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 Abstract  
Background: Blockchain technologies have come a long way, and integration of blockchain 
technologies into different fields is flourishing; however, there is a lack of blockchain platforms to 
manage the high network loads and more sophisticated security threats. These limitations impede the 
mass adoption of blockchain applications. One of the main reasons blockchain needs artificial 
intelligence (AI) is to integrate it for the widespread adoption of blockchain technology, as AI addresses 
scalability and security problems. 
Objective: The article proposes a pattern analysis model to overcome scalability and security 
limitations in blockchain systems by applying advanced AI techniques. 
Methods: To make the model scalable, the proposed model uses deep learning methods such as 
recurrent neural networks (RNNs) and long short-term memory (LSTM) networks. Furthermore, random 
forest and convolutional neural networks (CNNs) are applied to augment security operations as an 
effective classier and anomaly detector on transaction data and a real-time threat detection on 
transaction patterns using the CNNs. By analysing time series data and dealing with long-term 
dependencies, the model uses RNNs and LSTMs to enable the strategic introduction of the model to 
predict and control network loads. 
Results: When the proposed model is tested against a curated cloud dataset, it significantly 
outperforms the state-of-the-art approach in all the performance parameters. More specifically, it has 
exhibited a 5.05% increase in processing speed, 8.05% improvement in energy efficiency, and 5.27%, 
5.8%, 10.24% and 11.62% better attack analysis precision, accuracy, recall and AUC, respectively. 
Conclusion: The synergistic interaction of the applied AI techniques results in a blockchain paradigm 
that is both scalable and resilient to new security threats. This significant improvement in performance 
parameters demonstrates the effectiveness of integrating AI with blockchain technology to overcome 
scalability and security limitations, thereby enabling the widespread adoption of blockchain 
applications.  

 Index Terms 
Artificial intelligence; Blockchain technology; Scalability; Machine learning; Network congestion; 
Network load prediction; Real-time threat detection. 
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1 INTRODUCTION 
AI on the blockchain is a giant step towards solving critical challenges facing the game-changing digital ledger 

system. Blockchain developers have always faced the challenge of scalability as they strive to create a decentralised 

and secure platform for storing data and running transactions. The need to support ever-growing applications apart 

from cryptocurrencies in finance, health and supply chain management domains has put the scalability and security 

of the blockchain platform in the limelight (Alsamhi et al., 2024). Though this excellent technology has promising 

potential, it lags behind some constraints. Most importantly, there is the scalability issue, where an increase in the 

number of users and transactions in the network leads to traffic congestion and slows the transaction speed. Such a 

scalability bottleneck affects user experience and inhibits a more general use of blockchain technology. 

Moreover, there are security concerns, given that blockchain networks are increasing in complexity and value, 

making them more lucrative for cyberattacks, even from advanced sources, and calling for corresponding means of 

monitoring and responding to such threats. However promising, utilising AI in the blockchain space offers two 

exciting ways to solve the stated issues. AI algorithms, which can read through vast volumes of data to point out 

any patterns, are at the centre of interest in enhancing the scalability and safety of blockchain networks. By applying 

AI-based prescriptive analytics, we can proactively optimise transaction processing and resource management to 

deliver scalability in various use cases and manage network load effectively. At the same time, AI-based security 

systems offer a dynamic solution to detect and respond to potential threats through real-time identification and 

mitigation, thus enhancing the overall resilience of the infrastructure process (Olumide, 2018). 

Incorporated approach to AI with blockchain technology allows us to maximise its scalability and security. With 

RNNs and LSTM networks, the model successfully predicts, and controls network loads and operates under varying 

conditions to maximise it. Random forest and CNNs add to the security framework, showing that random forest is 

best suited for anomaly detection in blockchain transactions, whereas CNNs are good at pattern recognition that 

may hint at potential threats. A comprehensive evaluation of synthetic datasets provides evidence of the superiority 

of our model compared to previous methods in terms of speed, energy efficiency, threat detection, and response 

accuracy. With this AI technology converging in blockchain, these AI technologies solve current scalability and 

security problems, and this will be a transformational paradigm in blockchain development. This presents an 

innovative approach to a more robust, efficient, and secure blockchain system with direct implications for different 

industries and social sectors. At last, this work poses new standards in the blockchain domain, playing a part in 

enabling future improvements that can alter how technology is adopted and utilised. 

1.1 Motivation 
The motivation behind the study is to address the gap created by the intrinsic limits of blockchain technology or, to 

be more specific, scalability and security. As blockchain applications proliferate in different industrial segments, the 

challenges become critical, and hence, innovation for technology sustainability is needed in the long term. In this 

study, combining AI with blockchain seems rather inventive when creating innovations in blockchain network 

performance and resilience (Bathula et al., 2024). Such a single challenge remains one of the main drivers behind the 

present scalability study. This increase in the volume of transactions in blockchain networks causes network 

congestion, which reduces the speed of transaction processing and the cost of processed transactions and, therefore, 

negatively influences the network's efficiency and attractiveness of blockchain technology to its users. While larger 

block sizes or higher frequencies can give some relief, they offer only partial relief as they tend to harm other 

properties like lowering security or increasing centralisation. For this reason, considering an AI model that would 

predictively manage network load so that it remains sustained and effective on the blockchain becomes a vital task. 

Additionally, blockchain security has another looming crisis: the increasing complexity of cyberthreats. Although 

blockchain is decentralised and has cryptographic principles, attackers can attack the security of blockchain, which 

is well planned and executed because of the advanced persistent threats, leaving attack in their wake (Li et al., 2024). 

In this research, AI algorithms are used for real-time threat detection and response enabled by the blockchain with 

dynamic, proactive security that can detect and handle different threats in real-time in multiple applications. 
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1.2 Primary tasks of key contributions  
Task 1: Predicting and managing network load to enhance scalability 

Task 2: Detecting and responding to security threats to improve overall system security 

The first significant contribution is developing a blockchain model that uses AI to enhance scalability. The model 

employs RNNs and LSTM networks, which excel in time series analysis and detecting temporal patterns in 

transaction data. By accurately predicting and managing network load, this model can forecast potential congestion 

and make timely adjustments to optimise overall network performance. 

Second, this contribution consists of constructing a robust security framework by integrating random forests and 

CNNs. Such a dual approach can detect anomalies and malicious activities in transaction data and transaction 

graphs, respectively. The techniques are integrated into the model, thereby significantly increasing the security 

functionalities of blockchain systems against cyber threats. 

Thirdly, we empirically validate the model's effectiveness through extensive testing on a well-selected dataset for 

various real-world blockchain transaction types and sizes. This shows significant improvements in processing speed, 

energy efficiency, and precision and accuracy of attack analysis compared to existing methods. 

This paper studies the potential of synergising AI and blockchain technology to create additional research paths for 

the future. It details how the world currently faces these problems and how AI addresses them and opens new 

capabilities around it for different uses in industries. 

This paper will be structured to give an overall view of how blockchain scalability and security can be improved by 

the fusion pattern analysis (EBSSPA) model and its contribution to blockchain technology. Firstly, the paper 

introduces the problems encountered in blockchain systems and explains why scalability and security solutions are 

required. The proposed methodology is developing the EBSSPA model with integrated AI techniques and deep 

learning methods. The experimental studies and performance evaluation of the EBSSPA model are demonstrated in 

the results section, demonstrating its effectiveness in blockchain scalability and security improvement. The 

conclusion concludes with the essential findings and contributions of the paper, showing how the EBSSPA model 

could be applied in the real world. 

