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 Abstract  
Background: Feature selection methods play a crucial role in handling challenges such as imbalanced 
classes, noisy data and high dimensionality. However, existing techniques, including swarm intelligence 
and set theory approaches, often struggle with high-dimensional datasets due to repeated 
reassessment of feature selection, leading to increased processing time and computational 
inefficiency. 
Objective: This study aims to develop an enhanced incremental feature selection method that 
minimizes dependency on the initial dataset while improving computational efficiency. Specifically, the 
approach focuses on dynamic sampling and adaptive optimization to address the challenges in high-
dimensional data environments. 
Methods: We implement a dynamic sampling approach based on rough set theory, integrating the Long-
Tail Position Grey Wolf Optimizer. This method incrementally adjusts to new data samples without 
relying on the original dataset for feature selection, reducing variance in partitioned datasets. The 
performance is evaluated on benchmark datasets, comparing the proposed method to existing 
techniques. 
Results: Experimental evaluations demonstrate that the proposed method outperforms existing 
techniques in terms of F1 score, precision, recall and computation time. The incremental adjustment 
and reduced dependence on the initial data improve the overall accuracy and efficiency of feature 
selection in high-dimensional contexts. 
Conclusion: This study offers a significant advancement in feature selection methods for high-
dimensional datasets. By addressing computational demands and improving accuracy, the proposed 
approach contributes to data science and machine learning, paving the way for more efficient and 
reliable feature selection processes in complex data environments. Future work may focus on extending 
this method to new optimization frameworks and enhancing its adaptability.  

 Index Terms 
Optimizer; Rough set theory; Feature selection; Incremental; Data partitioning. 

  

1 INTRODUCTION 
The development of feature selection methods has been extensively pursued in both 

practical and academic contexts. This process is crucial due to the vast amount of 

attribute information that datasets may contain, which requires significant storage 

space for later analysis or related tasks. Not every attribute uniquely contributes to 

information; some samples and their attributes may contain redundant 

information, making the process inefficient.   
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Feature selection has evolved through various methodologies, including wrapper methods, filter-based methods 

and their combinations. Metaheuristic-based feature selection has also seen notable development (Abdel-Basset et 

al., 2020; Al Afghani Edsa & Sunat, 2023; Gu et al., 2018; Kwakye et al., 2024; Pan et al., 2023; Pichai et al., 2020; 

Sharma & Kaur, 2021; Shikoun et al., 2024; Tran et al., n.d.); however, its reliance on randomness and reassessment 

across all samples makes it time-consuming. Moreover, the features selected are not guaranteed to be unique or non-

correlated. 

According to the literature, the principles of rough set theory have been widely applied to feature selection, primarily 

following two approaches: non-incremental and incremental. Non-incremental selection does not utilize previously 

acquired information about selected features, making it time-consuming. In contrast, incremental selection makes 

use of previously identified optimal features, improving computational efficiency. Incremental methods based on 

rough set theory have been further developed using various techniques such as credibility matrices, dependency 

measures, information theory and sample feature-based methods. Despite these advancements (F. Li et al., 2016; 

Yang et al., 2018, 2020), certain aspects, such as the determination of discernibility scores, sample usage in the process 

and feature assessment in existing rough set theory, still depend on static rules and the reassessment of original data, 

which can lead to higher computational costs. 

Class imbalance must also be considered for feature selection as it can significantly affect model performance. 

Methods such as under-sampling, over-sampling and SMOTE aim to balance class samples but face challenges with 

extreme imbalances in multi-class classification, where synthetic data generation may introduce noisy samples. 

Rough set theory offers a promising approach to mitigate issues related to class imbalance and high-dimensional 

data, independent of reliance on original data. 

Based on these considerations, this study proposes a feature selection method motivated by rough set theory and 

inspired by the sample and feature selection method introduced by Yang et al. (2022). To make incremental feature 

selection not rule-based by the user, we propose an adaptive procedure during the assessment of features. To gain 

significant features, we shuffle the samples by ordering them to help calculate the discernibility score and achieve 

optimal features. Unlike Yang et al. (2022), our proposed method does not rely on original data during feature 

assessment. Data partition is induced by a long-tail position grey wolf optimizer (GWO) to minimize variance in 

each part, enhancing data partition. The GWO is a strong optimizer with fast convergence but can easily get trapped 

in local optima, as introduced by Mirjalili et al. (2014). To address this, we introduce long-tail positions in the GWO, 

allowing less frequently assessed areas to be explored, enhancing the exploration and exploitation capabilities of the 

GWO. This scheme reduces computation time and provides more flexibility for incoming new data. The performance 

of the model with the selected features will be evaluated and compared to that of a model without feature selection 

and other relevant methods. 

The contributions of this paper are as follows: 

1. Feature selection using rough set theory with dynamic incremental feature assessment criteria and 

optimized data partition by long-tail GWO. 

2. Ordered sample selection during feature assessment to achieve optimal selected features. 

3. The proposed procedure does not rely on original data, saving computation time during feature assessment. 

4. The proposed method is compared across experimental datasets and its performance is benchmarked 

against similar methods. 

Subsequently, Section 2 discusses related work, Section 3 covers the proposed method, Section 4 presents the results 

and discussion and Section 5 addresses conclusions and future work. 

2 RELATED WORKS 
In this section, we will discuss related work on feature selection concerning high-dimensional data, imbalanced 

classes and noisy samples. The sources included in this overview were selected based on their relevance to these 

challenges and their contributions to addressing feature selection in various contexts, such as bio-inspired 

algorithms, feature extraction techniques and rough set approaches. 

Several studies, including Pan et al. (2023), have explored bio-inspired or metaheuristic algorithms for solving 

feature selection problems in high-dimensional data. While these approaches are effective in searching for global or 
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near-optimal solutions, they have a drawback: recalculating the fitness function over the same samples that have 

already been computed in previous iterations. This process becomes inefficient when dealing with a large number 

of features, for instance, datasets with 300 or more features, or many samples. On the other hand, feature extraction 

techniques such as Principal Component Analysis (PCA) are commonly used to reduce dimensionality. However, 

this method struggles with high-dimensional data as it requires calculating a covariance matrix before determining 

the principal components through eigenvalues and eigenvectors. Additionally, feature extraction offers less 

interpretability since it combines the original features, making it difficult to identify which features affect the model. 

Rough set theory provides another promising approach for handling high-dimensional, imbalanced and noisy data. 

For example, Y. Li et al. (2023) applied rough set theory to classification problems by using attribute grouping and 

dynamic neighbourhood rough sets to manage samples. 

A significant body of research has aimed at developing effective feature selection methods in both supervised (Khan 

et al., 2017; Zhang et al., 2024) and unsupervised learning tasks (Dehghan & Mansoori, 2018; Hancer et al., 2020; 

Zhao et al., 2023). These studies address both high- and lower-dimensional data, considering feature count and 

sample size. Supervised learning-based feature selection methods often follow the wrapper approach, where the 

objective function of the learning algorithm is combined with a feature selection process to select only a subset of 

features—typically fewer than the original set. Metaheuristic algorithms, such as those in Jia et al. (2019) or Shikoun 

et al. (2024), have been particularly popular due to their capacity to search globally for optimal or near-optimal 

solutions. However, the iterative recalculation of samples remains a challenge for high-dimensional data, as the 

process is computationally expensive. 

