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 Abstract  
Background: The advancement of big data analytics calls for careful selection of processing frameworks 
to optimize machine learning effectiveness. Choosing the appropriate framework can significantly 
influence the speed and accuracy of data analysis, ultimately leading to more informed decision 
making. In adapting to this changing landscape, businesses should focus on factors such as how well a 
system scales, how easily it can be used and how effectively it integrates with their existing tools. The 
effectiveness of these frameworks plays a crucial role in determining data processing speed, model 
training efficiency and predictive accuracy. As data become increasingly large, diverse and fast-moving, 
conventional processing systems often fall short of the performance required for modern analytics. 
Objective: This research seeks to thoroughly assess the performance of two prominent big data 
processing frameworks—Apache Spark (in-memory computing) and MapReduce (disk-based 
computing)—with a focus on applying random forest algorithms to predict stock prices. The primary 
objective is to assess and compare their effectiveness in handling large-scale financial datasets, 
focusing on key aspects such as predictive accuracy, processing speed and scalability. 
Methods: The investigation uses the MapReduce methodology and Apache Spark independently to 
analyse a substantial stock price dataset and to train a random forest regressor. Mean squared error 
(MSE) and root mean square error (RMSE) were employed to assess the primary performance indicators 
of the models, while mean absolute error (MAE) and the R-squared value were used to evaluate the 
goodness of fit of the models. 
Results: The RMSE, MAE and MSE obtained for the Spark-based implementation were lower, compared 
to the MapReduce-based implementation, although these low values indicate high prediction accuracy. 
It also had a big impact on the time it took to train and run models because of its optimized in-memory 
processing. As opposed to this, the MapReduce approach had higher latency and lower accuracy, 
reflecting its disk-based constraints and reduced efficiency for iterative machine learning tasks. 
Conclusion: The conclusion supports the fact that Spark is the better option for complex machine 
learning tasks such as stock price prediction, as it is good for handling large amounts of data. 
MapReduce is still a reliable framework but not fast enough to process and not lightweight enough for 
analytics that are too rapid and iterative. The outcomes of this study are helpful for data scientists and 
financial analysts to choose the most appropriate framework for big data machine learning applications.  

 Index Terms 
Apache Spark; MapReduce; Big data; Random forest; Performance comparison; Data processing;  
In-memory processing; Disk-based processing. 
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1 INTRODUCTION 
In the age of digital change, the amount of data created every day is increasing exponentially, resulting in what is 

called “big data”. This refers to large sets of data that are challenging to manage and analyse using conventional 

data management tools and techniques (Badshah et al., 2024). Big data analysis is vital for any organization in today’s 

world irrespective of the industry, be it finance, health, e-commerce, etc. (Tosi et al., 2024). Since global organizations 

are now trying to capitalize on the available data, there has been a growing need for strong data processing 

frameworks.  

Big data technologies empower organizations to design scalable architectures that take advantage of distributed 

computing across multiple servers. These tools facilitate parallel processing, enabling efficient execution of complex 

computations on vast volumes of data. Among the most prominent frameworks supporting such capabilities are 

MapReduce and Apache Spark, both are now core components in big data analytics (Badshah et al., 2024) thanks to 

their dependable and effective performance in processing massive datasets. 

Stock price predictions are naturally difficult because financial data are changeable, abundant and fast-moving 

(Kulkarni et al., 2025). Big data technologies are needed to quickly handle large volumes of data, either instantly or 

within short response times. However, standard approaches frequently fail to handle unstructured and time-

sensitive stock data efficiently. This highlights the importance of comparing distributed computing technologies 

such as MapReduce and Apache Spark. Their performance, scalability and ability to handle iterative machine 

learning algorithms all have a direct impact on prediction accuracy and timeliness (Ahmed et al., 2020), which are 

crucial in financial forecasting because even minor delays or inaccuracies can result in considerable losses. 

MapReduce is a programming methodology established by Google that is widely employed for large-scale data 

processing systems. The MapReduce programming model utilizes the simple formulaic logic of fragmentation of 

tasks into smaller components called sub-tasks; this programming model enables parallel processing throughout a 

cluster in a distributed event (Demirbaga et al., 2024). While MapReduce is designed for batch processing, it is also 

designed for the fundamental principle of information being stored on a disk. This produces a resource lag 

particularly in situations which repeatedly work with the same data, which in turn affects efficiency especially in 

use cases which employ machine learning computational algorithms (Hedayati et al., 2023).  

