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 Abstract  
Background: As assaults get more sophisticated, honeypots like Dionaea become an essential tool for 
analysing attack behaviours and detecting weaknesses. Despite their growing importance in 
cybersecurity, honeypots' role in real-time cyberattack surveillance and threat intelligence is largely 
unknown. Many studies concentrate on identifying attacks rather than delivering actionable intelligence 
for defensive solutions. Furthermore, previous research frequently lacks thorough methodology for 
comparing attack data to real-world incidents and does not investigate the integration of honeypots with 
external intelligence services. 
Objective: This study assesses the Dionaea honeypot's ability to detect and analyse cyberattack trends, 
with an emphasis on attack patterns, malware dispersion, and geographical threat sources. The project 
will look into how Dionaea honeypots, when combined with external analysis services such as 
VirusTotal, might provide more thorough insights into cyberattack tactics and improve proactive 
cybersecurity defence mechanisms. 
Methods: The Dionaea honeypot was used to identify a range of attacks on vulnerable services including 
Telnet (Port 23), SMB (Port 445), and MySQL (Port 3306). Over a seven-day observation period, 32,395 
attack connections from 6,276 distinct IP addresses were detected, yielding 2,892 malware samples. 
These samples were examined using VirusTotal, and the findings were categorised by malware type, 
attack vector, and geographical origin. Geospatial and service-specific attack patterns were also 
investigated to detect emerging trends and high-risk sites. 
Results: The investigation identified WannaCry ransomware as the most common malware, accounting 
for 1,076 incidents, demonstrating the continuous exploitation of the MS17-010 vulnerability in SMB 
(Port 445). The most frequently attacked ports were Port 23 (Telnet), Port 445 (SMB), and Port 3306 
(MySQL), which received 7,988, 6,898, and 3,589 attack attempts, respectively. Geographically, the 
leading sources of assault activity were China (42%), the United States (17%), and Japan (13%). The 
findings demonstrate that honeypots are not only effective attack detection tools, but also significant 
sources of intelligence for understanding cyber threat methods and adversary behaviours. 
Conclusion: This study proposes DORA (Dionaea Observation and Data Collection Analysis), an 
integrated system that enhances the existing Dionaea honeypot by combining its data with external 
analysis services like VirusTotal. This integration provides critical insights into real-time cyberattack 
detection, malware analysis, and attack vector identification. The findings highlight vulnerabilities in 
services like Telnet and SMB, particularly the exploitation of MS17-010. DORA improves threat 
intelligence workflows, enhancing malware detection accuracy and classifying threats more efficiently. 
Additionally, it helps identify high-risk attack surfaces, forming the basis for adaptive cybersecurity 
strategies. This research contributes to developing resilient defence systems capable of addressing 
emerging threats.   

 Index Terms 
Honeypot; Cybersecurity; Malware detection and analysis; Cyber threat detection; Network security; 
Real-time threat intelligence; Vulnerability assessment. 
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1 INTRODUCTION 
Cybersecurity risks have increased dramatically in recent years, correlating with the increasing use of internet-based 

technologies and the rapid expansion of digital infrastructure. According to Indonesia's National Cyber and Crypto 

Agency's 2024 Cybersecurity Landscape Report, the government recorded approximately 330 million abnormal 

traffic incidents in 2024. The Mirai Botnet, which is responsible for approximately 81 million malicious operations, 

is among the most dangerous threats, followed by Trojan RAT-based attacks, phishing, and exploitation of IoT 

systems (BSSN, 2025). Furthermore, the analysis shows that the government sector is still the leading target of 

cyberattacks such as ransomware, data breaches, and Distributed Denial-of-Service (DDoS) operations. The 

intrusion of The Temporary National Data Centre in Surabaya demonstrates how cybersecurity failures can have 

substantial ramifications for public services (BSSN, 2025). 

The increasing sophistication of cyber threats needs a paradigm change away from traditional reactive defence 

methods like firewalls and signature-based intrusion detection systems and towards more proactive and adaptable 

strategies. These conventional methods frequently fail to detect emerging threats and sophisticated attack routes. 

