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 Abstract  
Background: Recommender Systems (RSs) frequently face challenges in balancing exploration and 
exploitation, particularly in dynamic environments where user behaviors evolve over time. Traditional 
methods struggle to adapt to these complexities, limiting their effectiveness in real-world domains such 
as e-commerce, streaming services, and social networks. 
Objective: The objective of this study is to introduce DAC-GCN, a Dual Actor-Critic Graph Convolutional 
Network, designed to enhance recommendation accuracy, ranking quality, and adaptability to evolving 
user preferences. DAC-GCN merges graph-based learning with Deep Reinforcement Learning (DRL) 
techniques to improve both short-term and long-term user-item interactions. 
Methods: DAC-GCN utilizes a dual architecture with separate Graph Convolutional Networks (GCNs) 
for policy optimization and value estimation. It incorporates Multi-Hop Aggregation (MHA) to capture 
extended user-item dependencies and an attention mechanism to emphasize pivotal relationships. We 
evaluate DAC-GCN on benchmark datasets, including MovieLens 100K, MovieLens 1M, Amazon 
Subscription Boxes, Amazon Magazine Subscriptions, and Mod Cloth, using standard ranking metrics 
(Precision@K, Recall@K, NDCG@K, MRR@K, and Hit@K). 
Results: Experimental results demonstrate that DAC-GCN consistently outperforms state-of-the-art 
baselines, showing significant improvements in recommendation accuracy, ranking quality, and 
robustness to shifting user behaviors. The model’s ability to capture complex user-item interactions is 
greatly enhanced by MHA and attention mechanisms, while the dual architecture ensures training 
stability. 
Conclusion: DAC-GCN offers a scalable, high-performance solution for modern recommender 
systems, effectively addressing challenges such as data sparsity and changing user preferences. By 
integrating graph-based methods with DRL, this study advances both the theory and practice of 
recommender systems and provides valuable insights for future research and practical applications.  

 Index Terms 
Recommender system; Graph convolutional network; Actor-critic; Reinforcement learning; Multi-hop 
aggregation; Personalized recommendations. 
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1 INTRODUCTION 
Recommender Systems (RSs) have become indispensable across modern digital platforms, powering personalized 

content delivery that boosts user engagement in e-commerce, social networks, healthcare, video, streaming services, 

and many other domains (Henriques and Pinto 2023). These systems analyze user preferences and behavioral 

patterns to generate relevant and accurate recommendations, significantly enhancing overall user satisfaction (Hsu 

2024). Over the years, RSs have evolved from foundational techniques such as Collaborative Filtering (CF) (Engström 

et al. 2024), Kalman Filtering (KF) (Darbandi 2017) and Content-Based Filtering (CBF) (Saini and Singh 2024) to 

advanced frameworks incorporating Deep Learning (DL) and graph-based methods like Graph Convolutional 

Networks (GCNs) (Guo et al. 2024). GCNs have emerged as a powerful technique for modeling graph-structured 

data in various applications (Zhu et al. 2022), including RSs, where user–item interactions can be naturally 

represented as bipartite graphs. In this formulation, users and items serve as nodes, and their interactions define the 

edges (Xu et al. 2018). Through Multi-Hop Aggregation (MHA), GCN-based approaches effectively capture both 

local and global interaction patterns, enabling the modeling of high-order connectivity between users and items. 

However, despite these advantages, many existing GCN-based RS models are constrained by single network 

architectures (Zhao et al. 2024), limiting their ability to handle diverse tasks—such as recommendation policy 

generation and value estimation—and to adapt to the continuous evolution of user preferences. 

Although recent advances in RS algorithms have led to improvements in several areas, significant challenges remain 

unsolved—particularly in striking a balance between exploration and exploitation and capturing long-term user 

preferences in dynamic environments (Alamdari et al. 2022). Much like other traditional approaches, today’s RSs 

continue to grapple with (I) data sparsity (Heidari, Moradi, and Koochari 2022), where limited user–item interactions 

hinder recommendation accuracy; (II) cold-start problems (Kannout et al. 2024), where insufficient data for new 

users or items undermines effectiveness; (III) difficulty in modeling long-range dependencies in user–item 

interaction graphs (Lee et al. 2025), particularly in single-hop methods; (IV) limited adaptability to evolving user 

preferences; and (V) training instability in reinforcement learning–based systems, which can adversely affect 

performance and convergence. Resolving these issues is essential to develop robust and scalable RSs. Indeed, as RSs 

grow in complexity and scale, they must not only adapt to changing user behaviors but also maintain high accuracy 

and satisfaction (Zare et al. 2024). Meeting these evolving demands calls for sophisticated and hybrid algorithms 

capable of robustly tackling these challenges (Salvi et al. 2024). 

Against this backdrop, Deep Reinforcement Learning (DRL) has shown promise to confront some of these challenges 

by framing the recommendation process as a sequential decision problem (Abnoosian, Farnoosh, and Behzadi 2023). 

One influential DRL architecture is the Actor–Critic (AC) framework, which divides learning into two main 

components: the actor, responsible for learning a recommendation policy, and the critic, which evaluates the quality 

of that policy using user feedback (Padhye and Lakshmanan 2023). Unfortunately, existing methods that integrate 

GCNs with AC frameworks often fail to fully harness the potential of DRL, primarily because they lean on shared 

network structures. Such designs cannot easily capture complex user–item interactions or achieve an optimal balance 

between exploration and exploitation—two crucial factors for delivering high-quality, dynamic recommendations. 

In this research, we propose the Dual Actor–Critic Graph Convolutional Network (DAC-GCN), a novel framework 

designed to overcome these challenges through a combination of graph-based learning and RL techniques. The key 

contributions of this work are outlined below to highlight its novelty and practical relevance: 

• Novel DAC Architecture: Introduction of a DAC framework leveraging separate GCNs for policy 

optimization and value estimation, enabling practical task specialization and improved learning outcomes. 

By decoupling policy generation and value estimation, DAC-GCN ensures task-specific learning that 

enhances its ability to adapt to evolving user preferences. The framework employs a static reward function 

to guide the learning process, providing stability in policy optimization. 

• MHA: Incorporation of MHA to capture long-range dependencies in user-item interaction graphs, tackling 

challenges such as data sparsity and cold-start problems. 

• Attention Mechanisms: Integration of attention mechanisms to dynamically prioritize significant 

interactions, enhancing the model’s ability to focus on key user-item relationships (Zhang, Zain, et al. 2024). 

• Comprehensive Evaluation: Extensive experiments conducted on multiple benchmark datasets, 

demonstrating significant performance improvements over state-of-the-art methods across key evaluation 
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metrics such as Hit Ratio (HR@10), Normalized Discounted Cumulative Gain (NDCG@10), and Mean 

Reciprocal Rank (MRR). 

• Practical Implications: A design that is adaptable to dynamic user preferences and scalable for real-world 

applications, providing a robust solution for modern RSs. 

To provide readers with a clear understanding of the study, the remainder of this paper is organized as follows: 

Section 2 reviews the related work, including advancements in RSs and graph-based learning techniques, as well as 

DRL in RSs. Section 3 details the proposed DAC-GCN architecture, including its components and methodology. 

Section 4 describes the experimental setup, evaluation metrics, and datasets used, followed by a presentation and 

analysis of the results. Also, it discusses the contributions of this work to scientific research and its practical 

implications. Finally, Section 5 concludes the paper and provides suggestions for future research directions. 

2 RELATED WORK 
Machine learning–driven RSs have progressed substantially over the past decade, chiefly due to their growing ability 

to capture intricate user–item relationships (Albora, Rossi Mori, and Zaccaria 2023). Early, foundational methods—

such as CF and CBF—provided essential insights into personalization but often faltered in scenarios where user 

feedback was historical data insufficiently supported limited or newly introduced items. More recently, graph-based 

models leveraging GCNs have demonstrated the capacity to capture both local and global signals by representing 

users and items as interconnected nodes and propagating information across multiple hops. Nonetheless, many of 

these GCN-based solutions hinge on single-network architectures, which can restrict their effectiveness in 

optimizing different learning objectives (e.g., recommendation vs. feedback evaluation). 

On another front, DRL has gained traction by framing recommendations as a sequential decision-making process. 

The AC architectures, in particular, elegantly manage the balance between exploration and exploitation. However, 

when applied to large-scale or dynamically evolving user–item graphs, these RL-based methods often lack the 

nuanced representational power necessary to pinpoint relevant interactions and to adapt swiftly to new data 

patterns. 

Recognizing the individual strengths—and inherent limitations—of GCNs and AC frameworks, several recent 

studies have sought to combine them. Yet, many integrated approaches still rely on shared components that are ill-

equipped to simultaneously handle task-specific requirements, such as precise policy optimization and robust value 

estimation. A more specialized design that can segregate these goals—and also incorporate advanced mechanisms 

like MHA and attention—stands to offer more stability and higher overall performance. 