2 LITERATURE REVIEW 
It reviews the various accomplishments and technologies used to create better efficiency and security in blockchain 

by merging them with AI. This literature discusses several studies that lay the background to the proposed model 

to set up the state of research and identify the gap that needs to be filled for different scenarios. Jie et al. (2024) have 

discussed the development of a secure and flexible blockchain-based offline payment scheme that extends the 

application of blockchain techniques in the financial sector more than the conventional use of blockchain in the 

financial system. This piece underscored the importance of an intense security process, a theme that fits within 

current research on converting blockchain security using AI. Concerning the previous research, Jiaxing et al. (2024) 

studied blockchain-based auditing for big data in cloud storage. This scheme was based on blockchain for ensuring 

data integrity and security. They minimised system overheads while keeping good protection against malicious 

attacks using a deep reinforcement learning model. It improved transaction processing while lowering the network 

latency compared to the previous procedure. In Zhang et al. (2024), dynamic trust-based redactable blockchains were 

explored, and they provided some insights into the freedom of blockchains to update the data and its traceability of 

such data. Current research is a foundation of a flexible but secure and trusted blockchain, where AI effectively 

manages network loads and security responses.  

Tandon et al. (2024) state that two blockchains can form a decentralised architecture to authenticate vehicles. 

Authentication and communication functions have been separated to make it efficient and secure. Our evaluations 

demonstrated an order of magnitude decrease in the computational cost, on average faster processing and a higher 

vehicle verification rate compared with existing methods. Dai et al. (2024) utilised declaration informing the balance 

of data immutability vs data redaction in blockchain systems through a redactable blockchain framework that uses 

a public trapdoor mechanism. The design of the present research's AI-enhanced model heavily depends on this 

balance, which retains the integrity of blockchain and improves scalability and security. In their work, Puneeth et al. 

(2024) and Bukola et al. (2024) developed an integrated blockchain and deep learning system for medical cyber-
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physical systems that support both safe and secure data operations. Based on medical data analysis, the system 

reached an astounding 96% accuracy, and this vastly enhanced security provided a new vision for medical cyber-

physical systems and security. For example, Kuznetsov et al. (2024) discussed the applicability of incorporating AI 

and blockchain from a security perspective, and this is an area that is closely similar to the proposed AI-driven 

blockchain model. Meanwhile, other studies like Zhang et al. (2024) and Qin et al. (2024) have shown other means 

of improving blockchain applications using dual blockchain assisted authentication framework and tri blockchain 

based information sharing, respectively. The study by Xu et al. (2024), the integration between traditional data 

security and blockchain technology was studied. They found limitations with scalability as user activities increased, 

bottlenecks brought about by the encryption and even possible security vulnerabilities. They devised a balanced 

approach to achieve practicality, efficiency, and robust security in their presence. 

Echikr et al. (2024), Chen et al. (2023), and Bagchi et al. (2023) have conducted significant studies to show which 

blockchain applications can be directed in the copyright protection and internet of things (IoT) security issues. In 

turn, the present research investigates various applications where the AI incorporated approach is necessary and 

shows different applications that would benefit. Studies developed by Samuel et al. (2023) and Peng et al. (2023) 

recognise blockchain's role in IoMT systems and dual blockchain in IoMT systems for secure medical records 

sharing. This shows the growing need for more robust and scaled blockchain solutions in sensitive sectors and the 

need for present work to improve the chance of blockchain scalability and security using AI. Feng et al. (2023) and 

Zukaib et al. (2023) have investigated how to merge the best of the blockchain and machine learning with these new 

cryptographic technologies. More specifically, Feng et al. (2023) talk about the utilisation of multi-party signatures, 

and Zukaib et al. (2023) discuss systematically blockchain and machine learning in security electronic health records 

(EHR). This research continues this dialogue process centred on integrating complex technology with blockchain. 

Saraswat et al. (2024) designed a hybrid machine learning methodology based on logistic regression and random 

forest algorithms to address effective EHR management within a blockchain cloud combined system. Other 

algorithms were evaluated against the proposed model and achieved a high accuracy rate of 98.37%. Moreover, the 

latency and throughput of the blockchain-cloud integrated decentralised storage were superior to other storage 

methods when handling increased patient count. 

Literature on integrating blockchain and AI has served to understand how blockchain systems can be developed to 

be secure and scalable. For example, Haritha & Anitha (2023) designed a multi-level security framework in a 

healthcare system, where the layered security mechanism was the central part of the proposed AI-integrated security 

model. Another study further emphasised Bendiab et al. (2023) on the security of autonomous vehicles using 

blockchain and AI underscored the potential of AI to boost blockchain security and, most likely, on the state-of-the-

art blockchain security solutions. Given this, the results from this work are particularly relevant to this study, as 

integration of AI into blockchain can lead to better security. Xie et al. (2023) provide a secure multi-UAV task 

management scheme for the sat chain that illustrates the application of blockchain in completing the complex tasks, 

and it can greatly aid us in building a versatile and secure blockchain system. Wang et al. (2023) have introduced a 

protocol for permissioned blockchain that allows safe and private data sharing. Their work resonates with the 

conventional worries about the security of blockchain applications and stresses that privacy as the focus of security 

in blockchain networks is an issue that needs to be resolved. Liu et al. (2023) conducted a study on the capability of 

blockchain technology for sharing remote healthcare data to foster conditional anonymity and emphasise the 

capability of blockchain technology. More precisely, there is a fear about the security and privacy of health data.  

Cai et al. (2023) have developed GTxChain, a secure IoT smart blockchain architecture using the graph neural 

network technique to integrate the AI into blockchain and the capability of blockchain to be developed in a better 

architecture to aid blockchain architectures in IoT applications. In a work that Alsamhi et al. (2023) did, they 

proposed blockchain-empowered security and energy efficiency in drone swarm consensus for environmental 

exploration. Blockchain was pinpointed as relevant to energy-efficient and secure consensus mechanisms for which 

the present study, focusing on efficient and secure systems, has an important consideration. In the healthcare data 

management systems that rely on data integrity and protection, Costta et al. (2023) showed the need for secure and 

scalable blockchain solutions in their introduced blockchain-based protocol, Sec-Health. Das et al. (2023) introduced 

an innovative blockchain-supported vehicle-to-vehicle communication system which uses blockchain-based 

contracts to bring valuable insights into the usage of blockchain technology for secure communication in intelligent 

transportation systems. This work uses blockchain for secure and efficient network systems, which is particularly 

relevant to the present study. Zhou et al. (2024) introduced a blockchain-enabled secure and efficient outsource secret 
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image sharing for wireless network computation. The research also pointed to the versatility of blockchain 

technology and its applications — particularly in secure data sharing, which is the main idea upon which the current 

work rests. Based on the lack of a comprehensive security framework for Blockchain in IoT networks, Rani et al. 

(2023) developed a blockchain security framework for running IoT-based Software-defined networks to provide a 

broader accountability of how blockchain enables network security, especially in the IoT ecosystem. Duan et al. 

(2023) conducted a comprehensive survey on attacks against cross-chain systems and their defence mechanism. For 

developing the AI-integrated security model that is presented in this study, it is essential for their analysis of the 

blockchain system vulnerabilities and strengths. 

