereby identifying crowded regions. This information aids in selecting the most representative points,
which can be used as initial centroids in clustering algorithms such as k-means.

Crowding distance

7
6 o
o

5 o
(7]
K
3
4 o
: L Xi+1
53 m’“
®
9 o

2 Xi-1

1

0

0 1 2 3 4 5 6 7

Feature 2 values

Figure 1. Crowding distance.

https://doi.org/10.18267/j.aip.223 383

Acta Informatica Pragensia Volume 12, 2023

Input:
A set of data points S with M features
The maximum and minimum values of each feature
Output:
Crowding distances for each point in S
Algorithm:
For each point in S, initialize its crowding distance to 0.
For each feature j from 1 to M:

a. Sort the points in S according to their feature j values.
b. Set the crowding distance of the points with the lowest and highest feature
values to infinity.
c. For each point xi with feature value between the lowest and highest:
e Calculate the distance between xi and its two neighbouring solutions in
feature j dimension.
e Add the average of the two distances to the crowding distance of xi.
Return the crowding distances for each point in S.

Algorithm 1. Crowding distance computation.

Mathematically, crowding distance is computed as follows:

M
1 fj(xi+1) - fj(xi—1)
di(x;) = —~ E -
(x) Mj=1 fjmax _ jmm

Where:

e di(xi) is the crowding distance of the point xi;

e M is the number of objectives;

e fi(xi) is the value of the feature j for the point x;;

e fi"™ and fjminare the maximum and minimum values of the feature j in all the data points; and
e xiiand xii1are the neighbouring points of xi in the feature j.

e The crowding distance of the extreme points is set as

dl(Xl) =00, dN(XN)= e}
Where:

e di(x1) is the crowding distance of the first sorting element;
e dn(xn) is the crowding distance of the last sorting element; and
e N is the number of points in the dataset.

4.2 Modified crowding distances

The traditional method for computing crowding distances involves setting the distance values of the two
extreme points to infinity, which can lead to biased results. To address this issue and obtain more accurate
results, we modify the method in two ways. Firstly, we set the distance values of the extreme points to M
times the maximum value of the point, where M is the number of features. Additionally, we introduce

https://doi.org/10.18267/j.aip.223 384

Acta Informatica Pragensia Volume 12, 2023

two artificial points of data: the nadir point and the ideal point. The nadir point represents the minimum
values across all features, while the ideal point represents the maximum values across all features. These
artificial points provide reference values for the crowding distance calculation and help establish a more
balanced and comprehensive assessment of point density within the dataset. Finally, the term f*® — f"
is deleted to accelerate the distance computation. The modified crowding distance is computed as follows:

di(x1) = M * Max(f™)
Ayi+2(Xn42) = M * Max(f™)

1 M
diCx) = 37) fi (i) = fiGein) £ = 2N + 1
=1

4.3 Deterministic k-means initialization by crowding distance

In this work, we propose two new deterministic initialization procedures for clustering algorithms, based
on the modified crowding. In the first one, called ck-means, the initial centroids are selected as follows:

1. Compute the crowding distance of all points.
2. Sort the distance in ascending order from the most crowded point to the least crowded point.
3. Select the first k points as centroids.

The motivation behind incorporating crowding distance into clustering algorithms is rooted in the
observation that densely populated areas often correspond to clusters of similar data points. By identifying
the most crowded points, which tend to lie at the core of these clusters, we gain insights into the
underlying structure of the data and can effectively group similar points together. This concept is like the
density-based clustering algorithm DBSCAN, which identifies clusters based on regions of high density
in the data space. In both cases, the idea is to identify regions of the data space that are densely populated
and use these regions as a basis for clustering or grouping similar solutions.

Utilizing crowding distance to identify the most crowded points offers several advantages. Firstly, it helps
locate the core of each cluster, enabling a better understanding of the clustering structure of the data.
Additionally, by ensuring that each cluster is well-separated from others, the crowding distance aids in
improving the quality of the clustering results. This, in turn, enhances the interpretability and usefulness
of the clusters for subsequent analysis tasks.

On the other hand, the fck-means algorithm is an enhancement of the ck-means algorithm, which uses the
concept of furthest crowded points (FCPs) to initialize the centroids for the clustering process. The FCPs
are selected based on a criterion that considers both the distance between points and their crowding
distance. The main advantage of fck-means is that it ensures that the densest points in the feature space
are far from each other, which can improve the quality of the resulting clusters and prevent the algorithm
from converging to suboptimal solutions. The basic outline of the fck-means procedure is as follows:

Compute the crowding distance for each sample in the dataset.

Sort the points in descending order of their crowding distance.

Select the first point as the initial centroid.

For each subsequent point, compute the ratio of its distance to the current centroid and its
crowding distance.

Sort the remaining points in descending order of this ratio.

Select the point with the highest ratio as the next centroid.

7. Repeat steps 4-6 until all centroids have been selected.

= LN

AN

https://doi.org/10.18267/j.aip.223 385

Acta Informatica Pragensia Volume 12, 2023

By using the FCPs as initial centroids, the fck-means algorithm is able to better capture the underlying
structure of the data and produce more accurate and interpretable clustering results. Finally, we propose
a random initialization version of fck-means, called rck-means (randomized fck-means). In this algorithm,
the next centroid is selected randomly according to the probability of the distance-crowding ratio.