On the other hand, imbalanced data containing noise also affect the effectiveness of predictive models, necessitating 

a method to assist machine learning models in making accurate predictions. In the case of data balancing, problems 

can arise, particularly in extreme multi-class scenarios where the class ratio is highly disproportionate. Therefore, a 

method that does not solely rely on original data or data augmentation is needed. One approach is to examine the 

characteristics of the samples and their features related to class attributes. Rough set theory is considered suitable 

for addressing these issues, especially in high-dimensional datasets. The following table provides selected recent 

research studies related to feature selection in high-dimensional datasets, addressing imbalanced data in both multi-

class and binary class cases: 

Table 1. Summary of related studies. 

Reference Proposed method/framework Strengths Opportunities for improvement 

Yang et al. 

(2022) 

Incremental feature selection 

by sample selection and 

feature-based accelerator 

The proposed method updates feature subsets 

without forgetting previous knowledge, avoids 

redundant calculations and reduces computational 

and memory usage. The sample selection scheme 

filters out irrelevant data and the feature-based 

accelerator incrementally selects the best features 

while removing redundant ones, ensuring an 

efficient and effective feature selection process. 

It still relies on original data 

during feature assessment, data 

are neither shuffled nor reordered 

and the incremental threshold is 

rule-based. 

 

 

Asniar et al. 

(2022) 

SMOTE-LOF for noise 

identification in imbalanced 

data classification 

The proposed SMOTE-LOF method strengthens the 

standard SMOTE approach by using the Local 

Outlier Factor (LOF) to remove noise from synthetic 

samples. 

Not suitable for small samples and 

extreme multi-class ratios. 

Pan et al. 

(2023) 

High-dimensional feature 

selection method based on 

modified grey wolf 

optimization 

Utilizes advanced sigmoid principles in feature 

selection, suitable for relatively high-dimensional 

data. 

Recalculation for feature selection 

consumes significant time, 

especially in high-dimensional 

data. 

Ma et al, 

(2024) 

Membership-based 

resampling and cleaning 

algorithm for multi-class 

imbalanced overlapping data 

The MC-MBRC algorithm addresses class imbalance, 

noise and overlapping classes in multi-class datasets 

by categorizing samples based on membership 

degrees and applying targeted operations such as 

noise removal and oversampling. 

Limited to specific types of noise 

where some samples have 

maximal noise levels. 

Gilal et al. 

(2019) 

Rough-Fuzzy Model for Early 

Breast Cancer Detection 

The study employs a Rough-Fuzzy hybrid technique 

to create an early breast cancer detection model, 

Limited to specific datasets. 

https://aip.vse.cz/
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Reference Proposed method/framework Strengths Opportunities for improvement 

providing a cost-effective alternative to traditional 

detection methods. 

C. Wang et 

al. (2021) 

Attribute reduction with fuzzy 

rough self-information 

measures 

This study introduces four uncertainty measures 

that integrate fuzzy-rough approximations with self-

information concepts, addressing both lower and 

upper approximations of fuzzy decisions. The fourth 

measure, relative decision self-information, is 

highlighted for its superior attribute reduction 

capability compared to others. These measures 

generalize conventional methods based on fuzzy 

rough sets and are validated through experimental 

results that show improved efficiency and accuracy 

in attribute reduction compared to three other 

algorithms. 

Exploring fuzzy self-information 

across multiple granularities. 

Meng & Shi 

(2016) 

Quick attribute reduction in 

decision-theoretic rough set 

models 

Developing an efficient reduction algorithm 

specifically designed for Decision-Theoretic Rough 

Set (DTRS) models. 

Efficiency in terms of computation 

time. 

Raza & 

Qamar 

(2018) 

Feature selection using rough 

set-based direct dependency 

calculation by avoiding the 

positive region 

The strength lies in the Direct Dependency 

Calculation (DDC) approach for assessing attribute 

dependency in feature selection. 

The effectiveness of DDC in 

wrapper techniques, where the 

classification algorithm feedback 

measures the selected feature 

quality, remains untested. Future 

work will focus on integrating 

DDC with wrapper-based 

algorithms. 

Jia et al. 

(2019) 

Spotted Hyena Optimization 

Algorithm With Simulated 

Annealing for Feature 

Selection 

The combination of two metaheuristic methods 

enhances their individual performance in selecting 

features based on the fitness function. 

The experiments did not utilize 

high-dimensional data and the 

method involves recalculating the 

fitness function at each iteration 

on the same samples, which could 

be optimized. 

J. Li et al. 

(2020) 

Elephant Herding 

Optimization: Variants, 

Hybrids and Applications 

Applicable to various domains, particularly for 

feature selection using common principles that 

utilize metaheuristic methods. 

There is a need to design 

optimization operators and apply 

them to high-dimensional data for 

feature selection. 

Xu et al. 

(2019) 

Applying an Improved 

Elephant Herding 

Optimization Algorithm with  

Spark-based Parallelization to 

Feature Selection for Intrusion 

Detection  

The improved version utilizes Lévy flight to enhance 

the original Elephant Herding Algorithm for global 

optimization. 

 

The study used a relatively small 

sample (fewer than 50 features) 

and fewer than 250 samples, 

suggesting that it can be adjusted 

to accommodate a larger number 

of samples and features. 

Arora & 

Agarwal 

(2024) 

Empirical Study of Nature-

Inspired Algorithms for 

Feature Selection in Medical 

Applications 

The survey paper employs various nature-inspired 

algorithms to identify the most effective one. 

One challenge is the number of 

particles or chromosomes used in 

the algorithms. Another challenge 

is the presence of redundant 

solutions, as many datasets exhibit 

multimodal solutions. This implies 

that there can be multiple subsets 

of features with the same size and 

error. The nature-inspired 

algorithms should be capable of 

detecting all such subsets. 

Premalatha 

et al. (2024) 

Comparative evaluation of 

nature-inspired algorithms for 

feature selection problems 

 

Various metaheuristic techniques inspired by 

human behaviour and mammalian traits are 

compared for their efficiency in feature selection 

problems. 

A challenge remains for 

researchers to design a universal 

algorithm that excels across all 

dimensions, particularly for high-

dimensional datasets, as the work 

utilized relatively small samples. 
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Figure 1. Illustration of noisy sample. 

As we observed earlier, although we can generate synthetic data using methods such as SMOTE, the generated data 

can introduce new challenges, including noise. This issue may arise because some features have overlapping 

information between different object classes. Therefore, it might be beneficial to reduce the features that create 

overlapping information from different classes. This motivates us to use rough set theory, specifically discernible 

and incremental discernible scores, to reduce features with overlapping information and to decrease computation 

time. The feature assessment will not rely on the original data for each assessment and samples will be ordered to 

help detect optimal samples (including optimized sample partition) and features. 