In this paper, we tackle these shortcomings through our proposed DAC-GCN, which fuses dual Actor–Critic 

modules with GCN-based embeddings. By separating policy and value estimation into distinct networks, DAC-

GCN attains greater flexibility and more effective representation learning, ensuring reliable adaptations to evolving 

user preferences. Table 1 provides a comparative analysis between DAC-GCN and existing state-of-the-art 

approaches, summarizing how each method handles key components of recommendation—such as computational 

scalability, modeling complexity, and the ability to support diverse user–item interactions. 

Table 1. Comparison of DAC-GCN with state-of-the-art methods, highlighting key strengths and addressing main challenges. 

Method Key Features Limitations 
How DAC-GCN Addresses 

The issues 

Traditional Methods like 

CF 

CF models user-item 

interactions 

Struggles with data sparsity and 

cold-start problems 

MHA captures broader 

dependencies 

Graph-Based Models (e.g., 

LightGCN, NGCF) 

Leverages graph 

structures for 

learning 

Limited task specialization in 

single networks 

DAC separates tasks effectively 

DRL (e.g., Actor-Critic) Balances exploration 

and exploitation 

Lacks representational power for 

complex interactions 

GCNs enhance interaction 

modeling and prioritization 

 

https://aip.vse.cz/


Acta Informatica Pragensia  Volume 14, 2025 

https://doi.org/10.18267/j.aip.261  343 https://aip.vse.cz 

To enhance clarity and offer a structured comparison, Table 2 presents the advantages and disadvantages of several 

existing RS approaches across key dimensions, including computational efficiency, scalability, handling of data 

sparsity, adaptability to dynamic environments, and the ability to capture long-range dependencies. The table also 

highlights advanced features such as attention mechanisms, MHA, and specialized learning for AC tasks. 

From this comparison, it becomes clear that while methods like NGCF and LightGCN excel in scalability and local 

connectivity, they lack adaptability to evolving user preferences and do not provide specialized AC structures. 

Meanwhile, SimGCL and SGL incorporate attention mechanisms but forgo MHA and dedicated AC learning for 

policy and value estimation. In contrast, the proposed DAC-GCN framework uniquely integrates these critical 

features—DAC architecture, MHA, and attention mechanisms—thereby addressing the inherent shortcomings of 

prior methods. As shown in subsequent sections, this holistic approach enables DAC-GCN to achieve superior 

performance across various evaluation criteria. 

Table 2. Enhanced Comparative Table of Existing Solutions and DAC-GCN. 

Comparative Aspects 
Methods 

BPR NGCF LightGCN NeuMF EASE SGL SimGCL DAC-GCN 

Computational 

Efficiency 

Moderate Moderat

e 

High Low Very 

High 

Low Moderate Moderate 

Scalability Moderate Moderat

e 

High Low High Low Moderate High 

Handling Data 

Sparsity 

Low Moderat

e 

High Moderate Low Hig

h 

High High 

Adaptability to 

Dynamic 

Environments 

Low Low Low Moderate Very 

Low 

Low Moderate High 

Capturing Long-

Range Dependencies 

Low High Moderate Low Low Hig

h 

High Very High 

Integration of 

Attention 

Mechanisms 

No No No No No Yes Yes Yes 

MHA No Yes No No No No No Yes 

Specialized Learning 

for Actor-Critic 

Tasks 

No No No No No No No Yes 

2.1 GCNs for RSs 

GCNs have become a foundational tool for learning graph-structured data (Kipf and Welling 2017), yielding 

significant breakthroughs in scenarios where entities and their interrelationships can be modeled as networks 

(Halder et al. 2024). In the domain of RSs, GCN-based methods leverage the intrinsic structure of user–item 

interaction graphs, where users and items are nodes, and their relationships (e.g., ratings, clicks) form edges. 

Through MHA, GCNs effectively capture higher-order connectivity patterns, substantially boosting 

recommendation accuracy by uncovering both local and global interaction dynamics (Anjiri, Ding, and Song 2024). 

Over the past few years, numerous GCN architectures have been explored to enhance recommendation performance 

by learning intricate patterns within interaction graphs (Zhou, Ye, and Cao 2024). For example, GC-MC introduced 

a matrix completion framework utilizing GCN embeddings for users and items (Wei et al. 2023), while NGCF 

extended this principle by modeling high-order connectivity, thereby improving predictions in data-sparse 

scenarios. Despite these advancements, traditional GCN-based methods often rely on single-network architectures 

that struggle to simultaneously address the distinct objectives of policy learning and value estimation in RSs (Huang 

et al. 2023). 
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In this work, we build upon these advances by integrating two specialized GCNs within a DAC architecture. The 

Actor GCN targets recommendation policy learning by capturing intricate interaction patterns, while the Critic GCN 

focuses on value estimation, assessing the long-term rewards of actions. By decoupling these tasks, the DAC-GCN 

framework addresses the evolving challenges of dynamic recommendation environments, including data sparsity, 

shifting user preferences, and cold-start problems. 

To further enhance the effectiveness of the DAC-GCN, we incorporate MHA to capture long-range dependencies 

and an attention mechanism to emphasize pivotal interactions. These design choices enable the model to adapt 

dynamically, ensuring high-quality, personalized recommendations across diverse datasets and user behaviors. 

Collectively, the DAC-GCN framework exemplifies the state-of-the-art integration of GCNs and reinforcement 

learning, achieving superior accuracy, adaptability, and interpretability in RSs. 

2.2 DRL in RSs 
RSs have evolved significantly with the advent of DRL, a paradigm that reframes recommendation tasks as 

sequential decision-making problems. Unlike traditional approaches, which often operate in static environments, 

DRL-based RSs adapt dynamically to user behaviors, enabling the system to provide more personalized and context-

aware recommendations. 

DRL leverages the principles of RL to optimize long-term rewards, addressing critical limitations in traditional 

recommendation methods, such as data sparsity, cold-start issues, and the exploration-exploitation trade-off. By 

treating user interactions as state transitions in a Markov Decision Process (MDP) (Sutton 2018), DRL-based RSs 

dynamically refine recommendation policies based on user feedback, ensuring continuous improvement in 

recommendation quality. 

The AC framework has emerged as a cornerstone of DRL-based RSs. This architecture divides the task into two 

complementary components: The Actor component is responsible for learning a policy that determines which items 

to recommend based on the current state (e.g., a user’s interaction history), and the Critic part evaluates the quality 

of the Actor’s policy by estimating the expected rewards for each recommendation. This separation enhances both 

exploration and exploitation, allowing the system to balance the discovery of new preferences with the 

reinforcement of known user interests. 

DRL offers transformative contributions to RSs by addressing several core challenges. Unlike traditional CF and CBF 

methods, DRL explicitly models the sequential nature of user interactions, recognizing that each recommendation 

action influences future states and rewards. This approach facilitates a more holistic optimization of the user 

experience. Moreover, DRL excels in capturing dynamic user preferences; as user behaviors evolve, the system 

continuously updates its policies to ensure relevance. Through its reward-driven mechanism, DRL effectively 

balances the exploration of new items with the exploitation of known user interests, enhancing both diversity and 

accuracy in recommendations. Additionally, its reliance on cumulative rewards rather than immediate feedback 

renders it inherently robust to sparse and noisy interaction data, making it highly effective in scenarios where explicit 

user feedback is limited. 

Advancements in DRL architectures further amplify its utility in RSs. Policy gradient and Q-learning-based models, 

navigate large knowledge graphs to improve recommendation relevance and interpretability. AC frameworks, like 

our DAC-GCN, separate policy optimization and value estimation into dedicated networks, leading to improved 

training stability and higher-quality recommendations. Hierarchical DRL approaches decompose the 

recommendation process into manageable sub-tasks, enhancing scalability in complex environments. Model-based 

DRL architectures integrate predictive models of user behavior to streamline policy updates, reducing 

computational demands while maintaining high performance. Together, these innovations illustrate the versatility 

and adaptability of DRL in addressing the evolving demands of modern RSs. 

While DRL has demonstrated significant promise in RSs, it also presents challenges. The computational complexity 

of training DRL models, particularly in large-scale environments, remains a concern. Moreover, reward design plays 

a critical role in guiding policy optimization, yet defining a reward function that aligns with diverse user satisfaction 

metrics can be challenging. Future research should focus on lightweight architectures, adaptive reward mechanisms, 

and hybrid models that integrate DRL with other deep learning techniques, such as GNNs and transformers. 
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In this work, DRL serves as the backbone of the proposed DAC-GCN framework. By embedding DRL within a graph 

convolutional structure, DAC-GCN benefits from the sequential decision-making capabilities of DRL and the 

representational power of GCNs. This integration enables the framework to capture both immediate and long-term 

user preferences, achieving superior recommendation performance in dynamic, real-world environments. 

2.3 MHA and Attention Mechanisms 
Incorporating MHA in GCNs has become a key technique for enhancing the expressiveness of graph-based models. 