5 Experimental results

In this study, we utilized MATLAB Online 2023 to implement the suggested initialization procedures. We
assessed their effectiveness by conducting evaluations on a total of 37 datasets, comprising both real and
artificial datasets. These datasets encompass diverse data types and characteristics, with a comprehensive
representation of 17 real datasets and 20 artificial ones. Table 1 presents extensive details about each
dataset, including information such as data distribution, number of clusters and other pertinent attributes.
Standardization is used to normalize the given dataset. To assess the effectiveness of the proposed
procedures, we compared them with several popular initialization methods, such as k-means with random
initialization, k-means++ MaxMinKmeans with MaxMin initialization, and MinMaxKmeans based on
MinMax initialization. We used various evaluation metrics to measure the quality and robustness of the
clustering results obtained by each initialization procedure for k-means clustering (Faridi et al., 2018;
Maulik & Bandyopadhyay, 2002). These metrics include:

e Inertia score (IS): The inertia score measures the sum of squared distances between data points and
their assigned centroids within a cluster. It quantifies how compact the clusters are and serves as
a measure of clustering quality. A lower inertia score indicates better clustering, as it implies that
data points within each cluster are closer to their respective centroids. The IS is calculated as the

sum of squared distances between each data point xi and its assigned centroid ¢; within a cluster
Ci

e Rand index score (RI): The Rand index score is a measure of similarity between two clusterings. It
compares the number of true positives and true negatives between the two clusterings. The Rand
index score ranges from 0 to 1, where a score of 1 indicates identical clusterings, and a score close
to 0 indicates dissimilar clusterings. Given two clusterings X and Y, Rl is computed as follows:

_ a+b
T a+b+c+d

where:

- ais the number of pairs that are in the same cluster in both X and Y (true positives),

- bis the number of pairs that are in different clusters in both X and Y (true negatives),

- cis the number of pairs that are in the same cluster in X but in different clusters in Y (false
positives),

- dis the number of pairs that are in different clusters in X but in the same cluster in Y (false
negatives).

e Mutual information (MI): Mutual information measures the amount of information shared
between two clusterings. It quantifies the similarity of the two clusterings by calculating the
reduction in uncertainty in one clustering given the knowledge of the other clustering. A higher
mutual information score indicates greater similarity between the clusters. Given two clusterings
X and Y, Ml is computed as follows:

https://doi.org/10.18267/j.aip.223 386

Acta Informatica Pragensia Volume 12, 2023

log (P(i,)))
M"Zzp(D@ rG)

where:

- P(i,j) is the joint probability of data points being in the same cluster in both X and Y.
- P(i) is the probability of data points being in the same cluster in X,
- P(j) is the probability of data points being in the same cluster in Y.

e Silhouette index score (SI): The silhouette index score assesses the quality of clustering by
measuring the distance between data points within clusters and between clusters. For each data
point, it calculates a silhouette coefficient, which is a value between -1 and 1. A coefficient close to
1 indicates that the data point is well-matched to its own cluster and poorly matched to
neighbouring clusters, indicating a good clustering. On the other hand, a coefficient close to -1
indicates that the data point may have been assigned to the wrong cluster. For each data point x;,
SI calculates the silhouette coefficient as follows:

SI(xi) = (b(1) — a(®) / max(a(i),b(D))

where:

- a(i) is the average distance between x: and all other data points in the same cluster; and
- b(i) is the minimum average distance between xi and all data points in any other cluster.

The overall silhouette index score is the average of the silhouette coefficients for all data points.

SI = mean(SI(x;))

e Davies Bouldin score (DB): The Davies Bouldin score measures the average similarity between
each cluster and its most similar cluster while considering the scatter within the clusters. It
penalizes clusters with high intra-cluster variance and encourages clusters that are well-separated.
A lower Davies Bouldin score indicates better clustering, with values closer to 0 indicating more
distinct and well-separated clusters. DB is calculated as follows:

S(l) +s()
k z d(c(l) c(]))]
where:

- kis the number of clusters,
- s(i) is the scatter within the cluster i,
- d(c(i), c(j)) is the distance between the centroids of the clusters i and ;.

o (Calinski Harabasz score (CH): The Calinski Harabasz score measures the ratio of between-cluster
variance to within-cluster variance. It measures the separation between clusters by comparing the
dispersion of data points within clusters to the dispersion between clusters. A higher Calinski
Harabasz score indicates better clustering, with larger scores indicating more distinct and well-
separated clusters. CH is calculated as follows:

= (Tr(B) / Tr(W)) * ((n- k) / (k - 1))
where:

- Tr(B) is the trace of the between-cluster scatter matrix,
- Tr(W) is the trace of the within-cluster scatter matrix,

https://doi.org/10.18267/j.aip.223 387

Acta Informatica Pragensia Volume 12, 2023

- nis the total number of data points,
- kis the number of clusters.

The obtained results can be found in the Appendix. To facilitate the comparison of results for each
initialization procedure, the metrics can be used. Lower values of IS and DB indicate better performance,
while higher values of RI, MI, SI and CH indicate better performance. The mean results can be
conveniently summarized in Tables A2 to A7, with the best results highlighted in boldface. Tables A2 to
A7 provide a comprehensive overview of the scores for IS, RI, SI, MI, DB and CH, respectively.