3 PROPOSED METHOD 
This research combines a literature review and experimental methods. Initially, a procedural function was developed 

based on rough set theory using Python. This function was then applied to derive discernible scores. The rough set 

principle can also be likened to streaming processes, where new data are compared to an existing partitioned dataset 

(not necessarily the original data). This approach ensures that the learning process does not restart with historical 

data, thereby reducing learning time. As shown in Figure 2, the original data are divided into k partitions. Some 

partitions are initially used for sample selection based on discernible scores, while subsequent partitions are 

incrementally processed, simulating a streaming process with no overlapping samples. The partitioned data are 

optimized using the long-tail position Grey Wolf Optimizer and the original Grey Wolf Optimizer to assess their 

effectiveness. Following sample selection, an incremental feature selection process is applied to identify optimal 

features, resulting in a refined sample set with selected features, which is then used for model training. This process 

removes unnecessary samples, ensuring that only genuinely new samples and optimal features are included, 

distinguishing our study from the method proposed by Yang et al. (2022). 

https://aip.vse.cz/
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Figure 2. Overview of proposed method. 

 

3.1 Rough set theory for sample and feature selection 
Pawlak introduced the concept of rough sets in 1982. This theory has been utilized in database mining and 

knowledge discovery within relational databases. The rough set approach allows the exploration of structural 

relationships within data that are imprecise or contain noise. In rough set theory, data are organized in a tabular 

format, where each row represents a fact or object and the entire table is referred to as an information system. Thus, 

the information table serves as input data, sourced from various domains. Within these tables, multiple objects may 

share identical features. To streamline the table, it is common practice to retain only one representative object for 

each set of objects with identical features. These representative objects are referred to as indiscernible objects or 

tuples. For any subset P of attributes, there exists an association equivalence relation denoted as IND(P): 

                           𝐼𝑁𝐷(𝑃) =  {(𝑥, 𝑦) ∈ 𝑈2 | ∀𝑎 ∈ 𝑃, 𝑎(𝑥) = 𝑎(𝑦)}.                         (1) 

In this section, rough set theory will be directed towards feature selection, particularly as an incremental approach. 

While the underlying principle is not novel, the primary contribution of this paper lies in advancing the concept of 

discernible score and introducing the variant GWO to optimize sample partition. The paper introduces a method to 

assess features without relying on the initial dataset to avoid recalculations. It incorporates adaptive selection of 

samples and features during new data streaming, or in other words, during incremental processes. The approach 

prioritizes ordered sampling using a shuffle principle to achieve optimal feature selection more effectively. 

https://aip.vse.cz/
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Here, a triple (U, A, D) is referred to as a decision table, where U represents samples, A represents attributes and D 

represents decision features. For a given sample x ∈ U, 𝐴(𝑥) = (𝑎1(𝑥), 𝑎2(𝑥), … , 𝑎𝑚(𝑥)) and D(x) is defined. For the 

sake of clarity and understanding of the concepts employed in this study, several important definitions and theorems 

related to them are provided below: 

 

Definition 1 (Yang et al., 2022)  

Let (U, A, D) be a decision table with 𝑈 =  {𝑥1, 𝑥2, … , 𝑥𝑛}, B ⊆ A. The discernible vector x ∈ U with respect to B is 

defined as: 

       𝑑𝑖𝑠𝐵(𝑥) = (𝑑1
𝐵, 𝑑2

𝐵 , … , 𝑑𝑛
𝐵), where  

                                                𝑑𝑖
𝐵 = {

1, 𝐵(𝑥) ≠ 𝐵(𝑥𝑖), 𝐷(𝑥) ≠ 𝐷(𝑥𝑖)
0,                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                                     (2) 

The discernibility score of B is defined as: 

                                              𝑑𝑠𝐵(𝑥) =  
1

𝑛
∑ |𝑑𝑖𝑠𝐵(𝑥𝑖)|.𝑛

𝑖=1                                                  (3) 

By Definition 1, we have 0 ≤ 𝑑𝑠𝐵 ≤ 1. The relationship between discernible vectors or observed samples and the 

discernible score of features selected for samples and subfeatures is elucidated in the following properties: 

Theorem 1 (Yang et al., 2022) 

Let (U, A, D) be a decision table. Then: 

1. 𝑑𝑠𝐵(𝑈) =  𝑑𝑠𝐴(𝑈)  if and only if 𝑑𝑠𝐵(𝑥) =  𝑑𝑠𝐴(𝑥), ∀𝑥 ∈ 𝑈.                                 (4) 

2. If 𝑑𝑠𝑝(𝑈) =  𝑑𝑠𝐴(𝑈)  then  𝑑𝑠𝐵(𝑈) =  𝑑𝑠𝐴(𝑈), ∀𝑃 ⊆ 𝐵 ⊆ 𝐴.                                 (5) 

Theorem 1 states that if we have subfeatures that cover the discernible score from all features, denoted as B, then B 

is considered the optimal set of features. 

Proof:  

1. Clear by definition 1. 

2. Suppose there exists 𝑃 ⊆ 𝐵  with the condition 𝑑𝑠𝑝(𝑈) ≠  𝑑𝑠𝐴(𝑈) , by this we have 𝑑𝑠𝐵(𝑈) < 𝑑𝑠𝐴(𝑈)   and 

𝑑𝑠𝑃(𝑈) < 𝑑𝑠𝐵(𝑈), which means that 𝑑𝑠𝑃(𝑈) < 𝑑𝑠𝐴(𝑈). Contradicts. 

Next, some properties and definitions related to feature selection, feature redundancy and sample selection are 

provided. 

 

Definition 2 (Yang et al., 2022) 

Given a decision table (U, A, D), 𝑃 ⊆ 𝐴 is an optimal feature subset of (U, A, D), also called a reduct if it satisfies: 

1. 𝑑𝑠𝑝(𝑈) =  𝑑𝑠𝐴(𝑈)                                                                                                            (6) 

2. 𝑑𝑠𝑝−{𝑎}(𝑈)  ≠  𝑑𝑠𝐴(𝑈), ∀ 𝑎 ∈ 𝑃                                                                                     (7) 

 

By Definition 2, the feature 𝑎 ∈ 𝐴 −  𝑃 is redundant with P, if 𝑑𝑠𝑝∪{𝑎}(𝑈)  =  𝑑𝑠𝑃(𝑈). 

Now, let U be the object, divided into n parts, denoted as 𝑈′1 , 𝑈′2 , … , 𝑈′𝑛 . Consider these n samples as incoming each 

other during feature selection process (which we call an incremental process). We have the following theorems:  

Theorem 2 (Yang et al., 2022) 

Let (U, A, D) be an original dataset, 𝑈′ be an incoming sample set and 𝑥 ∉  𝑈′ if x is previously filtered sample, then 

the same optimal feature subset is obtained from (𝑈 ∪ {𝑥}  ∪  𝑈′, 𝐴, 𝐷) and (𝑈 ∪  𝑈′, 𝐴, 𝐷). 