Honeypots are one of the most promising solutions in proactive threat detection, serving not only as decoy systems 

to lure and deceive attackers but also as strong instruments for gathering important knowledge about attack tactics, 

exploitation techniques, and adversary behaviour. Honeypots have emerged as valuable assets in cybersecurity 

research, allowing for real-time analysis of hostile tactics, strategies, and procedures. While prior research has mostly 

focused on the static use of honeypots to collect attack data, the integration of honeypots with artificial threat 

intelligence systems has opened the door to more dynamic and actionable cybersecurity techniques. For example, 

XT-Pot (Ryandy et al., 2020) developed a framework for connecting honeypots with threat intelligence systems, 

allowing organisations to transform raw attack data into actionable security measures, considerably improving 

proactive defence capabilities. Simultaneously, Linux-based honeypots such as Cowrie have been shown to 

effectively track attacker behaviour, with a particular emphasis on SSH and Telnet vulnerabilities, which continue 

to be popular targets (Maharani et al., 2024). Furthermore, the combination of high- and low-interaction honeypots 

resulted in the creation of T-Pot, an all-in-one honeypot solution that integrates different honeypot types to provide 

more detailed insights regarding cyberattack trends (Martínez et al., 2023). T-Pot's adaptability enables it to adapt to 

a wide range of attack techniques, hence boosting system security. Furthermore, research has shown that honeypots 

are increasingly being used in cryptojacking detection, exposing how attackers exploit honeypots to repurpose them 

for illicit cryptocurrency mining, such as the attempted operation of XMR mining installations (Patel et al., 2022). 

This emphasises the rising complexity of threats and the need to adapt honeypot systems to identify new types of 

exploitation. 

Honeypots have been integrated with Intrusion Detection Systems (IDS) and machine learning (ML) algorithms to 

address the growing demand for advanced detection and analysis systems as cyber threats evolve. These 

technologies are increasingly employed to analyse botnet attacks in Internet of Things (IoT) environments, enabling 

more effective detection of both automated and human-driven attacks. The next step in honeypot-based defence 

systems is the integration of behavioural analytics with geolocation-based threat mapping, which facilitates real-

time threat monitoring and sophisticated assault pattern recognition. 

In this context, a honeypot is intentionally designed as a “decoy” or false target, exposed to attract external attacks. 

This approach allows researchers to observe attack patterns and analyse the characteristics of malware sent by 

attackers, all while ensuring the core systems remain secure. For this study, the Dionaea honeypot was selected due 

to its proven effectiveness in detecting and recording a wide variety of attacks (Morić et al., 2025; Saikawa & Klyuev, 

2019; Tabari & Ou, 2020a) along with its ease of integration with external analysis platforms (Holbel et al., 2024; 

Ryandy et al., 2020; Tabari & Ou, 2020a). This integration improves real-time behavioural trend analysis, 

significantly enhancing threat detection and surveillance. This study introduces Dionaea Observation and Data 

Collection Analysis (DORA) for real-time cyberattack surveillance and threat intelligence, an innovative approach 

to honeypot deployment that integrates Dionaea with external platforms like VirusTotal. The primary objectives of 

this research are: 

1. Assess the capabilities of Dionaea honeypots to identify real-time cyber threats and analyse malware 

samples. 
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2. Improve threat intelligence workflows by combining honeypot data with external systems for proactive 

threat mitigation. 

3. Identify high-risk attack surfaces and provide dynamic, data-driven defence methods based on empirical 

evidence. 

Using DORA's sophisticated data-driven approach, this study seeks to build a novel paradigm for boosting 

cybersecurity resilience, particularly in the context of rising threats in networks, cloud infrastructures, and 

distributed systems. 

The paper is structured as follows. The second section consists of related literature review. The next section presents 

our methodology to conduct the study. Then, section five provides in depths analysis of results followed by 

discussion in the next section. Finally, conclusion is drawn in the last section.  