Furthermore, the Friedman test can be employed to rank the different procedures and determine the
overall best performer. Figures Al to A6 illustrate the Friedman tests, comparing the scores for IS, RI, SI,
MI, DB and CH, respectively. These figures aid in visualizing the relative performance and ranking of the
different initialization procedures.

Based on the results presented in the following tables and Friedman tests, ck-means and fck-means are the
top-performing initialization procedures for k-means clustering. They rank first in the inertia (Figure A1),
RI (Figure A2), MI (Figure A4), and CH (Figure A6) metrics, which indicates that they perform well in
terms of cluster quality and similarity to true clustering. On the other hand, MaxMinKmeans performs
better in the SI (Figure A3) and DB (Figure A5) metrics, but is outperformed by ck-means and fck-means
in the other metrics.

The effectiveness of ck-means and fck-means in improving k-means clustering is evident through their
superiority over other k-means initialization procedures. The high scores achieved in metrics such as the
Rand index (RI) and mutual information (MI) further affirm their ability to accurately identify clusters
that closely align with true clustering.

6 Conclusion

This work proposed two novel initialization procedures for the k-means clustering algorithm called ck-
means and fck-means. Both methods utilize a modified crowding distance approach to select the initial
centroids. The experimental study showed that the proposed methods outperformed the standard
initialization methods of k-means and k-means++ in terms of several metrics, including inertia, Rand index,
mutual information and Calinski Harabasz. However, the MaxMinKmeans method performed better in
the silhouette index and Davies Bouldin score metrics. The proposed methods can provide a more
deterministic and effective initialization procedure for k-means, leading to better clustering results.
Further research can investigate the application of the proposed methods in different clustering
algorithms and explore their performance in real-world datasets.

Additional Information and Declarations

Conflict of Interests: The author declares no conflict of interest.
Author Contributions: The author confirms being the sole contributor of this work.

Data Availability: The data and code that support the findings of this study are openly available in
Github repository at https://github.com/Layebuniv/fckmeans.

https://doi.org/10.18267/j.aip.223 388

https://github.com/Layebuniv/fckmeans

Acta Informatica Pragensia

Appendix

https://doi.org/10.18267/j.aip.223

Table Al. Dataset details.

Number of | Number of | Number of
Dataset samples features clusters k
1 |iris 150 4 3
2 |ecoli 336 7 8
3 |glass 214 9 2
4 | balance 625 4 3
5 | cancer 699 9 2
6 | ovarian 216 100 2
7 | thyroid 7200 21 3
8 | sonar 208 60 2
9 | chemical_test 498 8 40
10 |ionosphere 351 34 2
11 | data_heart 267 44 2
12 | Zoo 101 16 7
13 | SPECT 267 22 2
14 | COIL20 1440 1024 20
15 | semeion 1593 265 2
16 |isolet 1559 617 26
17 | house_test 506 13 46
18 | dataset500 2 4 500 2 4
19 | dataset500_2 5 500 2 5
20 | dataset500_4_20 500 4 20
21 | dataset1000 2 4 1000 2 4
22 | dataset1000_2_5 1000 2 5
23 | dataset1000_2_10 1000 2 10
24 | dataset1000_4_3 1000 4 3
25 | dataset1000_4_20 1000 4 20
26 | dataset5000_2_4 5000 2 4
27 | dataset5000 _2_10 5000 2 10
28 | dataset5000_4_3 5000 4 3
29 | bdataset500_2_5 500 5 2
30 | bdataset500_2_10 500 10 2
31 |bdataset1000_2_4 1000 4 2
32 | bdataset1000_2_10 1000 10 2
33 | bdataset1000_4_3 1000 3 4
34 | bdataset1000_4_20 1000 20 4
35 | bdataset5000_2_4 5000 4 2
36 | bdataset5000_2_10 5000 10 2
37 | bdataset5000_4_3 5000 3 4

Volume 12, 2023

389

Acta Informatica Pragensia

Table A2. Inertia results.

Volume 12, 2023

Test | Kmeans | Kmeans++ | CKmeans | FCKmeans | RCKmeans | MaxMinKmeans | MinMaxKmeans
1 134.386 131.243 129.520 129.520 130.679 135.925 129.407
2 525.025 393.760 413.871 413.871 397.138 408.718 595.354
3 492.956 484.934 471.241 488.126 484.712 509.114 487.802
4 1007.386 | 1008.237 | 1063.160 | 1063.160 1007.436 1013.335 1006.165
5 1131.552 | 1131.454 | 1128.707 | 1128.707 1131.859 1132.077 1132.193
6 1326.453 | 1326.362 | 1326.219 | 1326.610 1326.430 1326.440 1326.378
7 | 25584.339 | 25142.727 | 24862.940 | 24862.940 | 24906.776 25517.035 24694.141
8 1441403 | 1434.841 | 1429.051 | 1428.408 1437.318 1439.026 1435.718
9 523.113 508.142 519.097 508.049 507.635 517.971 521.898