By aggregating information from multiple hops away in the graph, models can capture long-range dependencies, 

which are essential for understanding complex relationships between users and items. MHA has been particularly 

beneficial in RSs, where user preferences are often influenced by indirect interactions that are not immediately 

apparent in their direct interaction history. For instance, LightGCN demonstrated that simplifying GCNs by focusing 

on neighborhood aggregation over multiple hops could significantly improve recommendation accuracy. 

Building on this idea, DAC-GCN employs MHA to capture both local and global user-item interaction patterns. By 

aggregating information from distant neighbors in the interaction graph, DAC-GCN can model long-range 

dependencies that are often missed by single-hop approaches. This enables the model to provide more 

comprehensive recommendations by considering both immediate preferences and broader behavioral patterns. 

Additionally, attention mechanisms have been increasingly integrated into GCN-based models to weigh the 

importance of different interactions dynamically. Graph Attention Networks (GATs) introduced attention into graph 

models, allowing the network to assign different importance levels to various neighbors (Cui et al. 2024). This has 

proven effective in focusing the model on the most relevant interactions for recommendation tasks. In DAC-GCN, 

we integrate an attention mechanism to ensure that the model prioritizes key interactions within the user-item graph, 

further improving the relevance of recommendations. 

3 PROPOSED METHOD 
In this section, we introduce the DAC-GCN framework, which tackles the challenges posed by dynamic user-item 

interactions, long-term preference modeling, and the need for policy optimization in RSs. The method proceeds 

through several stages to optimize recommendations: 

• Data Representation: We begin by structuring the raw input data as a user-item bipartite graph, providing 

a natural representation of interactions such as clicks, ratings, or purchases. 

• DAC Architecture: The core of DAC-GCN features two distinct GCNs—one for the Actor (policy 

optimization) and one for the Critic (value estimation). This division of labor reduces training conflicts and 

enhances both accuracy and stability. 

• MHA & Attention: MHA captures higher-order dependencies by collecting signals from distant neighbors 

in the graph. Meanwhile, the attention mechanism ensures that key interactions receive greater emphasis, 

further refining user and item representations. 

• Recommendation Generation & Evaluation: The system generates recommendations based on the Actor’s 

learned policy and then assesses these recommendations through the Critic, guided by a static reward 

function. This reward function provides consistent feedback for policy updates, improving convergence and 

performance. 

The subsections that follow detail each component of DAC-GCN, illustrating how they collectively tackle the 

inherent complexities of modern RSs. 

3.1 Overview of DAC-GCN Architecture 
The core principle of DAC-GCN is to split policy optimization and value estimation into two distinct modules, 

forming a dual GCN-based Actor-Critic (AC) framework. This decoupling allows the Actor GCN to concentrate on 

learning recommendation policies while the Critic GCN focuses on assessing the quality of those policies through 

value estimation. In addition, MHA is used to capture higher-order connections in the user-item graph, and an 

attention mechanism dynamically adjusts the importance of different interactions. A static reward function further 

stabilizes the learning process by providing consistent feedback for policy updates. 
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Graph convolution underpins DAC-GCN by leveraging the inherent graph structure of user-item interactions to 

enhance recommendation quality. Its key functions include: 

• Capturing Higher-Order Connectivity: Graph convolution aggregates information from neighboring nodes 

across multiple hops, thereby identifying both direct and indirect user-item relationships. This enables more 

nuanced learning of user preferences and item characteristics. 

• Learning Enriched Node Representations: By combining node features from various neighbors, graph 

convolution produces richer embeddings for users and items. These embeddings provide a strong basis for 

generating accurate recommendations. 

• Handling Sparsity and Cold-Start Problems: In sparse data settings, MHA allows the model to exploit 

indirect connections. This approach improves performance for users or items with limited interaction 

histories by inferring preferences through shared neighbors. 

The dual AC structure in DAC-GCN ensures that each component targets its specialized objective. The Actor 

optimizes the recommendation policy, while the Critic evaluates this policy’s expected long-term reward. This 

separation overcomes the issue of conflicting gradients often seen in single-network architectures, improving both 

training stability and overall performance. 

Figure 1 highlights the differences between RSs based on Deep Learning (DL-RSs) and those utilizing Deep 

Reinforcement Learning (DRL-RSs): 

• DL-RSs: Typically rely on supervised learning to map user-item interactions to predictions (Dilekh et al. 

2024). They excel in relatively static environments but struggle to adapt when user preferences shift, 

primarily due to limited exploration mechanisms. 

• DRL-RSs: Formulate recommendation as a sequential decision-making problem, balancing the use of 

known preferences (exploitation) with identifying new interests (exploration). By employing an AC 

framework, the recommender learns continuously from user feedback, adapting to evolving behaviors over 

time. 

In the context of DAC-GCN, the Actor decides which items to recommend, while the Critic assesses the likely reward 

of those recommendations. This design allows DAC-GCN to effectively handle dynamic user preferences and deliver 

more personalized, context-aware recommendations. 

 

Figure 1. Deep Learning vs. Deep Reinforcement Learning in RSs. (Left side shows a simple flow diagram of a Deep Learning-
based RS and the Right side shows and AC-based RS). 
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3.2 DAC Architecture 
The DAC framework in DAC-GCN separates policy optimization and value estimation into two specialized 

networks, known as the Actor and the Critic. This division helps overcome the cold-start problem and improves the 

model’s ability to generalize to new users and items. 

• Actor Network: This is responsible for policy optimization; the Actor-network explores the user-item 

interaction graph to generate personalized recommendations. 

• Critic Network: It focuses on value estimation by predicting the expected reward for the Actor’s 

recommendations, providing continual feedback that refines the policy. 

By dedicating specialized resources to each task, DAC-GCN avoids the conflicting objectives often found in single-

network approaches. In a traditional single-network architecture, the model simultaneously handles policy learning 

and value estimation, which can lead to instability and poor exploration-exploitation balance. In contrast, the DAC 

design allocates distinct capacities for each objective, enhancing adaptability in dynamic recommendation 

environments. The key advantages to this technique include: 

• Specialized Learning Tasks: By separating policy optimization (Actor) and value estimation, it allows each 

network to concentrate on its respective objective and avoids the conflicting gradients in single-network 

models. 

• Improved Feedback Mechanism: The Critic’s continuous evaluation of the Actor’s actions provides a robust 

signal to refine the policy iteratively. This feedback loop ensures the recommendations are regularly 

updated to align with user preferences. 

• Adaptability to Dynamic Preferences: Because the Actor and Critic are distinct, the model can respond 

more fluidly to shifts in user behavior. As the Actor explores new recommendations, the Critic re-evaluates 

these actions to stay current with changing preferences. 

• Enhanced Representation Learning: By maintaining separate GCN layers for policy generation and value 

estimation, DAC-GCN can learn richer user and item embeddings. The Actor focuses on capturing diverse 

user-item relationships, while the Critic emphasizes how those relationships contribute to reward 

maximization. 

• Stabilized Training Process: It decouples policy and value updates, reduces the risk of oscillations, and 

accelerates convergence by creating a more stable training procedure. 

The Actor learns a policy 𝜋(𝑎|𝑠), that maps states 𝑠 (representing user-item interactions) to actions 𝑎 (recommended 

items). The Critic, meanwhile, estimates the action-value function 𝑄𝜋(𝑠, 𝑎) to guide and refine the Actor’s behavior. 

• Actor Objective: The goal of the Actor is to maximize the expected cumulative reward (Schulman et al. 

2015): 

𝑚𝑎𝑥
𝜋

 𝔼𝜋 [∑  

𝑇

𝑡=0

 𝛾𝑡𝑟(𝑠𝑡 , 𝑎𝑡)] (1)  

where 𝛾 is the discount factor, 𝑟(𝑠𝑡 , 𝑎𝑡) is the immediate reward, and 𝑇 is the horizon length. 

• Critic Objective: The Critic estimates the action-value function 𝑄𝜋(𝑠, 𝑎), given by: 

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = 𝔼𝜋[𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1)] (2) 

This value function guides the Actor to select actions that maximize long-term rewards (Schulman et al. 

2015). 

To model user-item interactions, DAC-GCN constructs a bipartite graph where nodes represent users or items, and 

edges represent interactions (e.g., clicks, ratings, or purchases). Both the Actor and Critic embed these nodes through 

specialized GCN layers: 

• Actor GCN: Learns a recommendation policy by capturing local and global user-item dependencies. This 

MHA integrates information from distant neighbors in the graph, allowing the Actor to infer latent 

preferences that enhance recommendation quality. Formally, each layer updates node embeddings ℎ𝑣
(𝑙+1)

 

using (Kipf and Welling 2017): 
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ℎ𝑣
(𝑙+1)

= 𝜎( ∑  

𝑢∈𝒩(𝑣)

 
1

√|𝑁(𝑢)||𝑁(𝑣)|
𝑊(𝑙)ℎ𝑢

(𝑙)
) (3) 

where 𝒩(𝑣) is the set of neighbors of node 𝑣 , 𝑊(𝑙)  is the weight matrix at layer 𝑙 , and 𝜎(⋅) denotes a 

nonlinear activation (e.g., ReLU). 