2 LITERATURE REVIEW 
In recent years, various studies have used honeypots to detect and mitigate cyber risks. These research 
have produced important insights into attack patterns, adversary behaviours, and the changing nature of 
assaults, paving the path for honeypot inclusion into proactive defence systems. One of the earliest 
contributions to this sector was a study by Bartwal et al., (2022) who created a Security Orchestration, 
Automation, and Response (SOAR) engine that dynamically deploys honeypots based on attacker 
behaviours within an internal network. This engine was able to manage several VLANs, identify botnets 
and DDoS attacks, and store malware data. The trial findings showed that the SOAR engine could cut 
attacker engagement time to 3,148 seconds while detecting 7,823 attacks and intercepting DDoS attack 
packets. The design outperformed prior solutions and has tremendous potential for enterprises looking 
to secure their internal networks.  

Machine learning advancements have also helped to shape honeypot systems throughout time. Huang et 
al., (2019) proposed an automated honeypot detection approach based on the Random Forest algorithm 
that classifies honeypot interactions at the application, network, and system layers. The suggested model 
surpasses existing machine learning techniques, as demonstrated by an Area Under the Curve (AUC) 
score of 0.93. This model solves several of honeypot systems' present constraints, particularly in terms of 
simulated service integrity, and serves as a standard for future honeypot technology advances. 

The usage of honeypots in critical infrastructures has also drawn attention. Zia et al., (2019) investigated 
the use of honeypots in Industrial Control Systems (ICS), demonstrating its effectiveness in detecting 
cyber-attacks targeting industrial environments. The information gleaned from these deployments could 
be essential in building adaptive defence mechanisms specialised for ICS security. Furthermore, 
comparative analysis of data from various honeypot systems has resulted in the creation of more efficient 
data visualisation tools. Another study compared Grafana Loki to the ELK Stack, demonstrating that 
while Grafana Loki had higher resource efficiency, the ELK Stack had more user-friendly data 
visualisation capabilities via automated field mapping (Njoera et al., 2024). The comparison emphasises 
the significance of combining visual tools with honeypot systems to improve real-time monitoring and 
decision making. The challenges created by increasing cybersecurity vulnerabilities in emerging 
technologies, such as Software-Defined Networking (SDN), Network Functions Virtualisation (NFV), and 
cloud/edge computing, have led to the investigation of honeypots as alternative intrusion detection 
techniques. Likewise, Radoglou-Grammatikis et al., (2024) emphasised the usefulness of honeypots in 
misleading attackers while also gathering significant threat intelligence in these dynamic settings. The use 
of wireless honeypots (WH) in ultra-dense network environments was also examined, with Reinforcement 
Learning (RL) techniques being used to improve these systems' deployment and defence capabilities.   

The combination of blockchain technology and honeypots is a novel way to enhance the security and 
adaptability of such systems. A novel blockchain-based dynamic honeypot system that decentralises 
attack data storage and adjusts in real time to changing adversarial techniques is proposed in (Shi et al., 
2019). Their approach was proven more resistant to anti-honeypot methods because it employs encrypted 
communication and service transformation, providing a more robust solution than standard static 
honeypots. Furthermore, research on Dionaea honeypots (Shahrivartehrani & Abidin, 2016) has proved 
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their ability to detect and analyse malware in cloud environments, underlining honeypots' proactive role 
in reducing cybersecurity risks.  

In the context of Internet of Things (IoT) security, multi-phased and adaptive honeypot ecosystems have 
been created to change in response to attacker behaviour, considerably enhancing the detection of both 
automated and human-driven attacks. For example, IoTCMal, a hybrid honeypot system that combines 
low- and high-interaction honeypots, has been demonstrated to improve threat intelligence by providing 

more thorough coverage of attack methods (B. Wang et al., 2020; M. Wang et al., 2018; W. Zhang et al., 