Theorem 3 (Yang et al., 2022) 

For 𝐵 ⊆ 𝐴 and 𝑥𝑖 ∈ 𝑈, let 𝐼𝐵
𝑈𝑜(𝑥𝑖) = (𝑑1

𝐵 , 𝑑2
𝐵 , … , 𝑑𝑛

𝐵) where for 𝑦𝑖𝜖𝑈𝑜, 

                                            𝑑𝑖𝑗
𝐵 = {

1, 𝐵(𝑥) ≠ 𝐵(𝑦𝑖), 𝐷(𝑥) ≠ 𝐷(𝑦𝑖)
0,                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                                        (8) 
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Thus,  

      𝑑𝑠𝐵(𝑈 ∪ 𝑈𝑜) =  
1

(𝑛+𝑛𝑜)2
(𝑛2𝑑𝑠𝐵(𝑈) + 𝑛𝑜

2𝑑𝑠𝐵(𝑈𝑜) + 2 ∑ |𝐼𝐵
𝑈(𝑥𝑖)|𝑛

𝑖=1 ).             (9) 

A feature will not undergo further examination during the process of determining features B, if 𝑑𝑠𝑃∪𝐵∪{𝑎}(𝑈 ∪  𝑈𝑜) =

 𝑑𝑠𝑃∪𝐵(𝑈 ∪  𝑈𝑜) holds for 𝑎 ∈ 𝐴 −  𝑃 − 𝐵. Furthermore, the feature 𝑎 ∈ 𝑃 will be deleted from 𝑃 if 𝑑𝑠(𝑃−{𝑎}) ∪ 𝐵(𝑈 ∪

 𝑈𝑜) = 𝑑𝑠𝐴(𝑈 ∪  𝑈𝑜). 

 

Figure 3. Process flow of proposed method. 

3.2 Long-tail Position Grey Wolf Optimizer 
Grey wolf optimization (GWO) is the swarm intelligence optimization technique which was first introduced in 

(Mirjalili et al., 2014). It is inspired by the leadership hierarchy and hunting process of the grey wolf in nature. The 

relatively simple mechanism of the GWO makes it easy to implement over other Nature-Inspired Algorithms (NIAs). 

Also, it has fewer decision variables, less storage required and does not possess any rigorous mathematical equations 

of the optimization problem. Mirjalili et al. (2014) explained the hunting behaviour of wolves as follows: 

 

Starting with encircling followed by attacking, where the encircling process is described by the following 

mathematical equation: 

   𝑫 = 𝑪. 𝑿𝒑,𝒕 −  𝑿𝒕,                (10) 

      𝑿𝒕+𝟏 = 𝑿𝒑,𝒕 −  𝑨. 𝑫                                (11) 

where A and C are coefficient vectors, Xp,t denotes the position vector of the prey at the current iteration t and 

Xt+1  denotes the position vector of a grey wolf at the next iteration. These vectors are determined as: 

      𝑨 = 2𝒂. 𝒓𝟏 − 𝒂,          (12) 

      𝑪 = 2𝒓𝟐          (13) 
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where the condition vector a is a linearly decreasing parameter from 2 to 0 and r1 and r2 are random vectors in [0,1]. 

To encircle the position of the prey, the wolf position is approximated by the average of the position guided by alpha 

(𝑿𝟏), beta (𝑿𝟐) and gamma (𝑿𝟑), which can be calculated as:  

                                                                       𝑫𝒊 = |𝑪𝒊. 𝑿𝒊 − 𝑿𝒑|,                                                         (14) 

where i means alpha, beta and delta and p means the position of the prey.  Moreover, for each wolf we can estimate 

their position by: 

𝑿𝒊 = 𝑿𝒊 − 𝑨𝒊. 𝑫𝒊,                                                                        (15) 

respectively for alpha, beta and delta. Consequently, the position of the prey in the next iteration can be estimated 

as: 

                                                      𝑿𝒕+𝟏 =  
𝑿𝟏+ 𝑿𝟐+𝑿𝟑

3
.                                  (16)  

 

Figure 4. Illustration of family long-tail distribution.  

As we can see in Equation (16), that final position is determined by the average of all the wolves, implying that each 

wolf has the same weight and role. This approach does not align well with the natural hierarchy of a wolf pack, 

where the alpha wolf leads. This uniform weighting can cause premature convergence in the grey wolf optimizer 

(GWO). To address this issue, we propose assigning a leader role to the alpha wolf, followed by other wolves with 

weights derived from a long-tail distribution. This distribution is chosen because it allows some regions, less 

frequently covered by the wolves, to be explored more effectively compared to using a normal distribution. Thus, 

we have: 

 

                                                       𝑿𝒕+𝟏 =  𝑤𝛼𝑿𝜶 + 𝑤𝛽𝑿𝜷 +  𝑤𝛿𝑿𝜹                                                        (17) 

 

where 𝑤𝛼 >  𝑤𝛽 > 𝑤𝛿 ,  𝑤𝑖  ∈ 𝑾~long-tail distribution, and we can use the Pareto distribution as the element of the 

tail distribution. Many researchers have attempted to enhance the original GWO and have applied it in a wide range 
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of areas (see, Al Afghani Edsa & Sunat, 2023; Almotairi, 2023; Altay & Varol Altay, 2023; Dhargupta et al., 2020; 

Hashem et al., 2023; Jain et al., 2023; K. Li et al., 2022; Y. Wang et al., 2020; Zhang et al., 2023). 

3.3 Proposed method 
From (Yang et al., 2022) and the discussion above, it can be understood that the data partition is created randomly 

without considering the variance of the resulting partition. The assessment of selected features still needs to be 

compared to the initial sample U. This motivates us to create data partitions with an optimized version to minimize 

variance by using the long-tail position GWO. We shuffle U before selecting samples and avoid reassessing U during 

sample selection. We consider 𝑈′𝑖 and 𝑈′𝑗  as different partitions and take different values for each x ∈ A, described 

by the discernible score. 

Let (U, A, D) be the decision table, with N samples and M features as cardinality of A.   

We have the following procedure: 

A. Initialization 

Divide U into n partitions, by considering minimum variance for each partition by using long-tail GWO, we will 

get 𝑈′1_𝑜𝑝𝑡 , 𝑈′2_𝑜𝑝𝑡 , … , 𝑈′𝑛_𝑜𝑝𝑡.  Compute the initial discernible score for the dataset U by using equations (2) and 

(3), where  𝑈′𝑖_𝑜𝑝𝑡 represents the i-th optimized partition of the dataset. 

 

B. Feature selection iteration 

By applying equations (8) and (9), we obtain the selected features and samples. Meanwhile, the remaining 

features (fea_left) and samples (sam_left) are left after initialization. The iteration proceeds as follows: 

1. Shuffle the dataset 

Shuffle the dataset U to ensure randomness in sample selection: 

          𝑈𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑 = 𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑(𝑈′1_𝑜𝑝𝑡 , 𝑈′2_𝑜𝑝𝑡 , … , 𝑈′𝑛_𝑜𝑝𝑡 . )                          (18)  

where 𝑈𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑  is the result after shuffling to ensure random sample ordering. 