• Critic GCN: Evaluates the Actor’s recommendations by estimating expected rewards. In addition to user-

item interactions, the Critic GCN can incorporate side information like demographics or item attributes, 

leading to more precise value estimation. 

By jointly optimizing these Actor and Critic GCNs through reinforcement learning, DAC-GCN continuously 

updates its policy and value estimates. This synergistic design enhances the system’s ability to adapt to user behavior 

and effectively personalize recommendations over time. 

3.3 MHA 
To capture both short-term and long-term user preferences, we use MHA in the GCN layers. This approach extends 

beyond immediate neighbors by gathering information from nodes multiple hops away, allowing the model to 

uncover complex user-item dependencies that are often overlooked in single-hop interactions. For example, a user’s 

interest in an unfamiliar item might be inferred through shared preferences with other users several hops away in 

the interaction graph. By integrating these indirect relationships, MHA enriches the learned embeddings and 

enhances recommendation quality, particularly under data sparsity. Its specific contributions include: 

• Capturing Long-Range Dependencies: MHA propagates information across extended neighborhoods, 

enabling the model to identify indirect relationships between users and items. This higher-order 

connectivity allows the system to infer preferences even when direct interactions are lacking. 

• Mitigating Data Sparsity: By incorporating signals from distant nodes, MHA strengthens the 

representations for users and items with limited direct interactions. This approach helps ensure robust 

embeddings for sparse nodes, improving overall recommendation performance. 

• Enhancing Representation Learning: Combining local and global interaction patterns into comprehensive 

embeddings enables the model to capture complex user-item relationships that simple, single-hop methods 

might miss. As a result, DAC-GCN can deliver diverse and more accurate recommendations. 

• Balancing Information Flow: The aggregation process balances the contributions of immediate neighbors 

against those of distant neighbors, preventing overfitting to local patterns and maintaining global context. 

This balance is crucial for reflecting both short-term and long-term user preferences. 

Formally, after 𝑘-hop aggregation, the embedding for a user node 𝑢 is defined as: 

ℎ𝑢
(𝑘)

= ∑  

𝑣∈𝒩𝑘(𝑢)

𝛼𝑢𝑣ℎ𝑣 (4) 

where 𝒩𝑘(𝑢) is the set of neighbors at hop distance 𝑘, and 𝛼𝑢𝑣  represents the attention weight assigned to each 

neighbor based on its importance to the user’s preferences (Wang et al. 2019). 

3.4 Attention Mechanism 
The attention mechanism in DAC-GCN builds on MHA by selectively highlighting the most influential interactions, 

ensuring that the propagated information remains both relevant and meaningful. In particular, it assigns higher 

weights to interactions that exert a stronger impact on recommendation outcomes while mitigating the influence of 

noisy or marginal data. By dynamically adapting these interaction weights based on context, the attention 

mechanism allows DAC-GCN to capture evolving user preferences with greater flexibility and accuracy. Its specific 

purposes include: 

• Prioritizing Relevant Interactions: The attention mechanism focuses on user-item interactions that most 

affect recommendation results. For example, if a user predominantly engages with items in a specific 

category, the mechanism will emphasize these interactions, ensuring that subsequent recommendations 

remain aligned with the user’s core interests. 
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• Mitigating Noise: Real-world datasets often contain interactions that are transient or of limited importance. 

The attention mechanism downweighs such interactions, preventing the model from overfitting to noisy 

signals and improving overall recommendation quality. 

• Dynamic Adaptation: Because the attention mechanism adjusts interaction weights on the fly, it facilitates 

rapid adaptation to diverse user behaviors and changing preferences. This enables DAC-GCN to remain 

robust and responsive in dynamic environments. 

By assigning higher weights to influential interactions, the attention mechanism not only enriches user and item 

embeddings but also improves DAC-GCN’s ability to capture subtle or niche preferences. This leads to more 

personalized recommendations and a better understanding of individual user behavior. Moreover, attention scores 

make the model more interpretable by revealing which interactions are most crucial for its decisions. Such 

transparency can guide practitioners in refining model components and improving system performance. 

Formally, the attention weight 𝛼𝑢𝑣 is computed as: 

𝛼𝑢𝑣 =
𝑒𝑥𝑝⁡(LeakyReLU(𝑎𝑇[ℎ𝑢||ℎ𝑣]))

∑  𝑤∈𝒩(𝑢)  𝑒𝑥𝑝⁡(LeakyReLU(𝑎𝑇[ℎ𝑢||ℎ𝑤]))
 (5) 

where 𝑎 is the learnable attention vector, and || denotes concatenation (Veličković et al. 2017). This formulation 

ensures that each neighbor’s contribution is weighted according to its importance to the user’s preferences, thereby 

strengthening DAC-GCN’s overall recommendation performance. 

3.5 Static Reward Function 
In the DAC-GCN framework, the static reward function serves as a cornerstone for both training stability and policy 

optimization. By providing a fixed, predefined feedback signal (e.g., +1 for a user interaction and 0 otherwise), it 

mitigates the volatility introduced by fluctuating or noisy user feedback. This consistency eliminates frequent 

reward updates based on changing contexts or temporal factors, enabling smoother convergence in the Actor-Critic 

process. 

A key benefit of the static reward is its capacity to guide policy optimization without inducing abrupt policy shifts. 

Because the reward signal remains stable, the Actor network can focus on incremental improvements rather than 

reacting to transient patterns, thus reducing the likelihood of overfitting. This regularized exploration helps the 

learned policy remain robust across diverse scenarios, even in dynamic environments. 

Formally, we define the static reward in DAC-GCN as: 

𝑟(𝑠𝑡 , 𝑎𝑡) = {
+1 if the user interacts with
⁡  the recommended item
0 otherwise

 (6) 

Such a straightforward, predefined feedback mechanism prevents large policy oscillations, allowing the model to 

refine recommendations iteratively. 

To assess how well this static reward aligns with overall recommendation objectives, we employ standard evaluation 

metrics, including Precision@K, Recall@K, and NDCG@K. These metrics quantify the relevance of the recommended 

items and reflect the degree to which the reward function successfully drives the Actor network toward accurate 

predictions. In addition, metrics such as Mean Reciprocal Rank (MRR@K) and Hit Ratio (Hit@K) help evaluate 

ranking performance, further confirming the reward’s effectiveness in encouraging high-quality recommendations. 

By consistently reinforcing reward signals aligned with these metrics, the static reward function enables DAC-GCN 

to achieve stable and robust policy learning in real-world recommendation scenarios. 

3.6 Training Process and Algorithm 
The training of DAC-GCN follows an iterative procedure, where the Actor and Critic networks are updated based 

on the observed rewards. The optimization process is based on gradient ascent for the Actor and gradient descent 

for the Critic. The loss for the Critic network is the temporal difference (TD) error, defined as (Chen et al. 2023): 

𝐿Critic = (𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡))
2 (7) 

The policy gradient for the Actor is computed using the policy gradient theorem (Sutton et al. 1999): 
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𝛻𝜃𝐽(𝜃) = 𝔼𝜋[𝛻𝜃𝑙𝑜𝑔⁡ 𝜋𝜃(𝑎𝑡|𝑠𝑡)𝑄𝜋(𝑠𝑡 , 𝑎𝑡)] (8) 

While the incorporation of MHA and attention mechanisms introduces additional computational overhead, these 

components significantly enhance the model's ability to capture nuanced user-item interactions. MHA improves the 

representation of both local and global patterns by capturing long-range dependencies, and the attention mechanism 

dynamically prioritizes the most relevant relationships in the user-item graph. These enhancements ensure that the 

model effectively balances complexity with improved recommendation quality. 

Figure 2 shows the flow diagram of our proposed method in a high-level structure. 

 

Figure 2. Flow Diagram of the Proposed DAC-GCN Method. 

Algorithm 1 shows the training process of the proposed DAC-GCN for RSs. The algorithm begins by initializing the 

Actor and Critic GCN networks with random weights. The training proceeds iteratively over multiple episodes, 

where for each user-item interaction, the Actor selects a recommended item based on the user’s current state 

(interaction history), and the environment provides a reward based on user feedback. The Critic evaluates both the 

current and next state-action pairs, and the TD target is computed to guide the Critic's update. The Critic is updated 

to minimize the TD error, while the Actor is updated using a policy gradient to maximize the expected reward. The 

algorithm continues this process, gradually improving the Actor's ability to recommend better items and the Critic's 

capacity to evaluate them, ultimately returning the trained models. 

Table 3. Hyperparameters and settings of the DAC-GCN model, including GCN configurations,  
RL components, and evaluation metrics. 