10 | 1536.107 | 1536.068 | 1536.158 | 1536.158 1536.158 1612.035 1536.158
11 | 1412978 | 1412.766 | 1412.462 | 1412.462 1412.782 1413.201 1413.196
12 | 223.514 219.744 219.385 219.614 224.191 224.989 225.736
13 | 1106.897 | 1107.026 | 1108.134 | 1108.134 1107.387 1107.608 1107.222
14 |32267.446 | 27680.926 | 27595.535 | 28539.274 | 27750.364 30939.197 27407.098
15 |25154.110 | 25145.762 | 25127.698 | 25127.698 | 25130.753 25150.728 25177.377
16 |30171.132 | 28214.945 | 28385.241 | 28516.284 | 28231.818 28960.656 28253.812
17 | 621.886 549.936 684.460 582.240 548.313 558.125 642.557
18 | 209.369 205.525 193.817 193.817 209.509 199.700 216.965
19 | 236.268 237.418 228.487 228.350 233.817 233.850 238.297
20 | 189.739 170.236 253.506 159.286 169.860 160.484 265.006
21 | 458.980 462.823 436.035 436.035 447.496 439.830 436.006
22 | 424.380 410.340 413.042 408.260 410.408 410.391 410.223
23 | 234.124 216.877 272.051 200.722 219.350 212.997 301.863
24 | 561.528 581.104 532.151 532.151 571.304 561.532 551.746
25 | 413.970 376.098 380.238 318.284 364.895 341.827 493.730
26 | 2187.791 | 2116.649 | 1974.367 | 1974.367 2134.435 2187.791 2134.435
27 | 1129.651 | 1082.348 | 1339.973 | 1033.059 1089.522 1079.989 1178.448
28 | 3078.825 | 3224.392 | 2933.258 | 2933.258 3078.825 3661.087 2933.258
29 | 851.028 850.980 851.034 851.034 851.025 851.028 851.034
30 | 1258.526 | 1258.526 | 1258.526 | 1258.526 1258.526 1258.526 1258.526
31 | 1466.262 | 1466.387 | 1465.836 | 1465.810 1466.287 1466.721 1465.948
32 | 2687.197 | 2687.199 | 2687.030 | 2687.119 2687.249 2687.236 2687.331
33 | 1121.338 | 1120.071 | 1139.300 | 1117.453 1119.135 1117.180 1120.028
34 | 3651.794 | 3630.347 | 3578.537 | 3578.522 3652.550 3718.965 3712.702
35 | 8027.733 | 8027.773 | 8028.103 | 8028.103 8027.760 8027.910 8027.685
36 |12950.388 | 12950.383 | 12950.265 | 12950.461 | 12950.409 12950.415 12950.383
37 | 5591.654 | 5591.402 | 5590.934 | 5593.180 5591.647 5591.330 5591.701

https://doi.org/10.18267/j.aip.223

390

Acta Informatica Pragensia

Kmeans++

FCKmeans -

RCKmeans [

MaxMinKmeans -

MinMaxKmeans

Kmeans -

CKmeans -

Volume 12, 2023

25

3

3.5

4 4.5

5 55

2 groups have mean column ranks significantly different from FCKmeans

Figure Al. Friedman test compares Inertia scores.

Table A3. RI score results.

Test | Kmeans | Kmeans++ | CKmeans | FCKmeans | RCKmeans | MaxMinKmeans | MinMaxKmeans
1 80.356 82.333 84.313 84.313 82.212 79.796 83.794
2 70.237 82.722 77.939 77.939 83.314 85.208 56.100
3 70.727 69.878 83.744 54.258 69.952 63.049 55.140
4 59.006 58.681 57.408 57.408 58.344 59.722 58.953
5 91.063 91.115 92.562 92.562 90.906 90.793 90.732
6 75.053 75.672 76.645 73.992 75.185 75.142 75.539
7 58.428 65.771 75.235 75.235 66.218 55.385 56.254
8 50.324 50.552 51.101 50.804 50.310 50.341 50.056
9 92.195 93.190 93.477 93.601 93.157 92.115 92.985
10 | 58.446 58.470 58.414 58.414 58.414 57.287 58.414
11 | 54.989 54.901 54.662 54.662 54.869 55.133 55.108
12 | 92.022 89.337 83.584 82.356 90.051 94.725 91.945
13 | 52.583 52.215 53.164 53.164 52.507 52.818 52.520
14 | 85.706 94.527 93.649 94.298 94.490 89.277 94.681
15 | 51.428 51.926 52.921 52.921 52.790 51.642 50.139
16 | 88.769 95.173 95.129 94.921 95.046 92.555 95.180
17 | 90.236 93.182 90.859 92.384 93.279 91.827 89.679
18 | 93.603 94.458 96.987 96.987 93.650 95.723 91.922
19 | 87.364 87.047 90.308 89.933 88.353 88.234 86.760
20 | 97.145 98.390 96.471 99.598 98.375 98.966 94.534
21 | 93.602 93.111 96.389 96.389 95.008 95.968 96.431
22 | 66.487 67.325 67.287 67.579 67.212 67.175 67.464
23 | 95.495 96.211 95.495 97.741 95.867 96.066 90.850