 

2. Partitioning for feature assessment 

Partition the shuffled dataset into k equivalent, 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑓𝑜𝑙𝑑(𝑥), parts for independent assessment: 

                          𝑝𝑎𝑟𝑡𝑠 = 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑓𝑜𝑙𝑑(𝑈𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑 , 𝑘)                                     (19) 

to get new 𝑈′1_𝑜𝑝𝑡 , 𝑈′2_𝑜𝑝𝑡 , … , 𝑈′𝑛_𝑜𝑝𝑡 .  

 

3. Calculate incremental discernible score 

For each remaining feature 𝑓𝑗  ∈ 𝑓𝑒𝑎_𝑙𝑒𝑓𝑡 , compute its incremental discernible score using the 

partitioned dataset: 

                                 𝑡𝑒𝑚𝑝_𝑖𝑛_𝑑𝑠[𝑗] = max (𝑑𝑠(𝑈′𝑖_𝑜𝑝𝑡[: , 𝑓𝑒𝑎𝑠𝑙𝑡 ∪ {𝑓𝑖}], 𝑠𝑎𝑚𝑙𝑒𝑓𝑡 , 𝑈′𝑗_𝑜𝑝𝑡))                      (20) 
 

This step ensures no assessment of the original dataset; in fact, we assess in a new  sample partition or 

a new data stream. 

Where: 

• 𝑓𝑗 is a feature in the set of remaining features; 

• 𝑓𝑒𝑎𝑠𝑙𝑡  represents the set of already selected features; 

• 𝑑𝑠 is the discernible score function form (8) and (9) applied to the partitioned dataset; and 

• 𝑡𝑒𝑚𝑝_𝑖𝑛_𝑑𝑠[𝑗] is the temporary incremental discernible score for the feature 𝑓𝑗. 

 

4. Adaptive threshold calculation 

To select the optimal sample as Theorem 2 stated, to make a decision optimal sample we calculate the 

discernible score and compare it with a threshold to determine the new feature; to calculate this, we 

need an adaptive threshold using a specified percentile: 

                             adaptive_threshold = percentile(selected data sample)                           (21) 

 

5. Select the feature with the maximum incremental discernible score 
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Select a new feature 𝑓𝑛𝑒𝑤 based on the maximum incremental discernible score that exceeds the 

adaptive threshold: 

                𝑓𝑛𝑒𝑤 =  argmax
𝑗

{𝑡𝑒𝑚𝑝_𝑖𝑛_𝑑𝑠[𝑗]|𝑡𝑒𝑚𝑝_𝑖𝑛_𝑑𝑠[𝑗] > 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑}       (22) 

 

6. Update selected features and remaining features 

Update the selected feature set: 

                                𝑓𝑒𝑎_𝑠𝑙𝑡 = 𝑓𝑒𝑎_𝑠𝑙𝑡 ∪  {𝑓𝑛𝑒𝑤}                                               (23) 

Remove 𝑓𝑛𝑒𝑤 from fea_left: 

                                   𝑓𝑒𝑎_𝑠𝑙𝑡 = 𝑓𝑒𝑎_𝑠𝑙𝑡 \ {𝑓𝑛𝑒𝑤}                                              (24) 

where, 𝑓𝑒𝑎_𝑠𝑙𝑡 is the updated set of selected features. 

 

7. Update remaining samples and assess feature redundancy 

1. Update the remaining samples sam_left based on the discernible score differences. 

2. Assess feature redundancy and adaptively remove redundant features. 

 

For partitioning the dataset, by using the long-tail GWO we need to determine the objective function, consider: 

Given dataset X with n samples and m features and k desired number of partitions, we have: 

                                                     𝑓(𝑰) =  
1

𝑘
∑ ∑ 𝑉𝑎𝑟(𝑿𝑰𝑖,𝑑)𝑚

𝑑=1
𝑘
𝑖=1                                            (25) 

where: 

• 𝑰𝑖 =  {𝑰[𝑗] | 𝑗 ≡ 𝑖 (𝑚𝑜𝑑 𝑘)} represents the indices assigned to the i-th partition. 

• 𝑉𝑎𝑟(𝑿𝑰𝑖,𝑑) is the variance of the d-th feature in the i-th partition. 

The proposed method aims to eliminate features that may introduce noise or overlap in samples. By avoiding 

reliance on the original data for feature assessment, the method significantly reduces computation time. The 

approach incorporates random shuffling and adapts incrementally to ensure optimal feature selection. This results 

in faster and potentially superior feature optimization compared to existing methods. 

Table 2. Comparison between method proposed by Yang et al. (2022) and our study. 

Method Advantages Disadvantages 

Incremental feature 

selection (Yang et al., 

2022) 

• Effective feature selection methods that avoid 

redundant assessments. 

• Effective for high-dimensional datasets and 

extreme class ratios in imbalanced 

classification 

 

 

• Relies on the original dataset for assessment 

during incremental feature selection. 

• The incremental threshold for the selection 

process is rule-based (determined by the 

user). 

Our study • Effective feature selection methods that avoid 

redundant assessments. 

• Effective for high-dimensional datasets and 

extreme class ratios in imbalanced 

classification 

• The incremental threshold is dynamically 

changed based on the existing samples that 

were previously filtered. 

• In the assessment for feature selection, the 

incremental process does not rely on the 

original data; it continues processing the 

incoming data without referring to the original 

dataset, using the concept from Theorem 3. 

• Since we use a threshold for selection based 

on the percentile of existing data, this may 

cause issues with small sample sizes, as the 

samples used for percentile calculations may 

contain anomalies. This can be improved by 

applying the neighborhood principle to 

enhance the threshold method. 
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Furthermore, the method is versatile and not tied to a specific machine learning model; instead, it focuses on 

identifying optimal features that can be applied across various models. Its flexibility allows it to adapt to different 

data problems, making it straightforward to implement and use. 

4 RESULTS AND DISCUSSION 
This experiment was conducted on a computer with an 11th Gen Intel® Core™ i7-11700 processor, running at 2.50 

GHz with a base frequency of 2496 MHz, featuring 8 cores and 16 logical processors. Additionally, we used seven 

widely adopted datasets from the literature to assess the proposed method. These datasets represent diverse 

characteristics, including imbalanced class ratios, high-dimensional features with small sample sizes and vice versa. 

Some of these datasets are available at https://jundongl.github.io/scikit-feature/datasets.html. For the verification of 

the long-tail position GWO (LTP-GWO) and the GWO, we used the CEC 2019 benchmark with the Opfunu 1.0.4 

Python library, while other functions and modules were implemented in Python from scratch. 

4.1 Incremental feature selection 
In the realm of feature selection, over the past five years, many researchers have endeavoured to develop algorithms 

based on swarm intelligence. However, challenges arise particularly when dealing with a large number of features, 

as swarm intelligence algorithms typically require recalculations to obtain optimal features, resulting in increased 

computation time. Thus, our proposed method aims to address these challenges effectively. 

 

Figure 5. Illustration of boundary related to misclassification. 

 
To evaluate the effectiveness of the procedure used, the following performance metrics will be utilized: 

1. Accuracy: The proportion of correctly classified instances to the total instances. 

                                       𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃)
.                                                   (26) 

where TP = True Positive, FN = False Negative, FP = False Positive and TN = True Negative.  