The MapReduce framework works by dividing tasks into two main phases: the map phase, where the input data are 

split and processed in parallel to generate intermediate key-value pairs, and the reduce phase, where these 

intermediate results are aggregated to generate the final output (Abdalla, 2022). This system exhibits significant 

scalability and resilience to faults, rendering it ideal for batch processing of extensive datasets. Nevertheless, due to 

its dependence on disk-based storage for each intermediate output between tasks, MapReduce can experience 

significant I/O overhead, which reduces its efficiency for operations that are often encountered in machine learning 

and real-time analytics (Hedayati et al., 2023).  

Apache Spark has been developed as a challenging alternative to traditional frameworks such as MapReduce 

(Salloum et al., 2016). By bringing in the elements of ease of use and speedy SLAs on Spark, this framework has a far 

better performance with regards to data access latencies as data can be accessed directly (Apache Software 

Foundation, n.d.). For these reasons, there are many situations where Spark is more competent compared to 

MapReduce especially when it comes to handling iterative and real-time algorithms. Furthermore, a wide variety of 

primitive libraries such as entity classifiers, graphs and stream processing libraries are available within Spark that 

empower a data analyst or scientist with beneficial tools. 

In contrast to MapReduce, as noted by Barvaliya (2024), “Apache Spark is an open-source unified analytics engine 

designed for large-scale data processing”, offering a significant performance boost over MapReduce by making use 

of in-memory computing. Spark uses resilient distributed datasets (RDDs) to store intermediate results in memory, 

which minimizes the necessity for disc reads and writes, thereby significantly accelerating computation (Aziz et al., 

2019). Spark facilitates a comprehensive approach by enabling batch processing alongside streaming data, SQL 

queries, predictive modelling and graph processing, all integrated within one structure. The flexibility of Spark, 

combined with its user-friendly interface and comprehensive API, positions it as a top option for modern big data 

applications that demand real-time performance and repetitive processing (Salloum et al., 2016). 
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The objective of this study is to conduct an empirical analysis and performance evaluation of both the Apache Spark 

and the MapReduce frameworks in terms of their implementation of random forest algorithms for stock price 

predictions. With an emphasis on performance-based metrics such as scalability, processing speed and the predictive 

accuracy of each integrated development environment, we can present insights with regards to the strengths and 

weaknesses of both frameworks for machine learning tasks. An understanding of these nuances remains pivotal for 

any practitioner or researcher who seeks to utilize big data tools for the financial sector. 

This study aims to evaluate and contrast the effectiveness of in-memory and disk-based distributed computing 

frameworks in stock price prediction using the random forest algorithm. The following research questions guide 

this investigation: 

• RQ1: How does the predictive accuracy of Apache Spark (in-memory computing) compare with MapReduce 

(disk-based computing) when applied to stock price prediction using the random forest algorithm? 

• RQ2: What are the differences in error metrics (such as mean squared error, root mean squared error, mean 

absolute error) between MapReduce and Apache Spark in the context of stock price forecasting? 

• RQ3: How do the two frameworks differ in terms of residual error distribution and model fit, as reflected 

by R-squared values and histogram analysis? 

The rest of the paper is structured as follows: Section 2 surveys associated studies in the areas of stock price 

prediction and big data processing. The experimental setting and performance metrics used in the comparative study 

are described in Section 3. The findings of our assessment are shown in Section 4, which is followed by a discussion. 

Finally, the work is summarised in Section 5. 

2 LITERATURE REVIEW 
In recent years, the quantity of data has increased at a breathtaking rate, making it necessary to have big data 

processing frameworks that are efficient. Two of the more popular frameworks are Apache Spark and MapReduce, 

both of which have their own advantages. Research in this domain includes analysis of these frameworks and their 

areas of use with respect to performance, scalability and efficiency. 

To create an in-depth understanding of the performance comparison between MapReduce and Apache Spark in big 

data analytics, particularly with respect to forecasting stock prices, we conducted a literature review. We selected 

relevant peer-reviewed research articles, conference papers and academic publications by searching digital 

databases. Preference was given to recent studies (within the last 15 years) that specifically examined the 

performance metrics, implementation strategies and real-world applications of these distributed computing 

frameworks. This review helped in identifying research gaps and positioning our work within the existing body of 

knowledge. 

Ibtisum et al. (2023) conducted a comparative analysis of MapReduce and Apache Spark for processing large-scale 

healthcare datasets. Their findings showed that the memory-centric processing of Spark offered better performance 

than MapReduce, especially in batch workloads. While the study provided execution time comparisons, it did not 

address predictive modelling. Our research builds on this by employing random forest for stock price prediction, 

offering a deeper insight into model accuracy and error analysis. 