Similarly, Rao et al. (2023) presented a detailed study of blockchain integration for IoT-based vehicles regarding 

communication with security dimensions and problems. The research presented in the present paper was intended 

to address their work around secure and scalable blockchain solutions for complex communication networks and 

highlighted their emphasis on secure and scalable blockchain solutions for such networks. Vidal et al. (2022) deepen 

and discuss revocation mechanisms that increase the technical feasibility of some applications requiring corrective 

operations. First, the researchers raised the effectiveness of sovereign identity for student and university identity 

management through a proposed model that could be replicated in different systems and domains and across 

organisations. In this case, the conceptual framework was developed to integrate blockchain applications in Iran 

Police police task forces by Arabsorkhi & Ebrahimi (2022). 

In analysing essential derivatives for blockchain adaptation at task force levels, the researchers adapted ESRC values 

and ranked them on a hierarchy from 'absolutely not worth using' to 'must be used' for blockchain adaptation. In an 

attempt to determine and select the blockchain applications, these were prioritised using the fuzzy Delphi method. 

This was evaluated by 14 expert panellists (high agreement) among members. The reliability of the statistics was 

also tested with a Cohen's kappa coefficient of 0.64. Ali et al. (2022), the authors proposed a blockchain framework 

for secure and scalable healthcare systems that rely on hybrid deep learning. Their framework ensures that medical 

data is only accessible to those who can, and it simplifies the task of analysing medical data in real time. Despite this, 

the integration provides better scalability, security and interoperability, while challenges such as computational 

complexity and regulatory compliance should be considered. 

Table 1. Summary of key findings from previous literature on blockchain systems. 

Scalability challenges Merit Demerit Process/method Parameter 

Big data management High scalability High data processing time 
Distributed data 

processing 
Data volume 

Big data cleansing High data quality High data processing time Data preprocessing Data accuracy 

Big data collection 
High data 

collection rate 

High data storage 

requirements 

Data collection 

protocols 
Data freshness 

Imbalanced big data High accuracy 
High computational 

complexity 

Data balancing 

techniques 
Data imbalance 

Big data analytics High data insights High data processing time 
Data analytics 

algorithms 
Data insights 

Big data machine learning High accuracy 
High computational 

complexity 

Machine learning 

algorithms 
Data accuracy 

Scalability in big data High scalability High data processing time 
Distributed data 

processing 
Data volume 

Efficiency in big data High efficiency High data processing time Data preprocessing Data accuracy 

Precision in big data High precision 
High computational 

complexity 

Data analytics 

algorithms 
Data insights 

Privacy in big data High privacy High data processing time Data encryption Data security 

 

The main findings from the existing literature (including the scalability challenge, merits, demerits, method, and 

various parameters of the blockchain systems) are summarised in Table 1. According to the existing big data 
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management and analytics work, many limitations exist. The scalability and the ability to process significant data 

results in high data processing times and high computational complexities of this system. Data preprocessing and 

balancing techniques are also essential but time-consuming. It is also important to mention that data encryption and 

security measures are highly demanded but may affect data processing efficiency. The limitations in these proposals 

point to the need for faster and more scalable solutions that provide speeds in data processing, accuracy and security. 

This work advances the existing knowledge in the field of AI-enhanced blockchain technology and ultimately leads 

to the development of secure and scalable blockchain systems capable of satisfying the requirements of today's 

application. This research is focused on the areas with the most significant focus on security and scalability 

innovation, and these studies give a broader context in which the evolution of blockchain technology took place. 

This has established a consensus that researchers need more secure and scalable blockchain applications, which are 

getting more adopted across different domains. This thesis builds upon the efforts made in the past that have 

perceived the significance of secure and flexible blockchains, the equilibrium of the data immutability and 

unmasking, as well as AI as a possible supplement that can raise the scalability and security of the blockchain. The 

present study consolidates these findings and proposes an AI-integrated blockchain model to address the critical 

security and scalability challenges, aiming to set a new benchmark for developing highly robust, efficient and secure 

blockchain systems. 

3 METHODOLOGY AND PROPOSED MODEL ARCHITECTURE 
We have observed that current methods for increasing the efficiency of blockchain deployments are either overly 

complex or inefficient when applied to real-time network scenarios, as discussed in the previous section.  

 

Figure 1. Model architecture for proposed blockchain scalability and security operations. 

To mitigate these problems, this section addresses the design of an efficient model to enhance the scalability and 

security of blockchain through the fusion of pattern analysis operations. In the architecture of the proposed 

blockchain model, described in Figure 1, each component, that is, RNNs, LSTMs, deep forests and CNNs, plays an 

important, pivotal role in the overall effectiveness of the model. RNNs, designed to handle a data stream, are 

essential when analysing the temporal dynamics of blockchain transactions. We enable the model to acquire patterns 
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over time by deploying LSTMs, a more advanced version of RNNs, due to their ability to handle long-term 

dependency. The efficiency pathway, inspired by RNNs and LSTMs, focuses on scalability and network load 

management, whereas the security pathway, exploiting random forest and CNNs, focuses on anomaly detection and 

threat mitigation. Ensuring consistency and continuity of transaction data over a long period is highly relevant. Such 

reliability is beneficial in blockchain transactions, where sequential and interdependent transactions demand precise 

timing and coordination. Deep forests, because of their ensemble approach, bring high robustness to the model, 

particularly in classifying and detecting anomalies from the samples of transaction data samples. 

 

Figure 2. The overall flow of the proposed scalability enhancement process. 

Using multiple decision trees provides refined data understanding, paramount in recognising anomalies that are 

vital indicators of security threats. By analysing the intricate patterns within transaction graphs, CNNs facilitate the 

detection of complex security threats, providing granular analysis vital for real-time threat detection and response 

sets. Altogether, these components make a complete system that pioneers scalability and security and sets a new 

development in blockchain technology that can withstand the complexities and demands of modern blockchain 

networks. Figure 2 illustrates the use of RNNs and LSTM networks to predict and manage network load, enhancing 

blockchain scalability. We collect network samples as input to achieve a comprehensive dataset that captures the 

temporal patterns in blockchain transactions. The strategic application of these neural network techniques enables 

effective forecasting and control of network congestion, significantly improving the scalability of blockchain 

systems. The design of the RNN-based LSTM process starts with formulating an RNN structure that is good at 
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handling sequential data samples. RNN encapsulates its functionality through a series of operations. Let xt represent 

the input at the timestamp t, and the hidden state ht is computed via Equation (1), 

ℎ𝑡 = 𝜎(𝑊ℎ𝑥 ∗ 𝑥𝑡 + 𝑊ℎℎ ∗ ℎ𝑡−1 + 𝑏ℎ) (1) 

where Whx and Whh are weight matrices, bh is the bias term and σ represents the tanh activation function process. 