2020; Tabari & Ou, 2020b). Previous research by Naik and Jenkins., (2018) investigated the use of fuzzy 

logic for identifying spoofing attacks on low-interaction honeypots, which successfully decreased false 

positives but struggled in more complicated attack scenarios. Zhang et al., (2019) presented pseudo-
honeypots that detect and identify spammers on social networks, broadening the scope of honeypots 
beyond standard network security applications. However, these technologies must be further developed 
before they can be completely deployed in public network environments. In addition, Thom et al. (2021) 
used honeypots in numerous global locations to detect geolocation-based attacks, finding that attack types 
and severity range dramatically between network settings and geographical regions. This study 
emphasises the necessity of honeypots in discovering global assault trends, as well as the need for 

adaptive defence measures that can address geographically spread attacks. Siddiqui and Bokhari., (2021) 

presented a honeypot-based intrusion detection system (IDS) to improve cyber threat detection and 

classification. The study looked into the capabilities and limitations of honeypots when used in 
conjunction with IDS systems, revealing prospects for increased detection rates. It discovered that the 
bulk of assaults were directed at TCP/IP-based protocols, with HTTP and FTP ports being particularly 
vulnerable. The study also detected proxy scanning, IIS exploits, and Trojan-based Denial of Service (DoS) 
attacks, indicating the wide range of attack tactics used by cyber adversaries. 

As cyberattacks get more sophisticated, there is an increasing move towards AI-powered and machine 
learning-based honeypots. Liu et al., (2023) created HoneyMustard, a honeypot framework based on GUI 
emulation, to improve interaction with attackers and make it more difficult for them to distinguish the 
honeypot from normal computers. Similarly, Reinforcement Learning (RL) techniques like Deep Q-
Networks (DQN) and Double DQN (DDQN) have been used to improve honeypot detection of SSH 

attacks (Kristyanto & Louk, 2024), allowing honeypots to dynamically adapt to changing attack patterns. 

Furthermore, Commey et al., (2024) investigated game theory approaches in blockchain-based honeypots 
to improve IoT security, providing a strategic model for honeypot deployment, however its real-world 
applicability is limited. Syamsuddin and Barukab., (2022) introduced an enhanced k-Nearest Neighbour 
(kNN) model for identifying botnet assaults in IoT environments, achieving excellent accuracy, precision, 
recall, and F1 score. However, the model's application is limited to certain datasets, emphasising the 
importance of broader validation across varied situations.  Yang et al., (2023) investigated the use of high-
interaction honeypots as a proactive defence mechanism to protect network security, using a modular 
design that allows for more flexible and extensive data collection. This system has numerous advantages 
over typical honeypots, particularly in terms of customisation and scalability. 

In conclusion, while earlier research has provided useful insights into the usage of honeypots in 
cybersecurity, there is still a significant gap in integrating these systems into public network environments 
for real-time monitoring and dynamic defence. The findings of this study contribute to this gap by 
investigating the use of honeypots in public networks and introducing Dionaea Honeypots, which are 
integrated with real-time data analysis and malware detection services, providing a novel approach to 
cyberattack surveillance and proactive defence strategies. 

3 PROPOSED METHODOLOGY  
We implemented a honeypot system using various hardware and software specifications, as detailed in Table 1. The 

experimental setup is described in Section 3.1. 

Table 1. Hardware and Software requirements. 
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Items Details 

OS Ubuntu 18.04 

Honeypot Version Dionaea 

Computer Memory RAM 8 GB 

Processor version Core i5 

 

This section describes how we deployed and analysed the DORA for real-time cyberattack surveillance and threat 

intelligence, which incorporate Dionaea Honeypot and VirusTotal as a novel real-time cyberattack surveillance 

system. We also go into depth about the integration of external analytic services and the data visualization tools 

used to process the attack data. Figure 1 depicts a potential architecture diagram. DORA was configured using the 

public IP address 182.23.83.127 and a firewall with minimal settings to enhance the capture of attack traffic from 

external sources. The methodological steps are stated as follows. 

 

 

Figure 1. System architecture of DORA. 