Parameter Value Description 

embedding_size 64 Size of the embedding vectors for nodes. 

n_hops 3 Number of hops in the graph convolution network. 

node_dropout 0.3 Dropout rate for nodes during training. 

message_dropout 0.3 Dropout rate for messages passed in the graph. 

dropout 0.3 General dropout rate applied to layers. 

edge_dropout_rate 0.1 Dropout rate for graph edges during training. 

reg_weight 1e-5 Regularization weight for preventing overfitting. 

n_layers 3 Number of layers in the model. 

actor_lr 0.001 Learning rate for the actor model. 

critic_lr 0.01 Learning rate for the critic model. 
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Parameter Value Description 

train_batch_size 8192 Batch size used for training. 

eval_batch_size 4096 Batch size used for evaluation. 

gamma 0.99 Discount factor for reward in reinforcement learning. 

num_heads 8 Number of attention heads in the multi-head attention mechanism. 

temperature 0.2 Temperature parameter for scaling logits during sampling. 

learning_rate 0.001 The learning rate for the optimizer. 

epochs 200 Number of training epochs. 

batch_size 8192 Batch size used for processing data. 

optimizer Adam Optimizer used for training. 

loss_type BPR Type of loss function used, Bayesian Personalized Ranking (BPR). 

metrics Recall, MRR, 

NDCG, Hit, 

Precision 

Evaluation metrics considered for validation. 

topk 10 Number of top recommendations to evaluate metrics. 

 

Algorithm 1. DAC-GCN for RSs. 

Input: 𝐺𝑈𝐼 : User-item bipartite graph, 𝛾: Discount factor, 𝛼actor: Learning rate for Actor, 𝛼critic: Learning rate 

for Critic, 𝑇: Number of episodes, 𝑑: Embedding dimension 

Output: Trained Actor GCN, Trained Critic GCN 

1: Initialize Actor GCN 𝜋𝜃 and Critic GCN 𝑄𝜙 with random weights 

2: for each episode 𝑡 = 1,2, … , 𝑇 do 

3: for each user 𝑢 and item 𝑖 interaction in 𝐺𝑈𝐼  do 

4:          Set current state 𝑠𝑡 ← get_state(𝑢) (user interaction history) 

5:          Actor selects action: 𝑎𝑡 ← 𝜋𝜃(𝑠𝑡) (recommend item) 

6:          Simulate environment step: 

7:              Receive reward 𝑟𝑡 and next state 𝑠𝑡+1 ← environment_step(𝑢, 𝑎𝑡) 

8:          Critic evaluates current state-action pair: 

9:              𝑄𝜙(𝑠𝑡 , 𝑎𝑡) ← Critic GCN 

10:          Actor selects next action: 𝑎𝑡+1 ← 𝜋𝜃(𝑠𝑡+1) 

11:          Critic evaluates next state-action pair: 

12:              𝑄𝜙(𝑠𝑡+1, 𝑎𝑡+1) ← Critic GCN 

13:          Compute TD target: 

14:              TD Target = 𝑟𝑡 + 𝛾𝑄𝜙(𝑠𝑡+1, 𝑎𝑡+1) 

15:          Compute Critic loss: 

16:              𝐿critic = (TD Target − 𝑄𝜙(𝑠𝑡 , 𝑎𝑡))
2 

17:          Update Critic network: 

18:              𝜙 ← 𝜙 − 𝛼critic∇𝜙𝐿critic 

19:          Compute Actor loss: 

20:              𝐿actor = −log⁡(𝜋𝜃(𝑎𝑡|𝑠𝑡)) ⋅ 𝑄𝜙(𝑠𝑡 , 𝑎𝑡) 

21:          Update Actor network: 

22:              𝜃 ← 𝜃 − 𝛼actor∇𝜃𝐿actor 

23:      end for 

24: end for 

25: return Trained Actor GCN 𝜋𝜃, Trained Critic GCN 𝑄𝜙 
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To enhance the clarity and reproducibility of our proposed DAC-GCN framework, we summarize the key 

hyperparameters and settings used in the model in Table 3. It outlines the essential parameters, including those 

governing the GCNs, RL components, and evaluation metrics. These settings were chosen based on prior work and 

fine-tuning experiments to optimize model performance across the benchmark datasets. 

DAC-GCN’s training poses several computational challenges due to its complex architecture. MHA, for instance, 

involves propagating information through multiple layers of the user-item graph, significantly increasing memory 

usage and training time—especially for large-scale datasets. Similarly, attention mechanisms, which dynamically 

weight user-item interactions, add extra matrix operations during training and inference. Balancing these 

components alongside DAC networks introduces substantial model complexity and can compromise training 

stability if not carefully managed. Moreover, scaling DAC-GCN for larger datasets or real-time recommendations 

intensifies these challenges further, since it requires handling substantial computational loads from both graph-

based operations and RL optimization. 

To overcome these challenges, we propose several practical strategies that can be adopted when developing and 

training DAC-GCN. First, employing graph sampling techniques can limit the size of the computation graph, 

thereby reducing memory requirements and training times without substantially compromising performance. Next, 

exploring sparse attention mechanisms helps focus computations on the most impactful interactions, improving 

overall efficiency. Regularization and gradient clipping are also recommended to counter overfitting and prevent 

exploding gradients, thus maintaining training stability. Finally, a batch-processing approach distributes the 

computational load more effectively, facilitating scalability and reducing the time needed for each training epoch. 

4 RESULTS AND DISCUSSION 
In this section, we present the experimental results of our proposed DAC-GCN, comparing its performance with 

state-of-the-art models across several benchmark datasets. We evaluate DAC-GCN on key recommendation metrics. 

The experiments are designed to evaluate the ability of DAC-GCN to overcome challenges such as data sparsity, 

relevance ranking, and capturing complex user-item interactions. Additionally, we conduct an ablation study to 

assess the impact of individual components on the model's overall performance. 

4.1 Datasets, Baseline Methods, and Evaluation Metrics 
To evaluate the performance of the proposed DAC-GCN model, we conducted experiments on several widely-used 

benchmark datasets sourced from RecBole (Zhao et al. 2022), each of which represents different domains and 

interaction types. The selected datasets include MovieLens 100K, MovieLens 1M, Amazon Subscription Boxes, 

Amazon Magazine Subscriptions, and Mod Cloth. These datasets are well-known in the RS research community. 

These datasets were chosen due to their diversity in domain, interaction types, and sparsity levels, providing a 

comprehensive benchmark for evaluating the robustness and adaptability of DAC-GCN. A detailed overview of the 

selected datasets is provided in Table 4. 

Table 4. Characteristics of the datasets used for evaluating DAC-GCN, highlighting varying interaction densities and challenges 
for assessing model robustness. 

Dataset #Users #Items #Interaction Reason 

ML-100K 943 1,682 100,000 Well-balanced datasets with sufficient interactions, suitable 

for assessing DAC-GCN’s general recommendation quality 

and scalability under standard conditions. 
ML-1M 6,040 3,952 1,000,209 

Amazon 

Subscription Boxes 

5,223 3,874 82,456 Sparse datasets with limited interactions, used to evaluate 

DAC-GCN’s ability to address data sparsity and enrich 

representations via MHA. Amazon Magazine 

Subscriptions 

3,900 2,748 57,823 

Mod Cloth 47,958 1,378 82,790 A dataset with a dense user-to-item ratio, ideal for testing 

the model's scalability and adaptability to large-scale 

recommendation scenarios. 
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To provide a comprehensive comparison, we selected several state-of-the-art baseline methods. The selected 

baselines represent a variety of approaches—ranging from traditional CF methods to advanced graph-based 

techniques—allowing us to evaluate DAC-GCN’s performance comprehensively against diverse methodologies. 

The selected baselines are as follows: 

• BPR (Bayesian Personalized Ranking) (Hu et al. 2021): A popular CF method that optimizes pairwise 

ranking for implicit feedback. This method serves as a strong baseline for comparing ranking performance. 

• LightGCN (Light Graph Convolutional Network) (Zhang, Zhu, et al. 2024): A highly efficient GCN-based 

method that focuses solely on neighborhood aggregation without feature transformations, making it ideal 

for evaluating graph-based interactions. 

• NeuMF (Neural Matrix Factorization) (Chen et al. 2020): A widely-used deep learning-based method that 

combines matrix factorization with multi-layer perceptrons, enabling a comparison of DAC-GCN’s graph-

based learning against traditional deep learning models. 

• NGCF (Neural Graph Collaborative Filtering) (Wang et al. 2019): Another GCN-based approach that 

captures high-order connectivity in user-item graphs, providing a valuable baseline to assess the graph 

convolutional aspects of DAC-GCN. 

• EASE (Embarrassingly Shallow Autoencoders) (Steck 2019): A shallow CF model that demonstrates strong 

performance in sparse data environments, offering a contrast to deep and graph-based methods. 

• SGL (Self-supervised Graph Learning) (Wu et al. 2021): A state-of-the-art model that incorporates self-

supervised learning into graph-based recommendation tasks, providing an advanced benchmark for graph-

based learning approaches. 

• SimGCL (Liu et al. 2024): A similarity-based graph contrastive learning model designed to improve the 

robustness of CF methods. 