The output yt of the RNN at the time t is then given by Equation (2), 

𝑦𝑡 = 𝑊𝑦ℎ ∗ ℎ𝑡 + 𝑏𝑦 (2) 

where Wyh and by are the output weight matrix and bias. To address the shortcomings of traditional RNNs, 

particularly the challenges associated with long-term dependencies, we have integrated LSTM units into this 

process. This strategic integration enables the model to effectively handle long-term dependencies and overcome the 

limitations of traditional RNNs. The LSTM modifies the RNN framework by introducing a memory cell ct and three 

gates: the input gate it, the forget gate ft and the output gate ot, represented as Equations (3), (4), (5), (6) and (7) as 

follows, 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∗ 𝑥𝑡 + 𝑊ℎ𝑖 ∗ ℎ𝑡−1 + 𝑊𝑐𝑖 ∗ 𝑐𝑡−1 + 𝑏𝑖) (3) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ∗ 𝑥𝑡 + 𝑊ℎ𝑓 ∗ ℎ𝑡−1 + 𝑊𝑐𝑓 ∗ 𝑐𝑡−1 + 𝑏𝑓) (4) 

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐 ∗ 𝑥𝑡 + 𝑊ℎ𝑐 ∗ ℎ𝑡−1 + 𝑏𝑐) (5) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜 ∗ 𝑥𝑡 + 𝑊ℎ𝑜 ∗ ℎ𝑡−1 + 𝑊𝑐𝑜 ∗ 𝑐𝑡 + 𝑏𝑜) (6) 

ℎ𝑡 = 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ(𝑐𝑡) (7) 

Here, ∘ represents the Hadamard product, and W with various subscripts represents the weight matrices for different 

gates and cell states. We represent the biased terms using the symbol b with appropriate subscripts. The ability of 

the LSTM to regulate the flow of information through these gates enables it to effectively preserve relevant 

information over long sequences, thereby mitigating the vanishing gradient issue that causes inefficiency in 

traditional RNNs. This capability is crucial in predicting network load in the blockchain environment, where 

transactions are sequential and interdependent over extended timestamp sets. We use the output from the LSTM 

layer to manage the scalability of blockchain networks that reflect the predicted network load. This controlling is 

articulated as Equation (8), which we have developed to optimise network performance. 

𝑆𝑡 = 𝛼 ∗ 𝐿𝑡 + 𝛽 ∗ 𝑇𝑡 (8) 

Here, St represents the scalability level at the timestamp t, Lt is the load predicted by the LSTM, Tt is the transaction 

processing capacity at the timestamp t, α and β are scaling coefficients adjusted based on network requirements. 

Furthermore, a feedback loop is incorporated to optimise the network performance, defined by Equation (9),  

𝐹𝑡 = 𝛾(𝐷𝑡 − 𝑆𝑡) (9) 

where Ft represents the feedback signal, Dt is the desired scalability level and γ is a correction factor for different 

network scenarios. This feedback ensures that the system adjusts dynamically to achieve the desired scalability, 

effectively responding to varying network conditions. This RNN-based LSTM process, with its intricate array of 

operations and mechanisms, stands as a testament to the sophistication of our model in enhancing blockchain 

scalability levels. Through this process, the model predicts network load with high accuracy and dynamically 

manages the scalability of the blockchain, ensuring optimal performance even under varying network conditions. 

This approach marks a significant advancement in blockchain technology, paving the way for more robust, scalable 

and efficient blockchain systems. This synergistic approach influences the strengths of both techniques to enhance 

the ability of the model to identify and mitigate network threats effectively. The fundamental operation driving this 

process is the individual decision tree classification decision Dt(x), where x represents an input feature vector and t 

indexes over the ensemble of trees. The deep forest ODF(x) aggregated output is then given as Equation (10),  

𝑂𝐷𝐹(𝑥) =
1

𝑇
∑ 𝐷𝑡(𝑥)

𝑇

𝑡=1

 (10) 

In the ensemble process, where T represents the total number of trees, this aggregation method, commonly called 

majority voting, minimises the impact of any single tree's bias or variance. The approach enhances the overall 
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reliability of the classification process. In addition to the deep forest, the CNN component extracts hierarchical 

features from the input data samples. The convolution operation represents the CNN layer operations via Equation 

(11), 

𝐹𝑙+1 = 𝜎(𝑊𝑙 ∗ 𝐹𝑙 + 𝑏𝑙) (11) 

We produce the feature map 𝐹𝑙+1 applying the convolutional filter weights Wl and bias bl to the input, using the 

convolution operation ∗ and a ReLU-based non-linear activation function σ in the l-th layer. The pooling operation 

in CNNs, which reduces the spatial size of the feature maps, thereby reducing the number of parameters and 

computation in the network, is given by P(Fl), where P represents the pooling function applied to the feature map 

Fl for different scenarios. We articulate the integration of the deep forest and CNNs in the proposed model through 

an iterative set of feedback mechanisms. We feed the output of the CNN, which consists of high-level features 

extracted from the input data, into the deep forest for classification operations. We then loop the classified results 

back to the CNN to refine the feature extraction process. This iterative process is governed by Equation (12), which 

we have developed to ensure optimal performance. 

𝐶𝑛+1 𝐷𝐹(𝐶𝑁𝑁(𝐶𝑛)) (12) 

Here, 𝐶𝑛+1, DF and CNN represent the refined classification output after the n-th iteration and the deep forest and 

CNN operations for different use cases. We calculate a confidence score γ for each classified result, defined via 

Equation (13) to further enhance the model accuracy. 

𝛾 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑔𝑟𝑒𝑒𝑖𝑛𝑔 𝑡𝑟𝑒𝑒𝑠

𝑇
 (13) 

We use this score to weigh the significance of each classification decision in subsequent iterations for different 

operation sets. The iterative fusion of deep forest and CNN culminates in the final output, which identifies network 

attacks with high precision levels. Equation (14) quantifies the overall effectiveness of this process. 

𝐸 =
1

𝑁
∑ 𝐼(𝐶𝑖 = 𝐴𝑖)

𝑁

𝑖=1

 (14) 

Here, E represents the effectiveness of the attack detection, N is the total number of samples, Ci is the classification 

result for the i-th sample, Ai is the actual label of the i-th sample and I is an indicator function for this process. The 

innovative fusion of deep forest and CNNs in the proposed model establishes a highly effective and iterative 

mechanism for detecting network attacks. This process not only harnesses the strengths of both deep forest in 

ensemble classification and CNN in feature extraction but also iteratively refines the model accuracy, thereby 

significantly strengthening the security of the blockchain networks. Such an approach represents a significant leap 

forward in blockchain security, paving the way for more secure and resilient blockchain systems. 

3.1 Dataset 
To truly understand blockchain implications across many use cases, we had to curate a relevant dataset that reflects 

multiple transaction types and sizes operating within real-world blockchain applications. To have a balanced 

representation, we generated synthetic data from two datasets: the transaction data and network load data, each 

between 10,000 instances and 10 columns, which varied in the transaction complexity levels with positive and 

negative values. Data from the transaction data part contains several numerical parameters describing each 

blockchain transaction. Attributes comprise the transaction amount, size, transaction fee, block time and a time 

stamp indicating the time when the transaction was sent. It also has the figure for the sender and receiver address 

hashes, public keys, block size limit, and transaction priority. Other critical features include the transaction 

signature's cryptographic details, verification sequence number and the corresponding consensus-related 

information. The transactions are categorised on the label column, labelled normal (0) and anomalous (1), where 

anomalous labels signify possible lost transactions or errors based on the system.  

The load and performance of the blockchain network are monitored by the network load data component, which 

helps to understand the health of the blockchain network. They contain significant attributes like CPU utilisation, 

memory utilisation, bandwidth consumption, and network latency, each in its row. In addition to disk, I/O activity, 
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packet transmission rates, error rates in network transmission, queue lengths of requests waiting to be processed 

and data transfer rates are also included. This dataset is having two label columns, which indicates whether the 

network is operating normally (0) or is working under high stress (1) or abnormal conditions. Together, these 

parameters allow for a comprehensive analysis of transaction behaviour and the dynamics of network performance 

whereby appropriate monitoring and automatic detection of anomalies in blockchain systems are enhanced. Table 

2 below is a simplified summary of these datasets.  