https://doi.org/10.18267/j.aip.223

391

Acta Informatica Pragensia

Volume 12, 2023

Test | Kmeans | Kmeans++ | CKmeans | FCKmeans | RCKmeans | MaxMinKmeans | MinMaxKmeans
24 97.046 95.203 99.867 99.867 96.164 97.024 97.945
25 97.972 98.552 98.715 99.980 98.845 99.279 97.045
26 91.937 93.944 97.959 97.959 93.442 91.937 93.442
27 96.724 97.047 95.880 97.846 96.905 97.082 96.449
28 97.222 94.444 100.000 100.000 97.222 86.109 100.000
29 84.937 85.117 84.915 84.915 84.948 84.937 84.915
30 90.481 90.481 90.481 90.481 90.481 90.481 90.481
31 79.313 79.287 79.934 79.471 79.343 79.103 79.420
32 79.800 79.816 80.089 79.625 79.641 79.677 79.923
33 68.225 68.273 66.179 68.471 68.265 68.173 68.147
34 91.842 93.340 97.455 97.359 91.775 86.732 87.192
35 63.504 63.495 63.450 63.450 63.491 63.481 63.522
36 90.443 90.448 90.534 90.390 90.429 90.424 90.448
37 70.554 70.529 70.418 70.552 70.518 70.536 70.537

Kmeans | .
Kmeans++ .
CKmeans .
FCKmeans 4 1

RCKmeans [.
MaxMinKmeans |- 8
MinMaxKmeans - .
25 3 35 4 4.5 5 55 6
No groups have mean column ranks significantly different from FCKmeans
Figure A2. Friedman test compares RI scores.
Table A4. Sl score results.

Test | Kmeans | Kmeans++ | CKmeans | FCKmeans | RCKmeans | MaxMinKmeans | MinMaxKmeans
1 0.653 0.650 0.644 0.644 0.649 0.649 0.646
2 0.587 0.415 0.334 0.334 0.361 0.491 0.601
3 0.657 0.573 0.589 0.426 0.495 0.721 0.424
4 0.282 0.280 0.139 0.139 0.279 0.269 0.287
5 0.722 0.722 0.718 0.718 0.721 0.723 0.723
6 0.652 0.651 0.650 0.654 0.652 0.652 0.652
7 0.325 0.371 0.316 0.316 0.277 0.278 0.261
8 0.346 0.315 0.216 0.224 0.293 0.375 0.392

https://doi.org/10.18267/j.aip.223

392

Acta Informatica Pragensia

Volume 12, 2023

Test | Kmeans | Kmeans++ | CKmeans | FCKmeans | RCKmeans | MaxMinKmeans | MinMaxKmeans
9 0.352 0.329 0.282 0.297 0.309 0.379 0.317
10 0.374 0.374 0.374 0.374 0.374 0.434 0.374
11 0.665 0.663 0.659 0.659 0.660 0.668 0.667
12 0.503 0.461 0.445 0.448 0.429 0.557 0.456
13 0.305 0.305 0.322 0.322 0.309 0.314 0.307
14 0.282 0.313 0.314 0.224 0.284 0.294 0.297
15 0.104 0.106 0.110 0.110 0.109 0.104 0.098
16 0.167 0.141 0.120 0.122 0.136 0.161 0.133
17 0.374 0.364 0.273 0.380 0.349 0.421 0.358
18 0.774 0.780 0.805 0.805 0.763 0.793 0.754
19 0.624 0.614 0.659 0.664 0.630 0.635 0.615
20 0.706 0.722 0.603 0.738 0.703 0.753 0.666
21 0.746 0.743 0.769 0.769 0.754 0.765 0.769
22 0.672 0.671 0.672 0.670 0.673 0.674 0.669
23 0.735 0.750 0.680 0.748 0.736 0.758 0.752
24 0.837 0.828 0.852 0.852 0.833 0.837 0.842
25 0.711 0.733 0.790 0.837 0.712 0.777 0.682
26 0.734 0.747 0.774 0.774 0.754 0.734 0.744
27 0.776 0.783 0.718 0.771 0.762 0.772 0.780
28 0.822 0.811 0.833 0.833 0.822 0.778 0.833
29 0.458 0.458 0.458 0.458 0.458 0.458 0.458
30 0.419 0.419 0.419 0.419 0.419 0.419 0.419
31 0.506 0.506 0.504 0.505 0.506 0.507 0.506
32 0.333 0.333 0.333 0.334 0.333 0.333 0.332
33 0.374 0.377 0.334 0.383 0.378 0.382 0.375
34 0.244 0.237 0.232 0.233 0.240 0.265 0.262
35 0.401 0.401 0.402 0.402 0.401 0.401 0.401
36 0.373 0.373 0.373 0.373 0.373 0.373 0.373
37 0.376 0.376 0.377 0.370 0.377 0.377 0.375

https://doi.org/10.18267/j.aip.223

393

Acta Informatica Pragensia

Volume 12, 2023

Kmeans

Kmeans++ -

CKmeans [

FCKmeans

RCKmeans

MaxMinKmeans

MinMaxKmeans [

25

3

3.5 4

4.5

5 55

6

3 groups have mean column ranks significantly different from MaxMinKmeans

Figure A3. Friedman test compares Sl scores.

Table A5. MI score results.