2. Precision: The proportion of correctly predicted positive instances to the total predicted positive instances. 

                                      𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
.                                                                (27) 

3. Recall: The proportion of correctly predicted positive instances to the total actual positive instances. 

                                             𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
.                                                               (28)  
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4. F1 Score: The harmonic mean of precision and recall, offering a balance between the two metrics. 

                                         𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
(𝑅𝑒𝑐𝑎𝑙𝑙 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
.                                          (29) 

 
For dataset information, we utilized open data characterized by high-dimensional features, some of which are 

accessible at https://jundongl.github.io/scikit-feature/datasets.html. Details regarding the experimental data used in 

this study are provided in Table 2. 

Table 3. Summary of datasets. 

Dataset N sample N feature Class  ratio Class type 

Glass 214 9 0.35/0.33/0.14/0.07/0.06/0.04 Multi class 

Libras movement 360 90 0.52/0.47/0.01 Multi class 

QSAR biodegradation 1055 41 0.48/0.45/0.07 Multi class 

PCMAC 1943 3288 0.98/0.01/0.003/0.002/0.0006/0.0003 Multi class 

Pima 768 7 0.65/0.35 Binary class 

Sick 2800 29 0.61/0.17/0.17/0.07 Multi class 

Brain1 90 5920 0.67/0.11/0.11/0.07/0.04 Multi class 

      

In this experiment, the focus is on model performance (we use KNN as the machine learning model because it is 

relatively straightforward to implement with the selected features obtained from the proposed procedure), the 

number of selected features and runtime. By extending the method introduced by Yang et al. (2022) and making it 

more adaptive based on the available sample rather than reverting to the original data, ordered shuffle sampling 

and optimized data partitioning can save computation time and achieve better optimal features. Additionally, the 

proposed method is flexible and can be used with any machine learning model, not being tied to a specific one. This 

approach can be particularly useful for feature selection in cases of imbalanced or high-dimensional datasets. To 

ensure that our results are reliable and not due to chance, we repeated the procedure 30 times to obtain statistical 

values. 

Table 4. Experimental results – average values (long-tail position GWO based). 

Dataset Value Accuracy F1 score Recall Precision N selected 

features 

Glass Mean 0.9288 0.6550 0.6684 0.6466 1 

Std 0.0691 0.2544 0.2410 0.2701 0 

Libras movement Mean 0.8083 0.6347 0.6547 0.6553 10.3667 

Std 0.0696 0.1302 0.1254 0.1411 1.4019 

QSAR 

biodegradation 

Mean 0.8679 0.7864 0.7790 0.8138 12.3000 

Std 0.0312 0.0753 0.0855 0.0634 2.8500 

PCMAC Mean 0.9980 0.8496 0.8499 0.8493 15.2000 

Std 0.0033 0.2529 0.2523 0.2533 14.7725 

Pima Mean 0.75 0.7236 0.7244 0.7375 1 

Std 0.0502 0.0541 0.0534 0.0547 0 

Sick Mean 0.9532 0.5431 0.5319 0.6501 12.4000 

Std 0.0144 0.0523 0.0325 0.1806 5.0173 

Brain1 Mean 0.9037 0.7305 0.7511 0.7240 1 

Std 0.0983 0.2632 0.2526 0.2753 0 

 

The role of adaptive thresholds in equations (21) and (22) is to ensure that the thresholds are data-driven rather than 

rule-based, allowing them to adapt to the specific conditions of the data. By evaluating the discernible scores of the 
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selected samples, the percentile that will serve as the threshold can be determined. Additionally, careful 

consideration must be given to the selection of samples for assessment. This is crucial because, based on the 

principles of rough set theory and equations (2) and (3), sorting the samples can help identify the optimal features 

more effectively. 

Table 5. Comparison of test results (best scores in bold) (Friedmann rank test, p-value = 0.00049). 

Dataset Methods Accuracy N selected 

features 

Runtime (s) Rank 

Glass SMOTE-LOF (Asniar et al., 2022)  0.6484 NA NA 2 

This study (LTP-GWO) 0.7272 1 0.0156 1 

This study (GWO) 0.7272 1 0.0330 1 

Libras 

movement 

DFFS (Yang et al., 2022) 0.6250 11 25.3700 3 

IFS-SSFA (Yang et al., 2022)  0.5722 25 5.5500 4 

This study (LTP-GWO) 0.7222 13 3 2 

This study (GWO) 0.8333 9 3.7781 1 

QSAR 

biodegradation 

DFFS (Yang et al., 2022) 0.7990 35 54.3800 2 

IFS-SSFA (Yang et al., 2022) 0.7603 9 6.7400 3 

This study (LTP-GWO) 0.8679 13 4 1 

This study (GWO) 0.7358 15 9 4 

PCMAC DFFS (Yang et al., 2022) 0.7452 39 36,070.6300 3 

IFS-SSFA (Yang et al., 2022) 0.6562 9 1,292.0400 4 

This study (LTP-GWO) 1 9 346 2 

This study (GWO) 1 10 770.2779 2 

Pima SMOTE-LOF (Asniar et al., 2022) 0.7396 NA NA 2 

This study (LTP-GWO) 0.7662 1 0.05 1 

This study (GWO) 0.6883 1 0.0730 3 

Sick DFFS (Yang et al., 2022) 0.9182 24 58.7600 4 

IFS-SSFA (Yang et al., 2022) 0.9368 10 3.4600 3 

This study (LTP-GWO) 0.9532 10 5 1 

This study (GWO) 0.9464 9 4.3145 2 

Brain1 Relief (Pan et al., 2023) 0.6723 50 712 4 

MGWO (Pan et al., 2023) 0.9000 18 2,574 2 

This study (LTP-GWO) 0.9037 1 3 1 

This study (GWO) 0.7778 1 7 3 

 

The proposed method was then applied to an experimental dataset and its results were compared with another 

method using the same dataset. The findings indicate that the proposed method is capable of providing a relatively 

shorter processing runtime and achieving better performance and feature count compared to the other method. This 

demonstrates that the extension of the existing method served as our motivation for improvement. 

In Table 4, on the PCMAC dataset, our study demonstrates a reduction in processing time and an improvement in 

model performance compared to IFS-SSFA (Yang et al., 2022) and DFFS (Yang et al., 2022). The processing time 

decreased from 36,070.6300 and 1,292.0400 to 346 and 770.2779, respectively. Furthermore, PCMAC is a high-

dimensional dataset with 3,288 features and an extreme class ratio, making it a challenging multi-class classification 

task. Another experiment on the Brain1 dataset, which has 5,920 features and a sample size of 90, also showed 

improvements in both processing time and model performance, despite its extreme class ratio and multi-class 

classification setup. 
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However, the proposed feature selection method has a drawback when it comes to sample selection during data 

partitioning. Specifically, it uses a percentile-based threshold from the partitioned samples, which is updated in 

subsequent iterations as the optimized partition changes. As a result, the selected samples may not entirely match 

the original data split used for incremental learning. The original data are divided into two sets: initial data and 

incremental data. As the process progresses, feature selection is no longer based on the initial data, but instead relies 

on the incremental data. This becomes a limitation when the sample size is small, for example, 100 samples. The 

incremental data might become too small, leading to selection of very few features, as seen in our experiment, where 

only one feature was selected, although it improved model performance. This issue can be mitigated by adjusting 

the threshold approach to a neighbourhood principle, ensuring that neighbouring samples are grouped together, 

smoothing the sample selection and optimizing the partition further. 