Table 2. Summary of datasets used in research. 

Column value Data type Transaction data Network load data 

0 Numeric Transaction amount or size Network usage at a specific interval 

1 Numeric Transaction fee or block time CPU utilisation 

2 Numeric Timestamp Memory utilisation 

3 Numeric Sender's address hash or public key Bandwidth consumption 

4 Numeric Receiver's address hash or public key Network latency 

5 Numeric Block size limit Disk I/O activity 

6 Numeric Transaction priority Packet transmission rate 

7 Numeric Transaction signature cryptographic 

details 

The error rate in network transmission 

8 Numeric Sequence number for transaction 

verification 

Queue length of requests waiting to be 

processed 

9 Numeric Consensus-related information Data transfer rate 

Label Binary 0 = Normal transaction,  

1 = Anomalous transaction 

0 = Normal load,  

1 = High network stress or abnormality 

Number of 

transactions 

Numeric 10,000 10,000 

 

Positive values in both datasets typically signify normal ranges for various features. For example, they represent 

legitimate transaction amounts, expected memory usage and acceptable latency levels. Conversely, negative values 

indicate anomalies, errors or irregular states in the system. In practical applications, negative values may reveal 

abnormal conditions. For instance, negative transaction amounts may suggest errors in recording transactions or 

potential malicious exploitation attempts. Similarly, negative metrics related to network load could point to data 

corruption, packet loss or inaccurate resource measurements. In some cases, negative values might not necessarily 

indicate a problem; they could represent expected values on a scale (such as transaction fees or network error rates). 
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Figure 3. Distributional statistics for blockchain transactions network load dataset. 

Figures 3 and 4 exemplify the statistics and distribution of values for the blockchain transactions network load 

dataset and the NTS dataset, respectively, highlighting key metrics that characterise network performance, 

transaction patterns and network load. It highlights essential parameters such as transaction volume, average block 

size and confirmation times, providing insights into the operational efficiency of the blockchain transactions.  

   

   

   

  

 

Figure 4. Distributional statistics for blockchain NTS transactions dataset. 
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Network activity patterns can be seen in the distribution of transaction volume and when the network experiences 

high demand and possible congestion. Based on such analysis, we can understand the trends of blockchain system 

in terms of transaction processing and evaluate the scalability of blockchain under different loads. These data 

emphasise optimising the resource allocation crucial for improving the overall network performance. Also, these 

distributions can be further used to develop predictive models to solve the problem of managing future network 

congestion so that the blockchain is ready to take the growing transaction loads. This analysis is important because 

it will guide in devising of strategies to enhance scalability and security by identifying trends which might affect on 

performance. A basic tool for calculating the capability of the blockchain in terms of the received transaction requests 

within a certain timeframe, low latency, and high security is shown in Figure 4. This analysis proves to be an 

important tool for determining how well the proposed EBSSPA model is able to tackle scalability and security issues 

at network level in blockchains. 

  

Blockchain network load dataset Blockchain NTS transaction dataset 

Figure 5. Correlation matrix of numerical features for datasets. 

The data understanding phase identifies and explores vital features such as transaction volume, fees and 

confirmation times. During data preparation, the datasets are cleaned and transformed to ensure accuracy. The 

correlation matrix is then constructed, revealing how features correlate. Figure 5 displays the correlation matrix of 

numerical features from both blockchain datasets, providing critical insights into the relationships among various 

transaction attributes. For instance, a strong positive correlation between transaction volume and confirmation times 

may indicate that higher volumes lead to longer processing times, which is crucial for predicting network congestion. 

This fundamental tool for understanding feature interactions within blockchain data guides further predictive 

modelling efforts. Our proposed model utilises these correlations in the modelling phase to predict network load 

and identify potential bottlenecks. The evaluation phase assesses model performance against established 

benchmarks, ensuring alignment with objectives. 

4 PERFORMANCE EVALUATION AND ANALYSIS 
The manuscript presents the novel pattern analysis blockchain model, which stimulates deep learning methods, 

particularly RNNs and LSTM networks, using a combination of random forest and CNNs. With the help of strategic 

adoption, the model can predict and manage blockchain network loads with high precision to solve blockchain 

technologies' most fundamental scalability challenge. The model's predictive features enable it to predict and rectify 

spread of the network congestion before it happens, making the blockchain operation more productive. Integrating 

random forest and CNNs also provokes a robust real-time security environment that can successfully detect and 

respond to security threats. With such synergy in place, a scalable blockchain model has been developed that is 

fortified against security vulnerabilities, adding to the overall security posture of the system. Finally, the 

experimental design is performed across the performance metrics (scalability, security and efficiency), which have 

been used for a thorough comparison with other models. The NTS from 48k to 600k helps in a sound evaluation of 
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the performance of the proposed model in different conditions. With the vast dataset, the model can be rigorously 

assessed in terms of scalability, security, and efficiency, and its potential for deployment of real applications in a 

blockchain environment can be well understood. 

Then, we conduct experiments in a simulated blockchain environment with conditions like the real world. On the 

Kaggle cloud platform, a computer with an 8-core Intel processor (with 16GB RAM and 1TB SSD storage) running 

on a Windows operating system is used to do the simulation. In addition, it includes a gigabit ethernet connection 

for a dependable testing environment. The network model was trained using an NVIDIA Tesla P100 GPU with 3,584 

CUDA cores and 16 GB of HBM2 memory. Power efficiency and the architecture of superior memory capacity make 

this GPU suitable for high-performance usage.  

4.1 Comparative analysis 
Each model – EBSSPA, PRBFPT (Dai et al., 2024), TriBoDeS (Qin et al., 2024) and GTxChain (Cai et al., 2023) – 

undergoes the same set of tests under identical conditions for a fair and accurate comparison. 

The test procedure includes: 

• Initialisation: Each blockchain model is initialised with default settings. 

• Load generation: A series of transactions to simulate real-world network traffic in the system. 

• Performance monitoring: Key metrics are continuously monitored and recorded for different scenarios. 

• Data analysis: Collected data are analysed to compare the performance of EBSSPA against the other models. 

For each test, the following input parameters are utilised: 

• Number of nodes in the network: 50, 100, 150, 200 

• Transaction size: Ranging from 0.5 KB to 1.5 KB 

• Inter-Arrival Time of transactions: 1 ms, 5 ms, 10 ms 

• Block size: 1 MB, 2 MB, 4 MB 

Each test is repeated with at least five iterations to ensure that the obtained results are reproducible, as well as to 

account for the variability in the network conditions. We carefully designed the experimental testbed to 

comprehensively evaluate the EBSSPA model, ensuring that the results are robust, reproducible and reflect the 

model performance in real scenarios. The experiment tries to confirm this superiority in enhancing blockchain 

scalability and security levels by rigorous testing and comparing existing models under various conditions. The key 

performance metrics assessed in the experiments on this strategy are the precision (P), accuracy (A) and recall (R) 

levels, estimated via Equations 15, 16 and 17 as follows: 

Precision: Measured as the percentage of correctly identified transactions. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃)  =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 (15) 

Accuracy: Calculated as the ratio of correctly processed transactions to the total transactions. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴)  =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 (16) 

Recall: Assessed as the percentage of relevant transactions correctly identified. 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅)  =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 (17) 

Where true positive (TP) is the number of instances correctly predicted as positive (attack) in the test set; true 

negative (TN) is the number of cases correctly predicted as unfavourable (non-attack) in the test set; false positive 

(FP) is the number of instances incorrectly predicted as positive (attack) when they are negative (non-attack) in the 

test set; and false negative (FN) is the number of instances incorrectly predicted as unfavourable (non-attack) when 

they are positive (attack) in the test sets. 
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Figure 6. LSTM and CNN model training and validation loss. 