Test | Kmeans Kmeans++ | CKmeans | FCKmeans | RCKmeans | MaxMinKmeans | MinMaxKmeans
1 0.688 0.710 0.726 0.726 0.707 0.678 0.724
2 0.658 1.041 0.964 0.964 1.044 1.009 0.437
3 0.105 0.113 0.255 0.000 0.108 0.010 0.001
4 0.124 0.113 0.079 0.079 0.109 0.141 0.118
5 0.455 0.456 0.482 0.482 0.453 0.451 0.450
6 0.329 0.335 0.345 0.318 0.330 0.330 0.334
7 0.012 0.011 0.001 0.001 0.008 0.011 0.009
8 0.011 0.012 0.014 0.011 0.011 0.013 0.010
9 1.310 1.388 1.385 1.412 1.373 1.282 1.339
10 0.084 0.085 0.084 0.084 0.084 0.063 0.084
11 0.033 0.034 0.035 0.035 0.034 0.033 0.033
12 1.215 1.229 1.108 1.111 1.229 1.228 1.219
13 0.021 0.018 0.024 0.024 0.020 0.022 0.021
14 1.477 2.031 2.124 1.982 2.017 1.645 2.039
15 0.010 0.012 0.018 0.018 0.017 0.011 0.004
16 1.606 2.111 2.066 2.078 2.095 1.923 2.100
17 1.183 1.378 1.289 1.347 1.388 1.269 1.210
18 1.200 1.215 1.263 1.263 1.199 1.239 1.168
19 1.082 1.078 1.151 1.140 1.108 1.102 1.068

20 2.656 2.781 2.568 2.912 2.779 2.847 2414
21 1.173 1.162 1.229 1.229 1.202 1.222 1.231
22 0.007 0.008 0.008 0.008 0.007 0.007 0.008
23 2.002 2.041 1.968 2.110 2.028 2.041 1.768

https://doi.org/10.18267/j.aip.223

394

Acta Informatica Pragensia

Volume 12, 2023

Test | Kmeans Kmeans++ | CKmeans | FCKmeans | RCKmeans | MaxMinKmeans | MinMaxKmeans
24 1.044 1.014 1.092 1.092 1.030 1.043 1.058
25 2.751 2.821 2.830 2.986 2.855 2.906 2.620
26 1.152 1.197 1.287 1.287 1.186 1.152 1.186
27 2.083 2.102 1.995 2.136 2.096 2.103 2.074
28 1.052 1.006 1.099 1.099 1.052 0.867 1.099
29 0.457 0.459 0.457 0.457 0.457 0.457 0.457
30 0.526 0.526 0.526 0.526 0.526 0.526 0.526
31 0.375 0.375 0.380 0.375 0.375 0.373 0.376
32 0.394 0.394 0.397 0.392 0.392 0.392 0.395
33 0.236 0.235 0.196 0.236 0.234 0.229 0.231
34 1.121 1.155 1.252 1.248 1.119 1.006 1.015
35 0.175 0.175 0.175 0.175 0.175 0.175 0.175
36 0.523 0.523 0.524 0.522 0.522 0.522 0.523
37 0.313 0.313 0.309 0.309 0.312 0.314 0.312

Kmeans @ 1
Kmeans++ - .
CKmeans [- 1
FCKmeans - .
RCKmeans - .
MaxMinKmeans - 7
MinMaxKmeans - .
2.5 3 3.5 4 4.5 5 5.5 6
The mean column ranks of groups CKmeans and Kmeans are significantly different

Figure A4. Friedman test compares MI scores.

Table A6. DB score results.

Test | Kmeans | Kmeans++ | CKmeans | FCKmeans | RCKmeans | MaxMinKmeans | MinMaxKmeans
1 0.802 0.818 0.830 0.830 0.830 0.812 0.832
2 0.596 1.113 1.301 1.301 1.147 0.970 0.591
3 1.200 1.310 1.358 1.670 1.314 0.839 1.687
4 1.708 1.718 3.186 3.186 1.711 1.773 1.723
5 0.824 0.824 0.823 0.823 0.824 0.824 0.824
6 0.826 0.826 0.828 0.824 0.826 0.826 0.826

https://doi.org/10.18267/j.aip.223

395

Acta Informatica Pragensia

Volume 12, 2023

Test | Kmeans | Kmeans++ | CKmeans | FCKmeans | RCKmeans | MaxMinKmeans | MinMaxKmeans
7 1.924 1.767 1.219 1.219 1.674 2.043 2.195
8 2.220 2.285 2.452 2.438 2.254 2.167 2.086
9 1.173 1.275 1.395 1.352 1.273 1.105 1.307

10 1.682 1.681 1.682 1.682 1.682 1.355 1.682
11 1.509 1.513 1.527 1.527 1.516 1.501 1.503
12 1.187 1.307 1.127 1.212 1.331 1.142 1.386
13 2.203 2.201 2.174 2.174 2.195 2.189 2.201
14 1.525 1.824 1.812 1.892 1.792 1.554 1.837
15 3.957 3.865 3.671 3.671 3.702 3.918 4212
16 1.554 2.564 2.686 2.768 2.605 2.099 2.617
17 0.917 1.156 1.206 1.175 1.156 0.901 1.026
18 0.615 0.594 0.534 0.534 0.614 0.565 0.653
19 0.808 0.815 0.717 0.703 0.774 0.778 0.841
20 0.847 0.816 0.836 0.745 0.802 0.690 0.840
21 0.626 0.634 0.577 0.577 0.601 0.585 0.577
22 0.806 0.782 0.804 0.754 0.788 0.784 0.776
23 0.709 0.682 0.740 0.638 0.688 0.676 0.653
24 0.553 0.586 0.502 0.502 0.570 0.553 0.536
25 0.857 0.791 0.687 0.533 0.755 0.676 0.883
26 0.703 0.665 0.589 0.589 0.674 0.703 0.674
27 0.631 0.618 0.647 0.602 0.633 0.633 0.625
28 0.574 0.595 0.553 0.553 0.574 0.659 0.553
29 1.448 1.448 1.448 1.448 1.448 1.448 1.448
30 1.600 1.600 1.600 1.600 1.600 1.600 1.600
31 1.313 1.313 1.314 1.313 1.313 1.313 1.313
32 2.206 2.206 2.207 2.206 2.205 2.206 2.206
33 1.223 1.213 1.339 1.193 1.207 1.196 1.214
34 2.410 2.327 2.032 2.032 2.395 2.786 2.766
35 1.796 1.796 1.794 1.794 1.796 1.795 1.796
36 1.790 1.790 1.790 1.790 1.790 1.790 1.790
37 1.203 1.203 1.202 1.204 1.204 1.203 1.204