Table 6. Convergence curve (Accuracy) of LTP-GWO vs GWO on dataset. 

Dataset Convergence curve 

Glass 

 

Libras movement 
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Dataset Convergence curve 

QSAR biodegredation 

 

PCMAC 
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Dataset Convergence curve 

Pima 

 

Sick 
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Dataset Convergence curve 

Brain1 

 

 

We also present the convergence curve of the partitioning method using the grey wolf optimizer and its 

improvement using a long-tail distribution. The improved version showed better accuracy in most cases across 

iterations. 

From the discussion above, our proposed method—an extension of Yang et al. (2022) with a focus on optimized data 

partitioning—does not rely on the original dataset when evaluating selected features. We ran the procedure 30 times 

to assess its reliability, finding that it significantly improves the selection of samples and features, making it suitable 

for further modelling, such as with the K-nearest neighbours (KNN) model. Notably, the proposed method 

efficiently handles more than 1,000 features in a relatively short time, which is a distinct advantage for high-

dimensional data analysis, where traditional methods often struggle. For instance, widely used techniques such as 

PCA can become inadequate when dealing with such a large number of features. 

To statistically validate our results, we applied the Friedman rank test, a non-parametric test often used to compare 

multiple algorithms across different datasets. Instead of ranking the average performance, in this study, we 

specifically ranked the best scores obtained in each iteration for each method. This approach helps to highlight the 

peak performance of the method, which is especially relevant for optimization tasks. The Friedman rank test yielded 

a p-value of 0.00049, indicating a statistically significant improvement of our proposed method compared to the 

other methods evaluated. 

The Friedman test was selected because our method makes use of an optimized data partitioning approach, based 

on an improved version of the grey wolf optimizer (GWO). Since the GWO is a swarm-based algorithm, we ran the 

procedure 30 times to assess reliability, focusing on the best scores, as detailed in Tables 3 and 4. Additionally, we 

compared the performance of our method against the original GWO. 

Our study also differs from existing literature, where most approaches directly employ bio-inspired algorithms for 

feature selection, as seen in J. Li et al. (2020) and Pham & Raahemi (2023). Aware of the inefficiency of recalculating 

the same samples in such approaches, we combined rough set theory with optimized data partitioning, supported 

by bio-inspired methods—particularly the GWO. 

Based on our study, the proposed method can be applied across a range of domains, including healthcare, social 

network analysis, text mining for aspect-based sentiment analysis and other use cases involving high-dimensional 

data. Its ability to handle large feature sets efficiently makes it versatile and suitable for any domain requiring robust 

feature selection under high-dimensional conditions. 
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Despite its strengths, our method does have some limitations. The selection process for optimal samples is dynamic 

and based on a percentile approach, which, while effective, could be further improved. A potential enhancement 

would involve employing a neighbourhood-based approach, similar to that of Y. Li et al. (2023), which considers 

surrounding samples to refine the selection. Moreover, our method could be extended to handle pixel data for image 

processing tasks, which is another area for future research. 

4.2 Verification of Long-tail Position GWO 
As previously mentioned, the long-tail position grey wolf optimizer (GWO) is more effective at covering areas that 

the original GWO may not reach. To evaluate our optimizer, we will compare the proposed Long-Tail Position GWO 

with the original GWO using benchmark functions with a dimension of 100, including the CEC 2019 test suite. The 

number of evaluations is set to 10,000, with the same number of agents (50) for both optimizers. 

Table 7. Conventional benchmark function (Dimension = 100). 

Function Formula Category Search 

space 

Optimal 

value 

F1 
𝒇(𝒙) =  ∑ 𝒙𝒊

𝟐

𝒏

𝒊=𝟏

 
Unimodal [-100,100] 0 

F2 
𝒇(𝒙) =  ∑ |𝒙𝒊| + ∏ |𝒙𝒊|

𝒏

𝒊=𝟏

𝒏

𝒊=𝟏

 
Unimodal [-10,10] 0 

F3 
𝒇(𝒙) =  ∑( (∑ 𝒙𝒋

𝒊

𝒋=𝟏
)

𝟐

)

𝒏

𝒊=𝟏

 
Unimodal [-100,100] 0 

F4 𝒇(𝒙) = 𝒎𝒂𝒙{|𝒙𝒊|, 𝒊 ≤ 𝒊 ≤ 𝒏} Unimodal [-100,100] 0 

F5 
𝒇(𝒙) =  ∑[𝟏𝟎𝟎(𝒙𝒊+𝟏 − 𝒙𝒊

𝟐)𝟐 + ((𝒙𝒊 − 𝟏)𝟐)]

𝒏−𝟏

𝒊=𝟏

 
Unimodal [-30,30] 0 

F6 
𝒇(𝒙) =  ∑([𝒙𝒊 + 𝟎. 𝟓])𝟐

𝒏

𝒊=𝟏

 
Unimodal [-100,100] 0 

F7 
𝒇(𝒙) =  ∑ 𝒊𝒙𝒊

𝟒 + 𝒓𝒂𝒏𝒅𝒐𝒎[𝟎, 𝟏)

𝒏

𝒊=𝟏

 
Unimodal [-1.28,1.28] 0 

F8 
𝒇(𝒙) =  ∑ −𝒙𝒊𝒔𝒊𝒏(√|𝒙𝒊|)

𝒏

𝒊=𝟏

 
Multimodal [-500,500] -418.9 

*Dimension 

F9 
𝒇(𝒙) =  ∑[𝒙𝒊

𝟐 − 𝟏𝟎 𝒄𝒐𝒔(𝟐𝝅𝒙𝒊) + 𝟏𝟎]

𝒏

𝒊=𝟏

 
Multimodal [-5.12,5.12] 0 

F10 

𝒇(𝒙) =  −𝟐𝟎𝒆𝒙𝒑 (−𝟎. 𝟐√
𝟏

𝒏
∑ 𝒙𝒊

𝟐

𝒏

𝒊=𝟏

) − 𝒆𝒙𝒑(
𝟏

𝒏
 ∑ 𝐜𝐨𝐬 (

𝒏

𝒊=𝟏

𝟐𝝅𝒙𝒊)) +  𝟐𝟎 +  𝒆 

Multimodal [-32,32] 8.88E-16 

F11 
𝒇(𝒙) =  

𝟏

𝟒𝟎𝟎𝟎
∑ 𝒙𝒊

𝟐 − ∏ 𝒄𝒐𝒔 (
𝒙𝒊

√𝒊
) + 𝟏

𝒏

𝒊=𝟏

𝒏

𝒊=𝟏
 

Multimodal [-600,600] 0 

F12 
𝒇(𝒙) =  

𝝅

𝒏
{𝟏𝟎𝒔𝒊𝒏(𝝅𝒚𝟏) + ∑(𝒚𝒊 − 𝟏)𝟐[𝟏 + 𝟏𝟎𝒔𝒊𝒏𝟐(𝝅𝒚𝒊+𝟏)] + (𝒚𝒏 − 𝟏)𝟐

𝒏−𝟏

𝒊=𝟏

}

+ ∑ 𝒖(𝒙𝒊, 𝟏𝟎, 𝟏𝟎𝟎, 𝟒)