• Delay: Recorded in milliseconds (ms), representing the time taken by data packet communication. 

• Area under the curve (AUC): Evaluated as the area under the ROC (receiver operating characteristic) curve, 

reflecting the ability of the model to distinguish between transaction types. 

• Energy consumption: Measured in millijoules (mJ) to gauge the model efficiency in energy usage levels. 

These typically include transmission power, distance, communication protocol overhead and packet size. 

To generalise, the energy consumption across different communication ranges can be computed using the 

following:  

E𝑡𝑜𝑡𝑎𝑙(d) = 𝑃0 ∗ (
𝑑

𝑑0
)

𝛼

∗  
𝑆

𝑅𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡
∗  𝑁𝑝𝑎𝑐𝑘𝑒𝑡𝑠  (18) 

where P(d) is the transmission power at the distance d, P0 is the reference power at the reference distance d0, α is the 

path loss exponent, S is the packet size in bits, Rtransmit is the transmission rate, Npackets is the total number of packets 

transmitted in bits per second.  

  

Figure 7. LSTM and CNN model training and validation accuracy. 

Figure 6 illustrates the training loss for both the LSTM and CNN models. The loss of the LSTM model remains steady 

at 0.18 across all 30 epochs, showing a significant gap between the training and validation losses. In contrast, the loss 

of the CNN model decreases steadily towards zero, indicating a better alignment between training and validation 

losses. Figure 7 presents the training accuracy for each model. The LSTM model maintains a constant accuracy of 

94.5% throughout the 30 epochs, with only a small gap between its training and validation accuracy. This suggests 

that the LSTM model performs consistently but does not improve over time. 
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Figure 8. Confusion matrices and ROC-AUC curve for random forest model. 

However, the CNN model also has a trend of increasing the accuracy which is very close to the will training accuracy, 

suggesting the CNN model can learn almost perfectly and adapt to the training data very efficiently. The results 

show that performance and learning dynamics are different between the two models in training. The confusion 

matrices and ROC-AUC for the random forest model are shown in figure 8. The confusion matrix helps us 

understand how accurately the model can distinguish different types of transactions. The confusion matrix shows 

us the number of predictions the model made in each cell, so we know where it did better and lessened. A good 

model can accurately identify transactions with many true positives and negatives; any significant misclassification 

would indicate the need for improvement. The confusion matrix and ROC-AUC of the random forest model suggest 

that they can distinguish the transaction type. We note that capability will impact applications like fraud detection, 

where incorrectly classifying transactions can severely impact outcomes. Analysis of these matrices helps us 

understand the strengths and weaknesses of each model to direct the future directions for improvement and 

refinement of our approach. 

4.2 Analysis of precision level at different NTS samples 
In blockchain technology, the precision of communication data packets is a crucial metric that reflects the accuracy 

of transactions and data handling within the network. The study compares the precision levels for four blockchain 

models, PRBFPT, TriBoDeS, GTxChain and EBSSPA, with different NTS values from 48k to 600k. Based on this 

analysis, the precision obtained during communication operations was compared with PRBFPT, TriBoDeS and 

GTxChain and can be observed from Figure 9 below. 

• Lower NTS (48k to 144k): At this early stage, EBSSPA was more stable in performance and had consistently 

better precision than its contenders. The lowest precision value of EBSSPA was 87.08% at 48k and the highest 

was 92.88% at 120k, which reveals that it remained more robust with fewer data, and this was a critical 

requirement for any blockchain activity to be more efficient and accurate. The rest of the models showed 

variable performance in this group. PRBFPT had its highest at 78.37%, and TriBoDeS had 84.51% in the 48k 

sample. The performance of GTxChain seemed to be relatively constant but was always below EBSSPA. 

• Mid-range NTS (168k to 312k): As NTS scales up, EBSSPA maintains high precision, hitting 94.60% at 216k 

NTS, significantly better than the rest. EBSSPA effectively scales with increasing data volume while 

maintaining high precision. PRBFPT and TriBoDeS seem jittery in this band. PRBFPT goes to a low of 72.33% 

at 432k NTS, and TriBoDeS reaches its high of 92.36% at the same point. GTxChain has a very high peak 

value at 288k NTS performance, at 93.79%, but it does not remain steady in its course at this excellent 

precision value. 

• Higher NTS (360k to 600k): For the highest range, EBSSPA has a very high precision peak, at the highest of 

97.61% at 600k NTS, which shows its ability to handle big data with greater accuracy, a fundamental 

characteristic for blockchain scalability and dependability. The competing models, with instances of high 
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precision in the example of TriBoDeS at 95.68% (500k NTS) and GTxChain at 92.27% (560k NTS), do not 

consistently reach the level of performance exhibited by EBSSPA. 

 

Figure 9. Precision levels during communication of data packets. 

The superior accuracy of EBSSPA across various network sizes stems from its advanced integration of AI algorithms, 

including RNNs, LSTM, random forest and CNNs. These algorithms enable the model to analyse network loads and 

security threats more effectively, leading to high precision. This precision is crucial for blockchain applications, 

ensuring secure and reliable data communication and transaction integrity. As a result, the EBSSPA model has the 

potential to revolutionise blockchain scalability and security, making it feasible for widespread adoption in various 

sectors that rely heavily on blockchain technology.  

4.3 Analysis of accuracy level at different NTS samples 
Accurate data transmission is vital for maintaining trust and integrity in blockchain transactions, making it a critical 

aspect of blockchain development. This section highlights a comparison of the accuracy of four different blockchain 

models, PRBFPT, TriBoDeS, GTxChain and EBSSPA, at various numbers of NTS, varying from 48k to 600k. Figure 

10 below compares the accuracy of the models. 

• Lower NTS (48k to 144k): We observed from Figure 7 that EBSSPA performed competitively in this NTS 

sample, achieving a peak level of accuracy of 88.68% for the 96k NTS. The maximum peak in the curve 

indicates that EBSSPA can handle smaller sample size data traffic with high accuracy. PRBFPT also shows a 

competitive performance at its peak, at 89.43% for 120k NTS. TriBoDeS and GTxChain show moderate 

accuracy, but none of them achieved a performance competitive with EBSSPA in this sample. 

• Mid-range NTS (168k to 312k): As the sample size increases, the accuracy of EBSSPA remains steady and 

robust and reaches a peak level of 90.17% at 360k NTS. The accuracy of EBSSPA remains strong even with a 

larger data sample. PRBFPT and TriBoDeS have fluctuating accuracy performance in this range but show 

moments where they have competitive accuracy, such as PRBFPT at 85.30% for 192k NTS and TriBoDeS at 

84.94% for 288k NTS. Although a few peaks were experienced, GTxChain shows low accuracy. 

• Higher NTS (360k to 600k): EBSSPA proves its potential to be strong in very high NTS sample data and, in 

particular, scored 97.01% at 500k NTS, showing that EBSSPA is more competent to handle very large 

networks accurately. Other models also have specific points of high accuracy at this level, such as the 

TriBoDeS at 92.87% at 600k NTS, but are inconsistent. 