To assess the performance of DAC-GCN and the baseline methods, we employed ranking metrics. These metrics 

provide a comprehensive evaluation of each method's ability to predict user preferences and rank relevant items 

effectively. The metrics used are defined as follows: 

• Precision@K: The proportion of relevant items among the top-K recommendations, measuring the accuracy 

of predictions. 

• Recall@K: The fraction of all relevant items successfully retrieved within the top-K recommendations, 

reflecting the model’s ability to retrieve all relevant items. 

• NDCG@K (Normalized Discounted Cumulative Gain): Evaluates the ranking quality by considering both 

the relevance and the position of recommended items, assigning higher importance to relevant items ranked 

higher in the list. 

• MRR@K (Mean Reciprocal Rank): Calculates the reciprocal rank of the first relevant item in the 

recommendation list, averaged across all users, providing insight into the model's ability to rank relevant 

items at the top. 

• Hit@K: Measures the fraction of users for whom at least one relevant item is present in the top-K 

recommendations, indicating the success rate of recommendations. 

These metrics are widely used in RS research as they comprehensively evaluate the accuracy, relevance, and ranking 

quality of recommendations. By combining these metrics, we can capture both the precision of individual 

recommendations and the overall system effectiveness. For example, Precision@K and Recall@K assess the relevance 

and retrieval quality of the recommendations, ensuring that the top-K items align with user preferences. NDCG@K 

and MRR@K focus on ranking performance, emphasizing the importance of correctly ordering relevant items, while 

Hit@K provides an overall success rate of including relevant items in the top-K recommendations. All metrics are 

evaluated with 𝐾 = 10, a commonly used cutoff in RS algorithms. These metrics provide a robust evaluation of each 

method's ability to generate accurate and relevant recommendations across different datasets. By defining and 

applying these metrics, we ensure a comprehensive assessment of the proposed DAC-GCN model and its 

effectiveness compared to baseline methods.  

4.2 Results Analysis 
Table 5 provides a comprehensive comparison of DAC-GCN against several baseline models across five datasets, 

revealing notable advantages in terms of Precision@10, Recall@10, NDCG@10, MRR@10, and Hit@10. DAC-GCN 
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consistently outperforms methods such as BPR, LightGCN, NeuMF, and NGCF, demonstrating its capacity to 

capture user-item interactions more effectively and deliver high-quality recommendations. Notably, it achieves top 

Precision@10 scores on the ML-100K (0.2073) and ML-1M (0.2159) datasets, surpassing both NeuMF and NGCF. This 

illustrates DAC-GCN’s ability to retrieve highly relevant items in the top 10 positions, which is particularly 

impressive given the complexity of these datasets. Moreover, DAC-GCN shows a pronounced improvement on the 

Mod Cloth dataset, achieving a Precision@10 of 0.0195, thereby outperforming LightGCN and NeuMF by a 

considerable margin. 

Beyond precision, DAC-GCN excels at retrieving relevant items, evidenced by its strong Recall@10 scores. On the 

ML-100K dataset, it attains a Recall@10 of 0.2575—slightly higher than NGCF (0.2566) and NeuMF (0.2552)—and a 

Recall@10 of 0.1722 on ML-1M, edging out NGCF (0.1673) and closely matching NeuMF (0.1740). This indicates 

DAC-GCN’s proficiency in not only identifying pertinent items but also ranking them effectively within the top 

recommendations. 

NDCG@10 further highlights the ranking quality of DAC-GCN. On ML-100K (0.3062) and ML-1M (0.2780), it 

achieves the highest NDCG@10 values among all baseline models, reflecting its ability to prioritize the most relevant 

items at the forefront of the recommendation list. DAC-GCN also exhibits robust performance on smaller datasets, 

such as Amazon Magazine Subscriptions and Mod Cloth, where it achieves NDCG@10 scores of 0.0874 and 0.0904, 

respectively, underscoring its versatility across different dataset sizes and characteristics. 

Mean Reciprocal Rank (MRR@10) provides further evidence of DAC-GCN’s aptitude for ranking relevant items in 

top positions. The model surpasses all baselines on ML-100K (0.4998) and ML-1M (0.4758), reinforcing its consistent 

ability to produce accurate recommendations. Its strong MRR@10 score on Amazon Subscription Boxes (0.0955) 

underscores its effectiveness in managing data sparsity. 

DAC-GCN also excels in Hit@10, reporting a hit ratio of 0.8054 on ML-100K and 0.7646 on ML-1M—both higher than 

those of NGCF and NeuMF—indicating more frequent successful recommendations within the top 10 results. On 

Amazon Subscription Boxes, DAC-GCN achieves a Hit@10 of 0.1454, confirming its capacity to retrieve a wide range 

of relevant items even in datasets with sparse user-item interactions. 

Overall, these results validate the effectiveness of DAC-GCN’s DAC architecture, which separately optimizes policy 

and value estimation within GCN layers to capture both immediate and long-term preferences. MHA further 

bolsters its ability to model complex user-item relationships, resulting in notable improvements across all key 

metrics. Its robust and scalable performance makes DAC-GCN well-suited for various recommendation scenarios, 

including those with challenging data sparsity. 

Figure 3 visually summarizes these findings, displaying the average metric values across all datasets and 

emphasizing DAC-GCN’s superior performance compared to baselines like BPR, LightGCN, and NeuMF. In 

particular, the model’s higher NDCG@10 scores underscore its adeptness at ranking relevant items at the top of 

recommendations. The figure also highlights DAC-GCN’s consistent effectiveness on both dense datasets (e.g., ML-

100K) and sparse datasets (e.g., Amazon Subscription Boxes), attesting to the versatility of its dual architecture and 

MHA approach. 

Table 5. Performance comparison of DAC-GCN and state-of-the-art methods across multiple datasets using Precision@10, 
Recall@10, NDCG@10, MRR@10, and Hit@10 metrics. 

Metric Method ML-100K ML-1M Amazon 

Subscription 

Boxes 

Amazon Magazine 

Subscriptions 

Mod 

Cloth 

Precision@10 BPR 0.1998 0.2081 0.0063 0.0050 0.0110 

LightGCN 0.1435 0.1495 0.0105 0.0124 0.0163 

NeuMF 0.2006 0.2058 0.0248 0.0155 0.0148 

NGCF 0.2019 0.2019 0.0101 0.0109 0.0146 

EASE 0.0595 0.0679 0.0044 0.0046 0.0062 

SGL 0.0279 0.0291 0.0068 0.0163 0.0187 
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Metric Method ML-100K ML-1M Amazon 

Subscription 

Boxes 

Amazon Magazine 

Subscriptions 

Mod 

Cloth 

SimGCL 0.1052 0.1096 0.0045 0.0038 0.0076 

DAC-GCN 0.2073 0.2159 0.0145 0.0158 0.0195 

Recall@10 BPR 0.2557 0.1710 0.0629 0.0498 0.1096 

LightGCN 0.1885 0.1261 0.1049 0.1239 0.1627 

NeuMF 0.2552 0.1740 0.2483 0.1546 0.1478 

NGCF 0.2566 0.1673 0.1014 0.1093 0.1459 

EASE 0.0992 0.0763 0.0437 0.0472 0.0631 

SGL 0.0682 0.0456 0.0682 0.1630 0.1868 

SimGCL 0.1563 0.1045 0.0455 0.0385 0.0754 

DAC-GCN 0.2575 0.1722 0.1454 0.1576 0.1651 

NDCG@10 BPR 0.2944 0.2672 0.0322 0.0265 0.0604 

LightGCN 0.2143 0.1945 0.0573 0.0629 0.0962 

NeuMF 0.2980 0.2655 0.1550 0.0760 0.0810 

NGCF 0.2981 0.2584 0.0496 0.0509 0.0799 

EASE 0.0894 0.0774 0.0274 0.0281 0.0441 

SGL 0.0521 0.0473 0.0374 0.0888 0.1098 

SimGCL 0.1623 0.1473 0.0289 0.0193 0.0433 

DAC-GCN 0.3062 0.2780 0.1387 0.0874 0.0904 

MRR@10 BPR 0.4856 0.4623 0.0230 0.0195 0.0457 

LightGCN 0.3733 0.3554 0.0428 0.0446 0.0760 

NeuMF 0.4917 0.4585 0.1261 0.0526 0.0610 

NGCF 0.4948 0.4488 0.0344 0.0336 0.0602 

EASE 0.1549 0.1405 0.0222 0.0217 0.0389 

SGL 0.0867 0.0825 0.0283 0.0662 0.0864 

SimGCL 0.3026 0.2881 0.0240 0.0135 0.0337 

DAC-GCN 0.4998 0.4758 0.0955 0.0539 0.0789 

Hit@10 BPR 0.7996 0.7591 0.0629 0.0499 0.1098 

LightGCN 0.6829 0.6483 0.1049 0.1240 0.1629 

NeuMF 0.7943 0.7611 0.2483 0.1547 0.1480 

NGCF 0.8070 0.7493 0.1014 0.1094 0.1461 

EASE 0.4380 0.4078 0.0437 0.0472 0.0631 

SGL 0.2524 0.2396 0.0682 0.1630 0.1870 

SimGCL 0.6225 0.5910 0.0455 0.0385 0.0756 

DAC-GCN 0.8054 0.7646 0.1454 0.1527 0.1650 

 

Additionally, Table 6 compares the performance of various recommendation models against our proposed DAC-

GCN on the ML-100K dataset. We evaluated each model using ranking metrics at multiple top-k thresholds 

(k=5,10,15,20,25,50,100), providing insights into how effectively these approaches retrieve and rank relevant items 

within the top-k recommendations. 
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Figure 3. Average prediction metrics across all datasets, showing DAC-GCN's superior performance.   