𝒏

𝒊=𝟏

 

𝒚𝒊 = 𝟏 + 
𝒙𝒊 + 𝟏

𝟒
 

𝒖(𝒙𝒊, 𝒂, 𝒌, 𝒎) =  {

𝒌(𝒙𝒊 − 𝒂)𝒎                        𝒙𝒊 > 𝒂
𝟎                          − 𝒂 < 𝒙𝒊 < 𝒂

𝒌(−𝒙𝒊 − 𝒂)𝒎                𝒙𝒊 <  −𝒂
 

Multimodal [-50,50] 0 
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F13 
𝒇(𝒙) = 𝟎. 𝟏 {𝒔𝒊𝒏𝟐(𝟑𝝅𝒙𝟏) 

+ ∑(𝒙𝒊 − 𝟏)𝟐[𝟏 + 𝒔𝒊𝒏𝟐(𝟑𝝅𝒙𝒊 + 𝟏)]

𝒏

𝒊=𝟏

+ (𝒙𝒏 − 𝟏)𝟐[𝟏 + 𝒔𝒊𝒏𝟐(𝟐𝝅𝒙𝒏)]} + ∑ 𝒖(𝒙𝒊, 𝟓, 𝟏𝟎𝟎, 𝟒)

𝒏

𝒊=𝟏

 

Multimodal [-50,50] 0 

 

Table 8. Classical benchmark function comparison. 

Function Value LTP - GWO GWO 

F1 Avg 0 0 

Std 0 0 

F2 Avg 0 0 

Std 0 0 

F3 Avg 0 0 

Std 0 0 

F4 Avg 0 0 

Std 0 0 

F5 Avg 98.2534 98.1318 

Std 0 0.07541 

F6 Avg 0 0 

Std 0 0 

F7 Avg 1.6630e-06 2.3369e-06 

Std 0 2.1520e-06 

Rank   

F8 Avg -41898.2887 -41803.0821 

Std 0 343.2972 

F9 Avg 0 0 

Std 0 0 

F10 Avg 4.4408e-16 4.4408e-16 

Std 0 0 

F11 Avg 0 0 

Std 0 0 

F12 Avg 0.0966 0.1362 

Std 0 0.0648 

F13 Avg 2.4908 2.7199 

Std 0 0.8318 

Table 9. CEC 2019 benchmark function. 

No Function Dimension Search Space Best 

F1 Storn’s Chebyshev Polynomial Fitting Problem 9 [-8192,8192] 1 

F2 Inverse Hilbert Matrix Problem 16 [-16,384,16,384] 1 

F3 Lennard-Jones Minimum Energy Cluster 18 [-4,4] 1 

F4 Rastrigin’s Function 10 [-100,100] 1 

F5 Griewangk’s Function 10 [-100,100] 1 

F6 Weierstrass Function 10 [-100,100] 1 
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No Function Dimension Search Space Best 

F7 Modified Schewefel’s Function 10 [-100,100] 1 

F8 Expanded Schaffer’s F6 Function 10 [-100,100] 1 

F9 Happy Cat Function 10 [-100,100] 1 

F10 Ackley Function 10 [-100,100] 1 

 

The rationale for using 100 dimensions in the conventional benchmark functions and CEC 2019 is to evaluate the 

effectiveness of the long-tail position GWO in solving complex problems, particularly in multimodal scenarios. 

Table 10. LTP-GWO vs GWO (on CEC2019). 

Function Value LTP-GWO GWO 

F1 Avg 1 1 

Std 1.3701-09 2.0613-09 

Rank 1 1 

F2 Avg 4.9941 4.9991 

Std 0.0196 0.0050 

Rank 1 2 

F3 Avg 5.1374 5.4914 

Std 1.1935 1.0061 

Rank 1 2 

F4 Avg 6346.8212 5875.1287 

Std 3041.9860 4082.4830 

Rank 2 1 

F5 Avg 2.3173 2.5575 

Std 0.4314 0.555 

Rank 1 2 

F6 Avg 9.5171 9.9869 

Std 0.8832 0.6880 

Rank 1 2 

F7 Avg 699.0675 785.3209 

Std 372.4067 379.0702 

Rank 1 2 

F8 Avg 1.1649 1.2229 

Std 0.0943 0.0953 

Rank 1 2 

F9 Avg 107.7746 114.8789 

Std 68.0704 54.8689 

Rank 1 2 

F10 Avg 21.2793 21.32 

Std 0.0976 0.1066 

Rank 1 2 

 

Based on the above table, the Long-Tail Position GWO enhances the search capability of the original GWO, enabling 

it to find optimal or near-optimal solutions more effectively across various benchmark functions. By integrating both 

the Long-Tail Position GWO and original GWO with real-world scenarios, as demonstrated in our proposed method 

for optimizing data partitioning and feature selection in an incremental setting using Rough Set Theory, we achieved 

https://aip.vse.cz/


Acta Informatica Pragensia  Volume 14, 2025 

https://doi.org/10.18267/j.aip.254  109 https://aip.vse.cz 

promising results, confirmed through experimentation in this study. We can observe that the use of the optimizer 

significantly aids in determining the best partition for incremental feature selection. 

5 CONCLUSION 
In this paper, we introduce an enhanced version of incremental feature selection supported by rough set theory and 

optimized partitioning, utilizing the long-tail position grey wolf optimizer (LTP-GWO). The primary objective was 

to reduce computation time, minimize rule-based processes in incremental feature evaluation and improve the 

performance of machine learning models while ensuring that feature evaluation remains independent of the original 

data. Our approach achieves this by increasing adaptability during incremental updates through percentile 

thresholds derived from existing data. Additionally, we use shuffled ordering to accelerate the detection and 

computation of discernibility scores, eliminating the need to reference the original dataset. 

The optimized partitioning method reduces variance within each partition, which is exclusively used for the initial 

determination of optimal features. Experimental results, comparing our proposed method with state-of-the-art 

feature selection techniques across various scenarios, including imbalanced class distributions, demonstrate its 

superiority in most cases. Consequently, our method proves effective in both practical applications and academic 

settings. 

Furthermore, the Grey Wolf Optimizer becomes adaptive by incorporating elements from long-tail distributions. 

For instance, if no improvement is observed, the method can switch to another long-tail distribution. This 

adaptability, combined with our feature selection approach, can also serve as a preprocessing step for clustering 

tasks. 

For future work, the dynamic sample partitioning could be refined by adopting a neighbourhood-based approach. 

In this study, we employed a percentile-based approach, which may be less effective if anomalies exist in the original 

partitions. Using a neighbourhood-based approach could better handle such anomalies, leading to more optimal 

sample partitioning and improved feature selection. 
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