A comparative study by Gopalani and Arora (2015) highlighted the differences between MapReduce and Apache 

Spark, focusing on their performance utilizing k-means clustering for big data insights. The study concluded that 

Spark significantly outperforms MapReduce due to its in-memory processing capability, enabling accelerated and 

more efficient data operations. While the paper centred on clustering rather than predictive modelling, it reinforced 

the growing industry trend of adopting Spark for scalable, multi-purpose data processing. Our work extends this 

comparison into the realm of supervised learning, specifically random forest regression for stock price prediction. 

Peddi (2019) focused on the challenges of processing unstructured stock market data using the Hadoop MapReduce 

framework. The study highlighted the shortcomings of conventional RDBMS in handling big data and demonstrated 

how Hadoop HDFS and MapReduce models offer scalable solutions for both storage and processing. Through the 

implementation of MapReduce jobs on unstructured stock datasets, the work emphasized the ability of the 

framework to manage large-scale financial data efficiently and encouraged further exploration of optimizing 

unstructured data processing using big data technologies. 

https://aip.vse.cz/
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Lulli et al. (2019) proposed ReForeSt, a novel distributed and memory-optimized implementation of the random 

forest (RF) algorithm, designed to address the computational and scalability challenges inherent in big data 

environments. Taking advantage of the distributed in-memory processing capabilities of Apache Spark, the 

framework introduces advanced data partitioning strategies and a greedy model selection mechanism to optimize 

training efficiency while minimizing memory consumption. A key contribution of their work lies in the integration 

of random rotation ensembles (RRE), which apply random transformations to the feature space prior to tree 

construction, thereby enhancing decision boundary delineation and improving generalization performance. 

Empirical evaluations conducted on large-scale datasets, including Covertype and Higgs, demonstrate the 

superiority of ReForeSt in terms of classification accuracy, resource utilization and training time compared to 

existing Spark-based solutions such as MLlib. This study underscores the significance of combining algorithmic 

innovations with distributed computing architectures to facilitate robust and scalable machine learning in high-

dimensional data scenarios. 

In the paper by Zaharia et al. (2012), resilient distributed datasets (RDDs) are introduced, which form the basis of 

the Apache Spark framework as it makes memory processing fault-tolerant. RDDs enable Spark to overcome the 

high latency of MapReduce, which makes Spark more appropriate for use during a number of machine learning 

cycles. The authors demonstrated how the Spark principles allow it to excel in tasks where data need to be written 

and read repetitively, meaning that it has a strong foundation for being used in real-time and interactive analytics. 

Meng et al. (2016) examined the scalability of Spark MLlib library and highlighted its distinctive advantages over 

other machine learning libraries. Their study emphasized that the seamless integration of MLlib with Spark 

significantly improves the execution of iterative algorithms such as random forest and k-means on large-scale 

datasets. Moreover, the paper outlined how MLlib surpasses MapReduce, which lacks native support for machine 

learning tasks, thereby underscoring the  suitability of Spark for big data and machine learning applications. This 

seamless support enables faster development and deployment of data-driven models in real-world scenarios. As a 

result, Spark has become a preferred choice for organizations dealing with complex analytical workloads and high-

volume data streams. 

Adil et al. (2019) presented an architecture for competitive intelligence that runs on Spark and allows collection, 

storage, analysis and visualization of data to assist organizations in decision making. The works above illustrate 

how the built-in libraries of Spark together with its in-memory computing has enabled parallel computation of data, 

an important consideration in areas such as competitive intelligence because of the demand for instantaneous data 

processing. However, the authors add, the deep learning libraries of Spark are still in high demand for areas where 

modelling complexity is needed, owing to the libraries already present in Spark. 

Concerning financial data, Gupta and Sharma (2020) compared Apache Spark and Hadoop MapReduce for the 

purpose of evaluating stock market data influenced by the COVID-19 pandemic. According to their results, Spark 

offers a much greater speed than MapReduce when processing data and engaging in real-time analysis. This 

efficiency is particularly important in stock market evaluation as decisions can be made based on recent information. 

However, the authors stressed the filing system deficiencies of Spark and a minor, although present, sluggishness 

with some operations. These three components are still remaining areas in which MapReduce is asserted to perform 

well in batch-type scenarios.  

Benlachimi et al. (2021) went into detail in their work on the comparison of Spark and MapReduce in terms of big 

data processing, focusing on the structural and competitive components of both. They noted that due to the in-

memory processing model specifically designed for Spark, it is much faster than the disk-based MapReduce even 

for applications that are not time-sensitive. Nevertheless, the cost of using Hadoop MapReduce is still much lower 

and its scaling remains effective even on expansive unmoving datasets; there are therefore cases where MapReduce 

cannot be ignored because of its cost. The authors point out that unlike traditional computing tasks, iterative 

computing tasks associated with active data traffic such as machine learning and analysis of streamed data will 

benefit more from the use of Spark. 