Across all metrics, DAC-GCN demonstrates consistently superior performance, particularly at higher k values (e.g., 

k=50 and k=100). This robustness highlights its ability to maintain accuracy even when users view extended 

recommendation lists. Figures 4 through 8 illustrate the comparative performance of each model on Precision, Recall, 

NDCG, MRR, and Hit, revealing that DAC-GCN consistently surpasses the baseline methods at different k values. 

Notably, the model’s elevated NDCG and MRR scores underscore its effectiveness at ranking relevant items near 

the top of recommendation lists, while its enhanced Recall and Hit metrics attest to broader coverage of relevant 

items. Together, these findings solidify DAC-GCN as a powerful solution for both ranking and retrieval tasks, 

delivering high-quality recommendations to users. 

Table 6. Performance comparison of DAC-GCN and state-of-the-art models on the ML-100K dataset, evaluated across 
multiple metrics (Precision, Recall, NDCG, MRR, and Hit) at varying cutoff values (k = 5, 10, 15, 20, 25, 50, 100). 

Metric Method @5 @10 @15 @20 @25 @50 @100 

Precision BPR 0.2484 0.1998 0.1733 0.1538 0.1389 0.0986 0.0654 

LightGCN 0.1803 0.1435 0.1224 0.1113 0.1021 0.0747 0.0517 

NeuMF 0.2558 0.2006 0.1717 0.1528 0.1379 0.0989 0.0664 

NGCF 0.2477 0.2019 0.1735 0.1540 0.1391 0.0986 0.0657 

EASE 0.0628 0.0595 0.0568 0.0529 0.0503 0.0411 0.0321 

SGL 0.0312 0.0279 0.0255 0.0240 0.0229 0.0194 0.0160 

SimGCL 0.1283 0.1052 0.0922 0.0837 0.0766 0.0553 0.0386 

DAC-

GCN 

0.2584 0.2073 0.1790 0.1591 0.1448 0.1023 0.0683 

Recall BPR 0.1614 0.2557 0.3295 0.3823 0.4254 0.5742 0.7297 

LightGCN 0.1187 0.1885 0.2404 0.2828 0.3169 0.4427 0.5791 

NeuMF 0.1650 0.2552 0.3197 0.3728 0.4171 0.5705 0.7329 

NGCF 0.1583 0.2566 0.3266 0.3794 0.4210 0.5718 0.7254 

EASE 0.0566 0.0992 0.1336 0.1614 0.1850 0.2760 0.3888 

SGL 0.0395 0.0682 0.0901 0.1128 0.1312 0.1977 0.2899 

SimGCL 0.0961 0.1563 0.2066 0.2464 0.2791 0.3862 0.5085 

DAC-

GCN 

0.1623 0.2575 0.3297 0.3803 0.4251 0.5776 0.7449 

NDCG BPR 0.2930 0.2944 0.3060 0.3178 0.3294 0.3786 0.4293 

LightGCN 0.2135 0.2143 0.2204 0.2305 0.2399 0.2811 0.3260 

NeuMF 0.3021 0.2980 0.3056 0.3172 0.3290 0.3802 0.4333 

NGCF 0.2955 0.2981 0.3077 0.3192 0.3303 0.3799 0.4307 
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Metric Method @5 @10 @15 @20 @25 @50 @100 

EASE 0.0749 0.0894 0.1011 0.1101 0.1181 0.1493 0.1860 

SGL 0.0413 0.0521 0.0598 0.0673 0.0733 0.0941 0.1200 

SimGCL 0.1549 0.1623 0.1744 0.1866 0.1973 0.2332 0.2715 

DAC-

GCN 

0.3053 0.3062 0.3167 0.3281 0.3408 0.3918 0.4469 

MRR BPR 0.4685 0.4856 0.4909 0.4926 0.4936 0.4950 0.4954 

LightGCN 0.3560 0.3733 0.3791 0.3819 0.3836 0.3859 0.3864 

NeuMF 0.4741 0.4917 0.4966 0.4989 0.4996 0.5013 0.5016 

NGCF 0.4770 0.4948 0.5003 0.5015 0.5024 0.5039 0.5042 

EASE 0.1327 0.1549 0.1638 0.1677 0.1698 0.1741 0.1754 

SGL 0.0726 0.0867 0.0921 0.0952 0.0976 0.1025 0.1049 

SimGCL 0.2794 0.3026 0.3094 0.3128 0.3143 0.3169 0.3179 

DAC-

GCN 

0.4815 0.4998 0.5049 0.5063 0.5075 0.5090 0.5093 

Hit BPR 0.6713 0.7996 0.8653 0.8950 0.9183 0.9661 0.9894 

LightGCN 0.5525 0.6829 0.7572 0.8070 0.8452 0.9290 0.9576 

NeuMF 0.6649 0.7943 0.8558 0.8950 0.9120 0.9671 0.9862 

NGCF 0.6734 0.8070 0.8749 0.8950 0.9152 0.9671 0.9873 

EASE 0.2683 0.4380 0.5514 0.6193 0.6681 0.8144 0.9024 

SGL 0.1463 0.2524 0.3213 0.3765 0.4327 0.6055 0.7688 

SimGCL 0.4496 0.6225 0.7094 0.7688 0.8049 0.8908 0.9544 

DAC-

GCN 

0.6816 0.8054 0.8710 0.9015 0.9281 0.9669 0.9932 

 

 

 

 

Figure 4. Precision at different values of k for various recommendation models on the ML-100k dataset, showing DAC-GCN's 
superior performance. 
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Figure 5. Recall at different values of k for various recommendation models on the ML-100k dataset, highlighting DAC-GCN's 
ability to capture relevant items. 

 

 

Figure 6. NDCG at different values of k for various recommendation models on the ML-100k dataset, illustrating DAC-GCN's 
ability to prioritize highly relevant items. 

 

 

Figure 7. MRR at different values of k for various recommendation models on the ML-100k dataset, showcasing DAC-GCN's 
superior ranking of relevant items. 
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Figure 8. Hit rate at different values of k for various recommendation models on the ML-100k dataset, with DAC-GCN 
demonstrating higher success in recommending relevant items to users. 

4.3 Discussion 
In this section, we consolidate the experimental findings and examine the practical as well as theoretical implications 

of our proposed DAC-GCN framework. We begin by highlighting its performance gains and analyzing the factors 

that contribute to its success. We then discuss real-world applicability, focusing on scalability and resource 

considerations. Finally, we outline the model’s current limitations and propose directions for future research. 

4.3.1 Performance Gains and Key Observations 

The results demonstrate DAC-GCN’s remarkable effectiveness in critical RS tasks, including ranking accuracy, item 

retrieval, and mitigating data sparsity. Notably, it consistently outperforms baseline models such as BPR, LightGCN, 

NeuMF, and NGCF across diverse evaluation metrics. This superior performance largely stems from the DAC 

architecture, which specializes in both policy generation and value estimation through separate networks. MHA 

further augments the model’s ability to capture long-range user–item dependencies and thereby enrich its 

representation of user preferences. 

A significant highlight of DAC-GCN is its success on top-ranking metrics like NDCG@10 and MRR@10, which 

directly gauge the ability to surface highly relevant items. In every dataset tested, DAC-GCN achieves higher scores 

than competing approaches, underlining the model’s prowess in prioritizing pertinent recommendations. This 

robust ranking accuracy is attributable to the dual architecture’s capacity to integrate both local and global 

interaction patterns, aided by an attention mechanism that dynamically emphasizes the most influential user–item 

connections. 

Data sparsity remains a formidable challenge in many real-world scenarios, particularly for datasets such as Amazon 

Subscription Boxes and Amazon Magazine Subscriptions. Here, DAC-GCN demonstrates clear advantages by 

substantially boosting Recall@10 and Hit@10, surpassing conventional models by a wide margin. These gains can be 

ascribed to its dual-GCN structure, which merges immediate user preferences with extended behavioral patterns. 

Additionally, DAC-GCN exhibits strong performance across a range of recommendation contexts, from smaller, 

denser datasets (e.g., ML-100K) to larger, more complex ones (e.g., ML-1M). Its capacity to deliver consistent gains 

in both dense and sparse environments underscores its adaptability to variable user interactions. 

From a research standpoint, this work advances RSs by introducing a DAC paradigm for DRL with graph-based 

embeddings. By decoupling policy learning and value estimation, it transcends the limitations of single-network 

frameworks and demonstrates the value of task-specific GCNs for handling intricate user–item relationships. 