3.1 Preparation of research environment 
Implementation of Dionaea honeypot: The implementation of DORA on critical networks was carried out carefully 

to ensure that attackers do not realise that this system is a "decoy" within the network while also diverting them 

away from critical assets. The honeypot in the DORA system was installed on the Ubuntu 18.04 operating system 

through the "honeynet/nightly" repository, followed by the installation of GeoIP to determine the origin of the 

attacker's IP address. Additionally, we installed DionaeaFR, a web-based visualization tool that enables the viewing 

of attack visualizations, including the attacker's IP address, the targeted services, and the malware being delivered. 

The use of DionaeaFR facilitates efficient monitoring of attack activities against the honeypot. 

Security configuration: To keep the DORA system isolated from important networks, it was placed in front of the 

network firewall. This setting ensures that any attacks aimed at certain ports or services are first directed to DORA, 

allowing us to study attack trends and identify the most often targeted ports and services, as well as the most 
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typically distributed malware. By placing DORA in front of the firewall, the important network's integrity is 

preserved, as the firewall rules remain operational without interfering with DORA's data collection activities. 

3.2 Attack data collection 
Setting digital traps: These setups are required for the Dionaea honeypot to successfully attract attackers by 

impersonating legitimate systems, files, or data, diverting their attention away from crucial assets. The honeypot 

configuration leaves all ports open, including port 80 for HTTP, port 23 for SSH, port 445 for SMB, and port 3306 for 

MySQL, among others. The honeypot is programmed to automatically log every connection attempt and incoming 

attack via the open ports, providing useful information for analysis. 

Log recording: All interactions with Dionaea honeypot are the result of open port configurations, and each attack is 

scrupulously documented in logs. The logs contain crucial information such as the originating IP address, protocol, 

timestamp, and any malicious payloads or downloaded files. These logs are an invaluable resource for further 

analysing attack patterns and finding the most commonly exploited attack pathways. 

3.3 Integration with analysis services using API VirusTotal 
Malware sample upload: During the installation, we made an account on the VirusTotal platform to receive an API 

(Application Programming Interface) key, which was then added to the Dionaea honeypot configuration in the 

"dionaea/ihandlers-available/virustotal.yaml" file. Using this API, the Dionaea honeypot may automatically connect 

to VirusTotal, allowing each malware sample encountered by the honeypot to be sent for examination in real time. 

This integration of Dionaea and VirusTotal serves as the foundation for DORA, a comprehensive real-time system 

for monitoring cyberattacks and generating threat intelligence. 

Signature matching: When Dionaea honeypot detects dangerous payloads, such as malware, it automatically 

forwards the samples to VirusTotal for examination. VirusTotal scans the malware with over 60 antivirus engines 

and provides a full report for each file. This report contains crucial information such as the type of malware, its threat 

level, unique file hashes (e.g., MD5, SHA-1, SHA-256), metadata, and the relationships between the malware file and 

other connected files. This external study provides vital insights into the threat landscape, allowing for the 

identification of specific malware variants that may be affecting the system. 

3.4 Data processing and storage  
Storage of attacks and payloads: The Dionaea honeypot has fully automated data collection and storing 

mechanisms. Each incoming connection attempt, including the originating IP address, protocol, timestamp, and 

payload or file transferred during the attack, is automatically captured and saved in the database as log data. 

Metadata management: The Dionaea honeypot system automatically assigns metadata to each attack, such as the 

attacker's geographic location, source IP address (IP_SRC), destination port (PORT_DST), and other important 

information. This data is updated in real time, with new information captured every second when a new threat is 

discovered. The DORA system also tracks repeated attacks, classifying them as the most common sorts of attacks 

that enter the system. This functionality is critical for tracking and assessing the changing threat landscape. 

3.5 Analysis and visualization (DionaeaFR dashboard)  
Data processing in dashboard: DionaeaFR, previously installed, is a web application built using the Django 

framework that visualizes the collected attack data, providing real-time updates on attack activities. The dashboard 

presents key metrics such as the total number of attacks, geographical distribution, attack sources, and the most 

frequently targeted services and ports. This visual representation helps researchers identify attack trends, vulnerable 

services, and emerging threats in real time. Additionally, the geolocation feature of the dashboard allows us to 

pinpoint the most active locations involved in attacks, thereby highlighting high-risk areas for potential cyber 

threats. 