Oo and Thein (2019) investigated big data analytics challenges within the context of scalable random forest 

algorithms and looked into utilizing Spark and MapReduce. Their research optimized SRF hyperparameters and 

carried out dimensionality reduction with the goal of enhancing scalability and precision. Additionally, the study 

explored the capabilities of Spark in dealing with large, high-dimensional datasets and explained the advantage of 

https://aip.vse.cz/


Acta Informatica Pragensia  Volume 14, 2025 

https://doi.org/10.18267/j.aip.275  464 https://aip.vse.cz 

using it for machine learning purposes, especially when the tasks involve multiple iterations. However, the authors 

acknowledged that both frameworks pose some limitations when dealing with large datasets with many dimensions. 

Chaudhari et al. (2019) employed clustering techniques and classification strategies such as k-means and support 

vector machines through Spark and MapReduce. Their findings revealed that Spark, alongside the MLlib machine 

learning library, was able to outperform MapReduce in terms of the baseline classification algorithms, and even 

more for particularly iterative tasks. The reason is that the in-memory processing of Spark decreases the I/O costs in 

contrast to MapReduce, which in turn shortens the duration of training and inferencing. Consequently, real-time 

analytics where prompt insights are paramount can greatly benefit from using Spark. 

Gao et al. (2018) presented the MR-Mafia algorithm. It is a parallel subspace clustering algorithm that employs 

MapReduce and is designed to cluster large multi-dimensional datasets. Their results and demonstration showed 

that, even though Spark is popular, MapReduce can still be harnessed to complete certain classes of big data 

workloads, especially those that are very dense and have high-dimensional data structures that can take advantage 

of the disk-based and scalable operations of MapReduce. This research emphasizes that although there are benefits 

of using Spark in terms of speed and flexibility, there are benefits of using MapReduce in terms of processing large 

amounts of data without consuming too much memory. 

To summarize, the research into big data processing frameworks such as Apache Spark and MapReduce has brought 

about tremendous change in the field of data analytics, but many more problems still remain unsolved. The 

comparative analysis of the two tools shows that the time efficiency of Spark is clearly superior when it comes to 

real-life data that require immediate interpretation, due in particular to the MLlib. These characteristics make Spark 

very attractive for tasks with many repetitions and low latency requirements such as predicting future stock prices. 

While previous studies have explored the performance of MapReduce and Apache Spark for big data processing, 

including applications in stock market analysis, most have either used generic datasets, focused solely on one 

framework or implemented traditional machine learning algorithms such as k-means. For instance, Peddi (2019) 

processed unstructured stock data using MapReduce, and Gopalani and Arora (2015) compared Spark and 

MapReduce using clustering methods. In contrast, our study uniquely applies the random forest algorithm—a 

supervised learning model—on a real-world stock price dataset, providing a comparative analysis of MapReduce 

and Apache Spark in terms of not only execution time, but also prediction accuracy (MSE, RMSE, MAE, R²). 

Furthermore, unlike prior work, this research emphasizes the impact of in-memory versus disk-based distributed 

computing frameworks in a predictive financial analytics context, thereby offering practical insights for choosing 

appropriate tools in real-world forecasting applications. 

However, the literature also identifies critical challenges that must be addressed. The limited support for deep 

learning within Spark, file management issues and latency concerns can hinder its effectiveness in certain scenarios. 

Furthermore, both frameworks have trouble handling high-dimensional data, which is especially problematic when 

it comes to stock market analysis, where a lot of variables can affect results. 

3 RESEARCH METHODOLOGY 
The increasing sophistication of financial markets, combined with the growing volume of stock price information, 

makes accurate predictions and analysis challenging. The challenges associated with the scale and speed of data 

cannot be addressed by conventional computing methods, highlighting the necessity for distributed computing 

frameworks. This study aims to tackle these issues and investigate the application of various big data processing 

frameworks in predicting stock prices. This project aims to compare the effectiveness of two models, MapReduce 

and Apache Spark, in predicting stock prices through the application of the random forest algorithm. The 

methodology for the investigation encompasses a systematic progression of tasks encompassing data gathering, 

feature extraction, training of models, and evaluation of models. This study is carried out to predict stock prices by 

utilizing big data concepts, while also highlighting the importance of scalability and computational power. 