https://doi.org/10.18267/j.aip.223

396

Acta Informatica Pragensia

Kmeans

Kmeans++

CKmeans

FCKmeans

RCKmeans

MaxMinKmeans

MinMaxKmeans

Volume 12, 2023

25
No groups have mean column ranks significantly different from MaxMinKmeans

3

35

4

45

5

Figure A5. Friedman test compares DB scores.

Table A7. CH score results.

55

Test | Kmeans Kmeans++ | CKmeans | FCKmeans | RCKmeans | MaxMinKmeans | MinMaxKmeans
1 215.232 229.459 236.822 236.822 232.976 209.931 237.783
2 78.022 140.424 81.363 81.363 125.949 140.029 45.624
3 40.274 43.447 55.084 42.564 43.119 31.053 42.625
4 135.274 134.110 90.290 90.290 135.244 126.514 136.738
5 868.728 868.735 868.892 868.892 868.708 868.695 868.688
6 264.385 264.343 264.278 264.455 264.375 264.379 264.351
7 433.530 410.264 393.563 393.563 402.963 441.704 413.025
8 31.958 33.262 31.359 31.797 33.189 33.636 35.302
9 61.547 65.157 57.819 61.976 65.409 64.648 59.102
10 95.912 95.912 95.913 95.913 95.913 71.397 95.913
11 81.501 81.494 81.438 81.438 81.479 81.529 81.520
12 28.190 28.883 26.605 26.325 27.610 28.042 27.390
13 52.436 52.417 52.755 52.755 52.491 52.591 52421
14 68.079 103.920 99.233 89.348 103.886 78.821 103.435
15 92.186 93.192 95.400 95.400 95.010 92.594 89.346
16 36.949 51.072 49.273 47.848 50.935 45.934 50.501
17 64.122 85.030 41.124 63.507 85.900 85.959 57.309
18 1378.217 1430.484 | 1586.401 | 1586.401 1378.211 1508.132 1274.183
19 754.581 743.836 823.574 822.754 775.681 775.791 737.793
20 571.652 717.030 251.804 811.489 719.513 826.930 248.715
21 2228.499 2192.027 | 2447.281 | 2447.281 2337.895 2410.828 2447.293
22 1969.872 2080.731 | 2065.777 | 2096.985 2081.555 2082.508 2083.163
23 3128.892 3593.734 | 1844.503 | 4170.932 3494.845 3685.366 1870.616

https://doi.org/10.18267/j.aip.223

397

Acta Informatica Pragensia

Volume 12, 2023

Test | Kmeans Kmeans++ | CKmeans | FCKmeans | RCKmeans | MaxMinKmeans | MinMaxKmeans
24 5072.050 4837.075 5424.541 5424.541 4954.583 5072.040 5189.527
25 947.049 1156.461 1086.584 1741.277 1245.405 1451.484 634.855
26 12543.112 13385.002 | 15068.784 | 15068.784 13174.530 12543.112 13174.530
27 16463.498 17929.471 | 9921.993 | 19627.208 17687.353 17994.394 15172.714
28 18876.527 17699.099 | 20053.956 | 20053.956 18876.527 14166.812 20053.956
29 206.453 206.449 206.453 206.453 206.453 206.453 206.453
30 174.915 174.915 174.915 174.915 174.915 174.915 174.915
31 491.319 491.322 491.332 491.311 491.322 491.317 491.309
32 186.960 186.956 186.976 186.973 186.958 186.959 186.892
33 315.727 317.722 293.203 321.855 318.531 321.251 317.658
34 131.038 134.335 144.332 144.338 131.168 119.451 120.395
35 1236.134 1236.137 1236.138 1236.138 1236.135 1236.136 1236.133
36 1405.291 1405.291 1405.299 1405.287 1405.290 1405.289 1405.291
37 1571.127 1571.497 1571.763 1568.493 1571.244 1571.654 1571.006

Kmeans - o
Kmeans++ [
CKmeans
FCKmeans |- O
RCKmeans |- 7
MaxMinKmeans B
MinMaxKmeans 5
2 2.5 3 3.5 4 4.5 5 5.5

The mean column ranks of groups FCKmeans and Kmeans are significantly different

Figure A6. Friedman test compares CH scores.

References

Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding. In Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms, (pp. 1027-1035). ACM.