Real-time monitoring: This visualization empowers researchers and practitioners to compare various types of 

attacks, facilitating the identification of significant attack vectors and paths. By integrating real-time analysis and 
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visualization, the system enables the research and practitioners team to respond quickly and accurately to rapidly 

evolving threat scenarios, driven by informed insights. 

4 RESULTS 
The suggested DORA architecture is used to assess and record various sorts of cyberattacks, providing useful 

information about attack patterns and origins. This approach takes advantage of Dionaea's ability to impersonate 

vulnerable services such as FTP, HTTP, SMB, and MySQL, allowing it to draw a variety of attacks while also 

automatically uploading and analysing to VirusTotal. The data gathered throughout the 24/7 observation period is 

processed and examined to determine the effectiveness of the suggested model. The following are the findings from 

the Dionaea honeypot: 

4.1 Visualization of attacks on the DORA 
Figure 2 illustrates that the DionaeaFR visualization web successfully recorded 32,395 connection attempts, 6,276 

unique attacker IP addresses, and 76 URLs used by attackers to download malware, access vulnerable services, or 

issue commands to the system. Furthermore, it collected a total of 2,892 malware samples. Of these, 1,401 samples 

were analysed, and 369 samples were confirmed as malware through the scanning and analysis process conducted 

by VirusTotal. 

 

Figure 2. Honeypot DionaeaFR visualization. 

In the DionaeaFR visualization, two key metrics are displayed: "Connections by Country" and "IPs by Country." 

While these metrics may seem similar, they serve distinct purposes. "Connections by Country" records the total 

number of connections, including those from the same IP address. For example, if an attacker from China makes 20 

connection attempts to the honeypot in one day using a single IP address, "Connections by Country" will record all 

20 attempts from China, as each connection is counted separately, even if they originate from the same IP. In contrast, 

"IPs by Country" counts only the number of unique IP addresses that have connected. In the same scenario, even 

though the attacker made 20 connection attempts with the same IP address, "IPs by Country" will record only one 

IP address from China, as it counts each unique IP address only once. 

The Dionaea honeypot can determine the country of origin of an attacker by cross-referencing the attacker's IP 

address with location data from the GeoIP database. Each device connected to the internet has an IP address that 

can be mapped to a specific physical location, such as a country or city, using GeoIP. This database is populated with 

data from various sources, including Internet Service Providers (ISPs), IP address authorities, and public data. Based 

on the detected IP address, GeoIP identifies the attacker's country of origin. For instance, if an IP address is found to 

be registered to a range allocated to China, the attack will be recorded as originating from China. However, it's 

important to consider that the use of VPNs, proxies, or TOR networks may reduce the accuracy of geographic 

location identification. 

In the "Connections by Country" and "IPs by Country" visualizations, the attacker's country categories are displayed 

based on the highest number of connections and the highest number of unique IP addresses identified through 

GeoIP. Notably, two additional categories are shown at the bottom of the country names: Unknown and Reserved. 
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These categories represent connections or IP addresses that cannot be identified due to their absence from the GeoIP 

database. 

• Others refers to connections or IP addresses whose country or region of origin cannot be determined. This 

typically occurs when VPNs, proxies, or unregistered IP addresses are used to obscure the attacker's true 

location. 

• Reserved refers to private IP addresses that have not been used actively or are not connected to a public 

network. These addresses are typically part of reserved address spaces for private networks and do not have 

a geographic location associated with them. 

4.1.1 Geographical distribution of attacks 

According to the geographic analysis presented in Figure 3, China had the most connections, accounting for 42% of 

the total discovered connections, followed by the United States (US) at 17% and Japan at 13%. Other countries 

contributing to the Honeypot system included Russia (9%), the Netherlands (8%), Vietnam (6%), and the United 

Kingdom (UK) (5%). The significant proportion of connections from China (42%) suggests that the country is the 

primary source of the detected activities, which include system scanning, vulnerability exploitation, and other sorts 

of cyberattacks. The United States and Japan also displayed significant activity, indicating that traffic originated 

from these countries' network infrastructures. The Russian Federation, contributing 9% of the connections, also 

signals a potential threat that needs attention, particularly given the country's reputation for aggressive cyber 

activities. The Netherlands and Vietnam demonstrate that attack operations are not centred in a single region, but 

rather spread throughout multiple countries with varying motivations and assault methods. The United Kingdom 

(UK), with 5%, indicates that assaults are also coming from networks in Europe. This distribution emphasises the 

worldwide nature of cyber threats and the need for international cooperation in cybersecurity defence. 