The current research has applied a range of tools and technologies to implement the MapReduce technique, train 

machine learning models and evaluate their performance. The use of these technologies has ensured efficient data 

processing, accurate forecasts and reproducible outcomes. The following is an explanation of the tools used: 
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1. MapReduce approach in Python 

The MapReduce paradigm was implemented programmatically in Python to simulate the distributed computing 

process. Instead of relying on Hadoop, the approach was custom-coded and executed in a single-node environment 

using Jupyter Notebook. Key aspects of this approach include: 

• Mapper and reducer functions: Python functions were designed to process and aggregate data in a way that 

mimicked the MapReduce process. 

• Sequential execution: This implementation adhered to the principles of MapReduce for data processing and 

analysis. 

2. Apache Spark with MLlib 

Apache Spark was used for in-memory distributed computing. Key features include: 

• In-memory computation: Spark cached data in memory to improve processing speed. 

• Machine learning with MLlib: Spark MLlib library facilitated the training of random forest models, making 

the process scalable and efficient. 

3. Python for implementation 

Python served as the primary programming language due to its simplicity and extensive ecosystem. It was used for 

both MapReduce and Spark implementations. 

4. Python libraries for data analysis and visualization 

• Pandas: Used for pre-processing and manipulating the stock price dataset. 

• NumPy: Provided numerical operations for feature engineering and analysis. 

• scikit-learn: Used to establish baseline machine learning tasks and performance metrics. 

• Matplotlib and Seaborn: Employed for visualizing the dataset, model predictions and performance 

comparisons. 

3.1 Dataset description 
The process of anticipating stock market trends has been found to be a considerable challenge for numerous 

researchers and analysts. Indeed, there exists a significant interest among investors in the scope of research in stock 

price forecasting. In pursuit of a sound and prosperous investment, numerous investors exhibit a strong interest in 

discerning the prospective dynamics of the stock market. Robust and efficient prediction systems for the stock 

market assist traders, investors and analysts by offering valuable insights regarding the prospective trajectory of the 

market. 

For this study, we utilized the Netflix Stock Price Prediction dataset sourced from Kaggle, see Data Availability 

statement or (Shah, 2022). This dataset contains historical stock price data (currency in US dollars ($)), for 5 years for 

Netflix Inc. (NFLX), which is used for predictive modelling using the random forest algorithm. 

Dataset details: 

● Source: (Shah, 2022) 

● Format: CSV 

● Size: The dataset consists of 1010 rows and 7 columns. 

The dataset consists of multiple columns representing various stock features (see also Figure 1), including: 

Date: The specific day of trading. 

Open: The initial price of the stock at the beginning of the trading day. 

High: The peak price attained during the trading session. 

Low: The minimum price recorded during the trading period. 

Close: The final price of the stock at the end of the trading day. 

https://aip.vse.cz/
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Volume: The total quantity of shares exchanged during the day. 

The stock price dataset used in the study contained features such as opening price, closing price, high, low and 

volume. The dataset was pre-processed to ensure data quality: 

1. Missing values were handled through imputation. 

2. Data normalization was performed to ensure that all features were on a comparable scale. 

3. Feature engineering techniques were applied to improve the predictive power. 

4. The dataset was split, using 80% for training and 20% for testing purposes. 

 

 

Figure 1. Dataset overview. 

3.2 Implementation 
Based on their popularity and ability to handle distributed data processing, MapReduce and Apache Spark were 

chosen for comparison. The random forest algorithm was selected due to its efficacy in addressing non-linear 

interactions between dependent and independent variables (Lulli et al., 2019), as well as its robustness in machine 

learning tasks, see Figure 2.  

 

Figure 2. Random forest illustration. 

MapReduce approach: The MapReduce model was developed using a disk-based, batch-processing pipeline. The 

mapping phase for the training data consisted of feature extraction and the reducing phase aimed to aggregate the 

results to form the random forest model. The intermediate results were written to the disk, which resulted in higher 

latency.  

Apache Spark approach: The Spark model utilized in-memory computation along with MLlib for random forest 

training processes. The optimization of iterative computations depended on data processing through RDDs for 
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caching and storage. Spark distributed its functionality to process data effectively throughout both analytical and 

machine learning executions. 

Random forest is based on the principle of ensemble learning (Ronaghan, 2018), combining many decision trees to 

make predictions. Below is its mathematical framework: 

1. Bootstrap aggregation (bagging): 

Given a dataset D = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), …, (𝑥𝑛, 𝑦𝑛)} with n samples: 

● Randomly sample m subsets 𝐷𝑖  ⊆ 𝐷 with replacement. 

● Each subset 𝐷𝑖 is used to train an independent decision tree 𝑇𝑖(𝑥). 