The performance accuracy levels of the EBSSPA models demonstrate the significance of accuracy within other 

blockchain networks. The ability of this model to handle efficient solutions for different network sizes highlights its 

potential for broad applicability in real-time blockchain scenarios.  
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Figure 10. Accuracy levels during communication of data packets. 

4.4 Analysis of recall levels in data packet transmission 
This analysis examines the recall levels of a blockchain model in data packet communication, highlighting its 

accuracy in identifying and processing relevant transactions or data samples. We compare the recall for four 

blockchain models, PRBFPT, TriBoDeS, GTxChain and EBSSPA, for various NTS values ranging from 48k to 600k. 

Similar to this, Figure 11 represents the recall levels. 

• Lower NTS (48k to 144k): EBSSPA presents an excellent recall in the lower NTS range, peaking at 88.54% 

for 96k NTS. A practical model for accurately identifying relevant data in small-scale datasets is implied. 

PRBFPT and TriBoDeS keep their recall levels on a fair note, with PRBFPT reaching 81.56% for 48k NTS. 

GTxChain, while keeping its recall levels steady, mostly performs slightly lower compared to EBSSPA. 

• Mid-range NTS (168k to 312k): EBSSPA upholds excellent recall as the sample increases, peaking at 91.49% 

for 240k NTS. The promising results demonstrate an effective scaling model for accurately identifying 

relevant transactions. Meanwhile, PRBFPT and TriBoDeS exhibit random fluctuations in recall but remain 

competitive. GTxChain levels keep in the range with a peak of 83.25% at 408k NTS but not at the same 

competitive level as EBSSPA. 

• Higher NTS (360k to 600k): In the higher NTS range, EBSSPA shows excellent recall and peaks at 92.73% 

for 500k NTS, proving to be the best model. The findings suggest that the model can effectively handle large-

scale networks while maintaining the ability to identify relevant data samples. The other models may peak 

at certain times, but none consistently outperforms EBSSPA. 

To sum up, the recall levels, as analysed in various models of blockchains with a prime focus on EBSSPA, highlight 

that identifying relevant data in a blockchain network and processing them must be carried out rigorously without 

mistakes. It shows that EBSSPA, because of its recall values, can be trusted to work reliably and efficiently, not only 

in small blockchain scenarios but also in large-scale blockchain scenarios, and this result makes it worthy of use in 

various real-time application domains.  
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Figure 11. Recall levels during communication of data packets. 

4.5 Analysis of delay levels at different ranges during different communications 
Understanding delay levels when transmitting data packets in blockchain models is crucial for assessing network 

responsiveness and efficiency. This analysis compares the delay times in milliseconds (ms) for four blockchain 

models: PRBFPT, TriBoDeS, GTxChain and EBSSPA at different NTS ranging from 48k to 600k. The delay required 

for the communication process is visualised in Figure 12. 

• Lower NTS (48k to 144k): In the lower range, EBSSPA has the lowest delay time and peaks efficiency with 

119.85 ms delay at 96k NTS. These findings indicate that EBSSPA can quickly process and communicate data 

in smaller networks. PRBFPT and TriBoDeS have longer delay times than EBSSPA, where PRBFPT has a 

164.90 ms delay at 48k NTS and TriBoDeS has 143.85 ms at the same point. GTxChain is slightly competitive 

but still has longer delay times than EBSSPA most of the time. 

• Mid-range NTS (168k to 312k): As the sample sizes increase, EBSSPA has delays at relatively low levels, 

where it experiences 125.62 ms at 288k NTS. The results indicate that EBSSPA can effectively manage 

increasing network loads with minimal delay. PRBFPT and TriBoDeS experience fluctuating delay times, 

mostly above those of EBSSPA. GTxChain is relatively competitive but not at the low delay levels presented 

by EBSSPA. 

• Higher NTS (360k to 600k): At the higher NTS, EBSSPA still presents itself with efficient delay times where 

it has delays as low as 124.07 ms at 520k NTS. The findings imply that EBSSPA remains robust in managing 

more extensive networks while maintaining efficient response times. Other models, although efficient, do 

not demonstrate the same short delay times. 

The delay analysis from various blockchain models highlights the significance of effective data communication in 

EBSSPA. We emphasise the importance of EBSSPA in both small- and large-scale scenarios, showcasing its potential 

for practical application in various real-time blockchain-based applications. The versatility of EBSSPA in being 

scalable and adaptable across various scenarios highlights its value as a tool for a wide range of blockchain-based 

systems. 
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Figure 12. Network delays during different communications. 

4.6 Analysis of AUC level during communication of data packets 
The AUC is a crucial metric for accurately evaluating the ability of a model to distinguish between legitimate and 

fraudulent transactions. It measures how effectively the model can separate these two classes. Our analysis compares 

the AUC performance of various blockchain models, including PRBFPT, TriBoDeS, GTxChain and EBSSPA, across 

different NTS, ranging between 48k to 600k. The AUC levels can be observed in Figure 13 below. 

• Lower NTS (48k to 144k): EBSSPA shows high AUC in this range and gives 85.61% at 96k NTS. The model 

demonstrates a strong ability to classify most transactions accurately. PRBFPT and TriBoDeS exhibit 

moderate AUC values in this range, with TriBoDeS reaching 78.91% at 144k NTS. GTxChain shows an AUC 

slightly below that of EBSSPA, neither exceptionally high nor very low. 

• Mid-range NTS (168k to 312k): As the sample size increases, EBSSPA remains very stable at a high level 

and scores a very high value of 90.80% at 408k NTS. Such performance proves that it is very effective in 

differentiating between the transaction types even when the load in the network goes up. PRBFPT and 

TriBoDeS fluctuate in this range, whereas the remaining moments remain high, such as TriBoDeS at 86.76% 

at 312k NTS. GTxChain is commendable but does not stay up to the high AUC level of EBSSPA. 

• Higher NTS (360k to 600k): In the higher range, EBSSPA is still at the top in providing good AUC values, 

as it gives a peak value of 95.08% at 520k NTS, which is relatively high. The model demonstrates greater 

efficiency in classification, achieving better accuracy across a broader network. While other models may 

achieve high AUC at specific points, they do not consistently perform at the same level as EBSSPA.  

The AUC-level analysis of different blockchain models, especially EBSSPA, underlines the crucial role of accurate 

transaction classification in blockchain networks. It strains the possible effectiveness of EBSSPA in the different 

considered blockchain environments, supporting its potential use in high-volume, security-sensitive applications.  
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Figure 13. AUC levels during communication of data packets. 

4.7 Analysis of energy consumption level across numbers of communication ranges 
Understanding energy consumption in blockchain data packet communication is crucial for evaluating sustainability 

and operational efficiency. Our analysis compares the energy consumption in mJ of four blockchain models, 

PRBFPT, TriBoDeS, GTxChain and EBSSPA, at various numbers of communication (NC) samples ranging from 48k 

to 408k. These data provide valuable insights into the energy efficiency of each model, helping identify the most 

sustainable and efficient blockchain solutions for real-world applications. The energy needed under attack scenarios 

can be observed in Figure 14 below.  

 

 

Figure 14. Energy needed under attack scenarios. 