Celebi, M. E., Kingravi, H. A., & Vela, P. A. (2013). A comparative study of efficient initialization methods for the k-means
clustering algorithm. Expert Systems With Applications, 40(1), 200-210. https://doi.org/10.1016/j.eswa.2012.07.021

Chowdhury, K., Chaudhuri, D., & Pal, A. K. (2021). An entropy-based initialization method of K-means clustering on the
optimal number of clusters. Neural Computing and Applications, 33(12), 6965—6982. https://doi.org/10.1007/s00521-020-
05471-9

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computation, 6(2), 182—197. https://doi.org/10.1109/4235.996017

Faridi, H., Srinivasagopalan, S., & Verma, R. (2018). Performance evaluation of features and clustering algorithms for
malware. In 2018 |IEEE International Conference on Data Mining Workshops (ICDMW) (pp. 13-22). IEEE.
https://doi.org/10.1109/ICDMW.2018.00010

https://doi.org/10.18267/j.aip.223 398

https://doi.org/10.1016/j.eswa.2012.07.021
https://doi.org/10.1007/s00521-020-05471-9
https://doi.org/10.1007/s00521-020-05471-9
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/ICDMW.2018.00010

Acta Informatica Pragensia Volume 12, 2023

Franti, P., & Sieranoja, S. (2019). How much can k-means be improved by using better initialization and repeats? Pattern
Recognition, 93, 95-112. https://doi.org/10.1016/j.patcog.2019.04.014

Hamerly, G., & Elkan, C. (2003). Learning the k in k-means. In Advances in neural information processing systems (pp. 281—
288). NeurlPS Proceedings.
https://proceedings.neurips.cc/paper_files/paper/2003/file/234833147b97bb6aed53a8f4flc7a7d8-Paper.pdf

Hastie, T., Tibshirani, R., & Friedman, J. (2009). Unsupervised learning. In The Elements of Statistical Learning (pp. 485—
585). Springer. https://doi.org/10.1007/978-0-387-84858-7_14

Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Jia, H. (2023). K-means clustering algorithms: A comprehensive
review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178-210.
https://doi.org/10.1016/}.ins.2022.11.139

Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Prentice-Hall, Inc.

Kumar, A., & Kumar, S. (2017). Density based initialization method for K-Means clustering algorithm. International Journal of
Intelligent Systems and Applications, 9(10), 40—48. https://doi.org/10.5815/ijisa.2017.10.05

Liu, H., Chen, F., Wu, Y., Xu, K., & Tian, D. (2015). Improved K-means Algorithm with the Pretreatment of PCA Dimension
Reduction. International Journal of Hybrid Information Technology, 8(6), 195-204.
https://doi.org/10.14257/ijhit.2015.8.6.19

Maulik, U., & Bandyopadhyay, S. (2002). Performance evaluation of some clustering algorithms and validity indices. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(12), 1650-1654.
https://doi.org/10.1109/tpami.2002.1114856

Tzortzis, G., & Likas, A. (2014). The MinMax k-Means clustering algorithm. Pattern Recognition, 47(7), 2505-2516.
https://doi.org/10.1016/j.patcog.2014.01.015

Xie, J., Girshick, R., & Farhadi, A. (2016). Unsupervised deep embedding for clustering analysis. In Proceedings of The 33rd
International Conference on Machine Learning, (pp. 478—-487). PMLR. https://proceedings.mir.press/v48/xieb16.html

Xu, R., & Wunsch, D. C. (2005). Survey of Clustering Algorithms. IEEE Transactions on Neural Networks, 16(3), 645-678.
https://doi.org/10.1109/tnn.2005.845141

Yang, B., Fu, X., Sidiropoulos, N. D., & Hong, M. (2017). Towards k-means-friendly spaces: Simultaneous deep learning and
clustering. In Proceedings of the 34th International Conference on Machine Learning, (pp. 3861-3870). ACM.

Yu, S., Chu, S. W., Wang, C., Chan, Y., & Chang, T. (2018). Two improved k-means algorithms. Applied Soft Computing, 68,
747-755. https://doi.org/10.1016/j.as0c.2017.08.032

Editorial record: The article has been peer-reviewed. First submission received on 23 May 2023. Revision received on
7 August 2023. Accepted for publication on 3 September 2023. The editor in charge of coordinating the peer-review of this
manuscript and approving it for publication was Stanislav Vojir

Acta Informatica Pragensia is published by Prague University of Economics and Business, Czech Republic.

ISSN: 1805-4951

https://doi.org/10.18267/j.aip.223 399

https://doi.org/10.1016/j.patcog.2019.04.014
https://proceedings.neurips.cc/paper_files/paper/2003/file/234833147b97bb6aed53a8f4f1c7a7d8-Paper.pdf
https://doi.org/10.1007/978-0-387-84858-7_14
https://doi.org/10.1016/j.ins.2022.11.139
https://doi.org/10.5815/ijisa.2017.10.05
https://doi.org/10.14257/ijhit.2015.8.6.19
https://doi.org/10.1109/tpami.2002.1114856
https://doi.org/10.1016/j.patcog.2014.01.015
https://proceedings.mlr.press/v48/xieb16.html
https://doi.org/10.1109/tnn.2005.845141
https://doi.org/10.1016/j.asoc.2017.08.032
https://orcid.org/0000-0002-1947-6004