 

2. Splitting criterion: 

For regression, at each split, the algorithm minimizes the variance of the target values: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑉𝑎𝑟(𝑆) − (
|𝑆𝐿|

|𝑆|
 𝑉𝑎𝑟(𝑆𝐿) + 

|𝑆𝑅|

|𝑆|
 𝑉𝑎𝑟(𝑆𝑅)) 

Where S is the set of data at the current node, 𝑆𝐿  and 𝑆𝑅  are subsets for the left and right child nodes, 

respectively. 

 

3. Prediction from a single tree: 

Each tree 𝑇𝑖 predicts the output for the input x: 

𝑇𝑖(𝑥) =  
1

|𝐿|
 ∑ 𝑦

𝑥 𝜖 𝐿

 

Where L is the set of samples in the leaf node where x falls, and y is the target variable. 

 

4. Ensemble prediction (aggregation): 

For M trees, random forest combines predictions by averaging (for regression): 

𝑦̂ =  
1

𝑀
 ∑ 𝑇𝑖(𝑥)

𝑖=1

 

 

This mathematical method underpins the performance of random forest in noisy and large-scale datasets, which 

makes it ideal for our study. The predictions of several decision trees constructed from bootstrapped samples and 

random feature subsets are mathematically combined by the random forest technique. This ensemble approach 

strengthens predictive robustness and accuracy, making it an effective tool for stock price prediction and other 

predictive modelling tasks. In order to produce dependable results, random forest relies on statistical theories such 

as the law of large numbers, as demonstrated by its mathematical backgrounds. 

3.3 Model evaluation 
In this study, we compare and evaluate the effectiveness of MapReduce and Apache Spark in stock price prediction 

using the random forest algorithm employing a number of important assessment indicators. The mean squared error 

(MSE) evaluates the average squared errors between predicted and observed values, reflecting the proximity of 

predictions to actual values; lower values signify superior performance (Omar et al., 2022). Root mean squared error 

(RMSE), defined as the square root of mean squared error (MSE), provides a measure that is interpretable and 

expressed in the same units as the predicted variable. Mean absolute error (MAE) computes the average of the 

absolute differences between predicted and actual values, showing lower sensitivity to outliers compared to root 

mean squared error (RMSE). The R-squared (R²) value indicates the proportion of variance in the dependent variable 

that can be explained by the independent variables, with values closer to 1 indicating a better model fit. The metrics 

collectively offer a thorough assessment of the predictive accuracy and reliability of the two frameworks. To evaluate 

the random forest regression model mathematically, the following metrics were used. 
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1. Mean squared error (MSE):  

MSE quantifies the mean of the squared deviations, between the predicted (𝑦̂) and actual (y) values:  

𝑀𝑆𝐸 =  
1

𝑛
 ∑(𝑦𝑖 − 𝑦𝑖̂)2

𝑛

𝑖= 1

 

2. Root mean squared error (RMSE): 

RMSE is the square root of MSE, providing error magnitude in the same units as the target variable: 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 

RSME is useful for interpreting the scale of prediction errors. 

 

3. R-squared (coefficient of determination): 

R-squared measures the proportion of variance (Ronaghan, 2018) in the actual data explained by the model: 

𝑅2 = 1 −  
∑ (𝑦𝑖 − 𝑦𝑖̂)2𝑛

𝑖=1

∑ (𝑦𝑖 −  𝑦𝑖)
2

𝑛
𝑖=1

 

Where 𝑦 is the mean of actual values. 𝑅2 ranges from 0 to 1. Higher values indicate better performance. 

 

4. Mean absolute error (MAE): 

MAE calculates the average of the absolute differences between predicted and actual values: 

𝑀𝐴𝐸 =  
1

𝑛
 ∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

 

Unlike MSE, MAE is less sensitive to outliers. 

The random forest model was trained using both frameworks on the pre-processed dataset. The evaluation metrics 

included: 

1. RMSE: Used to gauge how accurate a forecast is. 

2. MAE: To evaluate the average magnitude of errors. 

3. R²: To quantify the goodness-of-fit of the model. 

4. MSE: To evaluate error sensitivity. 

The performance of the two frameworks was evaluated using accuracy, processing time and scalability criteria. The 

Spark-based version had better RMSE, MAE and MSE values due to its optimized in-memory processing, whereas 

MapReduce had higher latency and lesser accuracy due to its disk-based limitations. Furthermore, the Spark-based 

solution outperformed the iterative calculations required for machine learning processes, making it better suited for 

applications such as random forest training. In contrast, the MapReduce technique, while dependable and simple, 

lacked the efficiency required for fast data processing and real-time applications. These distinctions emphasize the 

superiority of Spark in cases that need both speed and precision in big data analytics. 