 

60,00

65,00

70,00

75,00

80,00

85,00

90,00

95,00

100,00

48k 72k 96k 120k 144k 168k 192k 216k 240k 264k 288k 312k 300k 360k 388k 408k 432k 456k 480k 500k 520k 560k 580k 600k

A
U

C
L

ev
el

s 
%

NTS Samples (Data Traffic) 

PRBFPT, Dai et al. (2024) TriBoDeS, Qin et al. (2024) GTxChain, Cai et al. (2023) EBSSPA

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

48k 72k 96k 120k 144k 168k 192k 216k 240k 264k 288k 312k 300k 360k 388k 408k

E
ne

rg
y
 C

o
ns

u
m

p
ti

o
n
 

in
 m

il
li

jo
u
le

s 
(m

J)

NTS Samples (Data Traffic) 

PRBFPT, Dai et al. (2024) TriBoDeS, Qin et al. (2024) GTxChain, Cai et al. (2023) EBSSPA

https://aip.vse.cz/


Acta Informatica Pragensia  Volume 14, 2025 

https://doi.org/10.18267/j.aip.260  336 https://aip.vse.cz 

• Lower NC (48k to 144k): The EBSSPA model always has the lowest energy consumption in this range. At 

144k NC, the energy consumption of EBSSPA has its peak of 2.41 mJ, thus showing the capability of 

processing and communicating data in small network systems without using much energy. PRBFPT and 

TriBoDeS have varying energy consumptions but mostly higher than EBSSPA. GTxChain also competes, 

although it often consumes more energy than EBSSPA. 

• Mid-range NC (168k to 312k): With the increase in sample size, EBSSPA remains an energy-efficient model. 

It consumes only 2.68 mJ at 312k NC; hence, it can maintain high performance when there is an increase in 

the network load with minimal energy usage. PRBFPT and TriBoDeS are sometimes higher in energy 

consumption than EBSSPA. Similarly, GTxChain is comparable in performance but, often, does not match 

the energy efficiency of EBSSPA. 

• Higher NC (360k to 600k): The EBSSPA model continues to demonstrate low energy consumption in the 

higher NC range. The energy consumption drops to a low of 3.50 mJ at 408k NC, demonstrating that the 

system is robust in managing large-scale networks efficiently. Other models show some level of energy 

efficiency, though they do not consistently compete with EBSSPA regarding its low energy consumption. 

By inference, this comparison between the energy consumption levels of different blockchain models, with a 

particular focus on EBSSPA, underlines the importance of energy efficiency on the levels of a blockchain network. It 

presents EBSSPA as a potential model for sustained and cost-effective performance in various blockchain use 

scenarios. The findings further imply applicability to environmentally conscious settings and large-scale 

applications. 

4.8 Real-time implications of results in a blockchain network 
The proposed system, EBSSPA, offers several benefits that contribute to its effectiveness. The reported 5.05% increase 

in processing speed indicates that the model effectively manages network load, allowing faster transaction 

processing. This improvement directly results from the  ability of the model to predict and optimise network 

conditions using RNNs and LSTMs, which analyse time series data to anticipate congestion and enhance overall 

throughput. The 8.05% improvement in energy efficiency reflects the capability of the model to optimise resource 

usage during peak loads. By predicting network demand accurately, the model can allocate resources more 

effectively, reducing unnecessary energy consumption while maintaining performance. The EBSSPA model achieves 

high accuracy, resulting in fewer retransmissions and corrections, optimising resource utilisation. This reliability 

allows efficient transaction processing and communication of such data, reducing the computational power required 

to address missed transactions. It is exceptionally energy efficient for spread adoption in areas where energy is 

consumed, such as data centres, IoT networks, etc. If high recall rates preserve blockchain integrity, accurate 

identification of valid transactions will be ensured. The model ensures that the debottlenecked paths are effectively 

used to minimise the overall performance for high trust applications like financial transactions and smart contracts. 

Also, high AUC values mean that secure transactions are identified in a system, and its reliability is increased by 

decreasing the false positives and negatives involved in classifying transactions, thereby providing trust in the 

ecosystem. 

Compared with other similar models, the scaling and accuracy of the EBSSPA model prove to be remarkable, and it 

remains a perfect choice for blockchain networks that continue to raise transaction demand. It has high accuracy, so 

the data communication and network are efficient and healthy. All NTS sizes yield elevated AUC values of the 

model, which adds to the users' total confidence in using it to ensure transaction security. On top of that, high recall 

rates decrease the likelihood of missing essential transactions and improve network reliability. EBSSPA's low energy 

consumption is crucial for scalability, which allows the network to handle more tradeoffs without substantial energy 

costs. It provides high recall even for large-scale networks. The model also has short delay times necessary for timely 

transaction processing in real-time applications. The efficiency helps enhance user experience and meets 

environmental sustainability goals, as much energy is saved. EBSSPA is a significant step in developing blockchain 

technologies through their trust and broader access in several sectors to solve existing scalability and security 

challenges. This indicates that the proposed model shows improvements in these metrics, enabling threat 

identification, and thus, reliability and responsiveness for maintaining security in blockchain systems against current 

and future cyber threats. The efficiency and sustainability of EBSSPA make it a cost-effective solution for large-scale 

blockchain operations. 
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5 CONCLUSION AND FUTURE SCOPE 
In this present investigation, I attempted to analyse the EBSSPA model widely, using it to test the scalability and 

security of blockchain. An experimental study shows that EBSSPA performs better than PRBFPT, TriBoDeS, and 

GTxChain in all the metrics, including precision, accuracy, recall, delay, AUC, and energy consumption. The 

proposed model significantly boosts blockchain scalability and security by strategically integrating advanced AI 

techniques. The model achieves a 5.05% increase in processing speed and 8.05% increased energy efficiency with a 

slight loss; the additional accuracy comes from the ability to predict and manage network load. The model handles 

scalability issues by forecasting network congestion and optimising transaction processing. For a dictatorship, it 

embeds random forest and CNNs to find out the anomalies and potential risks in transaction data, and the 

improvement on the attack analysis metric reaches 5.27% precision, 5.8% accuracy, 10.24% recall and 11.62% AUC. 

The performance of these enhancements implies the capability of the model to identify malicious activities reliably. 

The study fulfils this dual focus on scalability and security objectives while proving how AI and blockchain 

technology enable a transformative potential. The model achieves the highest performance and energy efficiency 

and, more importantly, sets a new benchmark for the best transaction processing speed, which applies to many 

industries, such as finance, healthcare and supply chain management. 

The EBSSPA model has made significant strides in addressing the critical challenges of scalability and security in 

blockchain technology. However, several potential open research areas and future developments can further 

enhance its capabilities. We can further fine-tune the AI algorithms used in EBSSPA to achieve higher efficiency and 

scalability. Integrating newer methodologies from the field of AI may lead to even stronger models. Exploring the 

interoperability of EBSSPA with other blockchain platforms can broaden its scope, enabling a more connected and 

flexible blockchain ecosystem. While EBSSPA demonstrated impressive energy efficiency, research is needed to 

optimise energy consumption in even more extensive networks to support blockchain applications on a global scale. 

Piloting EBSSPA in real-world blockchain applications across different industries provides valuable insights into its 

practical utility and identifies areas for further improvement. Ongoing research for enhancing the security features 

of the EBSSPA model is crucial, as cybersecurity threats are constantly evolving, and the model must adapt to more 

sophisticated attacks. As blockchain technology intersects with emerging regulatory frameworks, future research 

may assess how EBSSPA can be adapted to satisfy various legal requirements in different jurisdictions. These open 

research areas and future developments present exciting opportunities to build upon the groundbreaking 

contributions of the EBSSPA model, further advancing the field of blockchain technology and enabling its 

widespread adoption in diverse scenarios. 
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