4.3.2 Real-World Applicability and Resource Considerations 

DAC-GCN’s heightened accuracy and ability to adapt to dynamic user preferences make it well suited for practical 

deployments in areas like e-commerce and media streaming. Here, personalized recommendations are critical and 

user behaviors often shift rapidly. The model’s strong performance on both dense and sparse datasets indicates it 

can manage varying data volumes and structures, a vital attribute for real-world systems. 
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Despite its strengths, DAC-GCN introduces non-trivial computational demands. MHA, which propagates 

information across multiple graph layers, increases both memory usage and training time, while the attention 

mechanism adds overhead through the dynamic weighting of interactions. Running separate actor and Critical 

networks effectively doubles the computational workload compared to single-network solutions. Nevertheless, 

techniques such as graph sampling, sparse attention, parameter sharing, and parallelization can help alleviate these 

pressures. With these optimizations, DAC-GCN can be deployed at scale or even adapted for near real-time scenarios 

without a significant trade-off in recommendation quality. 

4.3.3 Limitations and Future Directions 

Notwithstanding its promising results, DAC-GCN faces several constraints that merit further investigation: 

• Computational Complexity: MHA and attention mechanisms substantially increase training costs, 

especially for large datasets or time-sensitive applications. While graph sampling and sparse attention 

alleviate some of these burdens, more advanced optimizations are necessary for truly scalable solutions. 

• Training Time: The DAC structure, in conjunction with GCN-based learning, can prolong training relative 

to simpler models. Future work should focus on improved optimization strategies that expedite 

convergence without undermining accuracy. 

• Applicability to Real-Time Systems: Although DAC-GCN excels in offline batch settings, rapidly evolving 

user behaviors in real-time contexts may pose bottlenecks. Incremental learning methods or more 

lightweight aggregation strategies could help bridge this gap. 

• Dependence on Graph Structure: The quality of the user–item graph critically influences model 

performance. Poorly connected or extremely sparse graphs may limit the effectiveness of MHA, diminishing 

recommendation quality. 

• Generalizability Across Domains: While DAC-GCN has shown strong results on the datasets evaluated, 

its adaptability to diverse domains with varied interaction patterns or item types remains uncertain, calling 

for broader testing and potential domain-specific modifications. 

Addressing these limitations offers several promising pathways for future research. Real-time optimizations and 

more advanced graph processing methods could expand DAC-GCN’s applicability to rapidly changing 

environments, while domain-specific adaptations and hybrid data representations may strengthen its 

generalizability. By pursuing these directions, the model has the potential to deliver even more robust, high-quality 

recommendations across a wide range of use cases. Building on the insights gained from our comprehensive 

evaluation, we next present an ablation study that examines the individual contributions of DAC-GCN’s key 

components to its overall performance. 

4.4 Ablation Study 
To evaluate the contribution of each key component of the DAC-GCN model, we conducted an ablation study on 

the ML-100K dataset. The objective of this study is to assess the impact of individual components, including the 

DAC architecture, MHA, and the attention mechanism, on the overall performance of the model. By isolating and 

removing specific components, we aim to understand their respective roles and quantify their contributions to the 

performance improvements seen in the full DAC-GCN model. 

We created three variants of DAC-GCN for the ablation study: 

• V1 → DAC-GCN without Multi-Hop: In this variant, the MHA is removed, and only single-hop 

aggregation is used. 

• V2 → DAC-GCN without Attention: This version excludes the attention mechanism, relying solely on the 

default aggregation without dynamic importance weighting. 

• V3 → Single Actor-Critic GCN (SAC-GCN): In this baseline, the DAC structure is replaced with a single 

GCN network that performs both recommendation policy generation and value estimation without task 

separation. 

The results of these experiments measured using the same evaluation metrics (Precision@10, Recall@10, NDCG@10, 

MRR@10, and Hit@10), are presented in Table 7. 
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Table 7. Ablation Study Results on ML-100K Dataset. 

Variant 

P
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10

 

R
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10
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@
10

 

M
R

R
@

10
 

H
it

@
10

 

Full Model 0.2073 0.2575 0.3062 0.4998 0.8054 

V1 0.1894 0.2312 0.2789 0.4672 0.7806 

V2 0.1953 0.2405 0.2856 0.4790 0.7902 

V3 0.1815 0.2217 0.2634 0.4511 0.7642 

 

The results of the ablation study clearly illustrate the importance of each component in the proposed DAC-GCN 

model. The full DAC-GCN model, which integrates MHA, attention mechanisms, and a DAC structure, achieves the 

highest performance across all metrics, confirming the effectiveness of combining these elements. 

Removing the MHA (V1) leads to a notable decrease in performance across all metrics. Precision@10 drops from 

0.2073 to 0.1894, and NDCG@10 falls from 0.3062 to 0.2789. This decline highlights the critical role that MHA plays 

in capturing long-range dependencies and complex interaction patterns within the user-item graph. Without it, the 

model becomes less capable of incorporating global user preferences, resulting in lower recommendation accuracy 

and ranking quality. 

Similarly, excluding the attention mechanism (V2) results in a decrease in performance, though the drop is less 

severe compared to removing MHA. This suggests that while the attention mechanism significantly enhances the 

model’s ability to prioritize key user-item interactions, its absence does not cripple the model entirely. The decline 

in NDCG@10 (from 0.3062 to 0.2856) and MRR@10 (from 0.4998 to 0.4790) indicates that the attention mechanism 

helps the model focus on more relevant items, improving ranking quality and user satisfaction. 

Finally, the single actor-critic GCN variant (V3) performs the worst among the variants, with a Precision@10 of 0.1815 

and an NDCG@10 of 0.2634. This demonstrates the clear advantage of separating the recommendation tasks between 

the Actor and Critic networks. The dual architecture allows each network to specialize in distinct tasks, resulting in 

more effective learning and better recommendations. The drop in performance for SAC-GCN suggests that a single 

GCN structure is insufficient for effectively capturing both immediate and long-term user preferences. 

Thus, the ablation study demonstrates that the combination of DAC GCNs, MHA, and attention mechanisms 

significantly contributes to the superior performance of DAC-GCN. Each component plays a critical role in 

enhancing the model’s ability to capture complex user-item interactions, optimize recommendation policies, and 

deliver high-quality recommendations. These findings validate the design choices of the proposed method and 

highlight the necessity of integrating advanced graph-based techniques in modern RSs. 

5 CONCLUSION 
This paper presented DAC-GCN, a novel framework that advances DAC architectures within graph-based RSs. By 

decoupling policy optimization and value estimation into task-specific learning components, DAC-GCN illuminates 

how specialized architectural choices address challenges such as long-range dependency modeling and training 

stability. From a practical standpoint, DAC-GCN demonstrates heightened recommendation accuracy and 

robustness in dynamic environments, offering compelling solutions for industrial applications in e-commerce, media 

streaming, and personalized content delivery. Its capacity to prioritize critical interactions and capture intricate user-

item relationships establishes a sound basis for next-generation RSs. 

From the point of view of theoretical contributions, first, the introduction of a DAC architecture that separates policy 

learning from value estimation facilitates more targeted and efficient learning. Second, the incorporation of MHA 

effectively captures long-range user-item dependencies, mitigating data sparsity and cold-start issues. Third, 

attention mechanisms provide a means to dynamically emphasize important interactions, thereby enhancing 

recommendation relevance and improving user satisfaction. Collectively, these innovations address pivotal gaps left 
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by conventional and contemporary methods, demonstrating the potential of integrating hybrid DRL with graph-

based techniques. 

From the perspective of practical contributions, our DAC-GCN method delivers more accurate and diverse 

recommendations, thereby boosting user engagement and retention. Its adaptability to different datasets 

underscores its suitability for a broad range of domains, from dense interaction environments to those where sparse 

feedback complicates recommendation generation. However, the framework’s reliance on MHA and attention 

mechanisms increases its computational footprint, posing challenges for large-scale, real-time deployments. 

Additionally, the model’s performance depends on the completeness of the user-item graph, which highlights 

potential vulnerabilities in highly sparse or disconnected scenarios. Furthermore, the training process requires 

substantial time and computational resources, creating opportunities for optimization to enhance both efficiency 

and scalability. 

Looking ahead, future work can explore lightweight and scalable variants of DAC-GCN tailored for real-time usage 

and huge datasets. Investigating adaptive reward functions may also prove beneficial in improving training 

efficiency and responding more effectively to evolving user behavior. Additionally, extending DAC-GCN to handle 

heterogeneous graphs or multi-modal data, including textual and visual information, would broaden its 

applicability in complex recommendation tasks. 

In conclusion, DAC-GCN represents a significant leap forward in RS research, particularly for dynamic and data-

sparse environments. By continuing to refine its architecture, optimize its computational demands, and adapt to 

emerging modalities, DAC-GCN sets the stage for future advancements in personalized recommendation 

technologies. 
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