4 RESULTS AND DISCUSSION 
Table 1 presents a direct comparison of Model A (MapReduce) and Model B (Apache Spark) for stock price 

prediction using the random forest regressor. 

Metric Model A: MapReduce Model B: Apache Spark 

Stock price range (in $) 250–700 250–700 

Mean squared error (MSE) 179.45 57.08 

Root mean squared error (RMSE) 13.40 7.56 

Mean absolute error (MAE) 9.41 5.50 

R-squared (R²) 0.9746 0.9947 

Table 1. Metric analysis of MapReduce and Apache Spark. 
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Mean squared error (MSE): 

The MSE value of 179.45 for Model A (MapReduce) indicates a large average squared deviation between forecasted 

stock prices and their actual counterparts. The large prediction errors produced by the model indicate that it will 

deliver less precise stock price forecasts. On the other hand, Model B (Apache Spark) achieved a much lower MSE 

of 57.08, which demonstrates superior performance in error reduction. A model with lower MSE offers advantages 

because its predictions stay nearer to actual values, figures 3 and 4. Model B shows improved predictive accuracy 

because its MSE value is lower than that of Model A. Higher MSE values indicate that the predictions are distant 

from actual values, which might negatively affect stock price forecasting decisions. Real-world applications such as 

stock market analysis benefit from Model B because it offers precise price prediction capabilities. 

 

Figure 3. Model A (MapReduce) – Comparison of actual and predicted stock prices.  
The X-axis represents time steps in the test dataset; the Y-axis shows the stock prices. 

 

Figure 4. Model B (Apache Spark) – Comparison of actual and predicted stock prices.  
The X-axis represents time steps in the test dataset; the Y-axis shows the stock prices. 
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Root mean squared error (RMSE) 

Model A (MapReduce) exhibits a root mean square error (RMSE) of 13.40, indicating that its forecasts deviate, on 

average, by approximately 13.4 units from the actual stock values. The RMSE is represented in the same units as the 

stock price; so, a greater RMSE indicates poorer predictions. For Model B (Apache Spark), the RMSE of 7.56 indicates 

that its predictions are significantly closer to the actual data, averaging a deviation of approximately 7.56 units. The 

implication is that the considerably reduced RMSE of Model B signifies that its forecasts are markedly more accurate 

and dependable than those of Model A. In stock price prediction, little deviations can significantly influence financial 

decisions; thus, Model B provides a far more accurate instrument for forecasting stock prices. 

Mean absolute error (MAE): 

The average error measured by Model A (MapReduce) amounts to 9.41 units between predicted and actual stock 

prices. The MAE measurement enables us to understand prediction accuracy; lower values indicate better accuracy 

results. The prediction accuracy of Model B (Apache Spark) reaches a MAE of 5.50, whereas the average prediction 

errors of Model A (MapReduce) become larger at 9.41. The lower MAE in Model B indicates that its predictions are 

more consistently closer to the true stock prices. Strategic decision making becomes more effective because decision 

makers who use predictions for investment or trading benefit from lower MAE values. 

R-squared (R²): 

With an R² value of 0.9846, Model A explains 98.46% of the variance in stock prices, see figures 5a and 5b. This 

indicates that although the model accounts for most of the data variability, approximately 2.54% remains 

unexplained. Model B (Apache Spark) exhibits a superior R² score of 0.9947, indicating it accounts for 99.47% of the 

variance in stock prices. This indicates that Model B offers a superior fit for the data, accounting for nearly all the 

fluctuation in stock prices. The higher R² value in Model B demonstrates its superior ability to match the stock price 

analysis data. The model shows stronger capabilities to represent underlying patterns, which makes it more reliable 

for long-term forecasting applications. Future stock price forecasting depends on precise measurement of variation. 

  

Figure 5a. Error distribution – MapReduce. Figure 5b. Error distribution – Apache Spark. 

The X-axis represents the difference between actual and predicted prices (error);  
the Y-axis indicates the frequency of these errors. 

The histogram for Model A displays a distribution that is simply bell-shaped, which indicates that the residuals have 

been roughly distributed in a normal fashion. Not only is this a positive indicator, but it also indicates that the 

assumptions of normality in the model are probably achieved. There is a slight positive skew, which is characterized 

by a tail that extends to the right. This may hint at a few larger errors that are in the positive direction. It is not, 

however, a significant issue. The residual distribution of Model A is adequate, suggesting that the model effectively 

captures the majority of the patterns present within the data. 

The histogram for Model B has a bell-like form that is perfectly symmetrical around zero. This is highly noticeable 

and is a good sign, indicating that all aspects of the assumptions of normality in the model are likely met. The 

residuals are tightly grouped around zero, which indicates that the model predictions are often quite correct. This 

characteristic is referred to as concentration. All things considered; the residual distribution of Model B is excellent. 

It indicates that the model is well-fitted, with a low number of prediction errors and a high adherence to the 

assumption of normality. 

https://aip.vse.cz/


Acta Informatica Pragensia  Volume 14, 2025 

https://doi.org/10.18267/j.aip.275  471 https://aip.vse.cz 

The experimental results of this study reveal that Apache Spark consistently outperformed MapReduce in stock 

price prediction tasks, particularly in terms of processing speed, lower error metrics and model scalability. These 

findings align with those of Ibtisum et al. (2023), who also observed the advantage of Spark in batch processing and 

iterative algorithms due to its in-memory computation model. Similarly, Gopalani and Arora (2015) concluded that 

the performance of Spark significantly surpassed MapReduce when executing the k-means algorithm, reinforcing 

the suitability of Spark for machine learning workloads. Our results also support the observations made by Peddi 

(2019), who demonstrated that while MapReduce is capable of handling unstructured stock data, its disk-based 

nature limits efficiency. Compared to these previous studies, our work extends the discussion specifically into the 

financial forecasting domain using the random forest algorithm and provides quantitative performance comparisons 

using MSE, RMSE, MAE and R² metrics. This deeper focus not only validates earlier insights but also offers empirical 

benchmarks for stock prediction tasks. 

5 CONCLUSION 
This project examined the efficacy of the random forest technique when combined with distributed computing 

frameworks, specifically MapReduce and Apache Spark, for the purpose of stock price prediction. Using big data 

approaches, they are efficient with an eye towards scalability of processed stock price data. The findings show clear 

variations between the two models; Spark showed better accuracy and simplicity of use than the other one. Model 

B was clearly more accurate than Model A across all metrics (MSE, RMSE, MAE and R²). It produced predictions 

that were closer to the actual stock prices and with 99.47% variance explained, it was much better at capturing the 

trends in the data. This degree of precision is especially significant in financial forecasting, where small variations 

can result in substantial financial consequences.  

Model A (MapReduce) exhibited higher latency due to its disk-based operations, even though it was dependable 

and most suitable for batch processing. The values of MSE and MAE for the model trained using MapReduce were 

higher, indicating its efficacy in managing iterative machine learning processes. In contrast, the in-memory 

computing of Apache Spark markedly reduced processing durations, resulting in lower error rates and higher R-

squared values. The integration of Spark with MLlib and its support for iterative algorithms was beneficial for 

optimizing machine learning activities such as random forest training.  

This project underscores the importance of choosing appropriate frameworks for big data analytics. While 

MapReduce remains a viable option for simpler batch processing tasks, the versatility and performance of Spark 

make it the preferred choice for complex, iterative and real-time workflows. Future work could extend this study to 

real-time stock prediction and compare additional frameworks, further advancing the field of big data analytics for 

financial applications. 

This study correctly compared the ability of MapReduce and Apache Spark to use the random forest method to 

predict stock prices. Even so, there is still a lot of room for growth and more study. In the future, researchers may 

focus on improving the hyper-parameters of the random forest model to get even better results. For that purpose, 

methods such as grid search, random search or Bayesian optimization could be used. Through further development, 

the study will address important issues to build better stock price prediction algorithms that improve accuracy and 

efficiency while also advancing knowledge in big data analytics. 

This research offers practical insights for data scientists, financial analysts and engineering teams working with 

large-scale prediction tasks. The results support Apache Spark as a better-suited framework for real-time stock price 

forecasting, enabling more accurate and faster predictions. Companies in the finance and tech sectors can use these 

findings to optimize their infrastructure choices for data-driven decision making. 

From a scientific standpoint, this work contributes to the comparative literature on distributed computing 

frameworks in big data analytics. By applying random forest models to real-world financial data, the study provides 

a benchmark for performance evaluation in predictive modelling. It also encourages future research into integrating 

other machine learning models, testing hybrid computing systems and enhancing prediction through 

hyperparameter tuning using methods such as grid search or Bayesian optimization. 
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5.1 Future work 
Further research may focus on optimizing the parameters of the random forest algorithm to enhance model 

performance. While this study focused on MapReduce and Apache Spark, additional distributed computing 

frameworks such as Apache Flink, Dask or Ray could be included in future benchmarks to provide a broader 

performance comparison. Each framework offers unique advantages in terms of latency, fault tolerance and real-

time processing. This progression would deepen understanding and drive innovation in the intersection of machine 

learning and distributed computing for financial applications. 
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