 

Figure 3. Connection by country. 

4.1.2 Malware type analysis 

According to the malware detection results in Figure 4, five main types of malwares were found, with WannaCry 

being the most prevalent threat, accounting for 1,076 incidents. WannaCry, an exploit-based ransomware, spreads 

via the MS17-010 vulnerability in the SMB service (Port 445), demonstrating that exploitation-based attacks against 

network protocols continue to pose a substantial danger to cybersecurity. In addition to WannaCry, the "Generic 

Malware" category comes second with 405 occurrences, indicating the prevalence of common malware variants that 

are still active and could impact poorly protected systems. Furthermore, Trojan Agent-AYFU was discovered 94 

times, indicating the presence of trojans that are most likely utilised for system takeover or data theft. 

Two other types of malwares were identified in equal numbers: the MySQL UDF SYS library (PUA) and Conficker-

A, each with 87 cases. These findings indicate that both potentially unwanted applications (PUA) and classic worms 

like Conficker still pose significant threats. The presence of Conficker-A, despite its long-known status, emphasizes 

that outdated systems remain vulnerable to exploitation. These findings highlight those various types of threats, 
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including ransomware, trojans, worms, and PUAs, are still active and require improved mitigation strategies to 

reduce risks to systems connected to networks. 

 

Figure 4. Top 5 malware detection. 

Additional analysis of one malware sample as seen in Figure 5 revealed that the WannaCry attack started from IP 

address 222.89.236.133, which was identified as being from China. To deliver and execute the malicious payload, 

this attack used port 445, the Server Message Block (SMB) service's default port. In this case, the honeypot identified 

inbound TCP connection activity in which the attacker used source port 64350 to establish communication with the 

victim at IP address 182.23.83.27, which also utilised port 445 as a destination. The malware analysis system 

recognised the malicious file that was successfully downloaded as the Mal/Wanna-A variant with the hash 

ae12b54a1b1227107fefdf95988a8f5. This extensive investigation emphasises the importance of honeypots in 

detecting exploit-based assaults and giving significant data for identifying malware and its sources. 

 

Figure 5. Malware detection types. 

These findings demonstrate that SMB exploitation remains a significant attack vector in the spread of the WannaCry 

ransomware, which constantly exploits the MS17-010 vulnerability. This demonstrates that systems that have not 

been updated or are still vulnerable to this exploit remain good targets for worm-based assaults such as WannaCry. 

4.1.3 Number of attacked ports 

According to the data in Figure 6, Port 23 (Telnet) was the most targeted port, with 7,988 exploitation attempts, 

followed by Port 445 (SMB), which received 6,898 attacks. Port 3306 (MySQL) came in third with 3,589 attacks, 

followed by Port 1433 (Microsoft SQL Server) with 1,623 attacks. Meanwhile, 876 attacks were directed at Port 53281, 

which is commonly connected with proxy services. These findings show the network's most susceptible ports, which 

are frequently targeted by attackers exploiting known service flaws. 
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Figure 6. Number of attacked ports. 

The high frequency of assaults on Ports 23 and 445 implies that attackers prefer to exploit services that are either 

under protected or employ weak protocols. Telnet (Port 23), despite being an older protocol, is still commonly used 

in some situations and is frequently unencrypted, making it an easy target for hackers. SMB (Port 445), on the other 

hand, is being targeted because of vulnerabilities such as MS17-010, which can be used to transmit malware like 

WannaCry. Attacks on Port 3306 (MySQL) indicate efforts to access databases, which may result in the theft of 

sensitive data if database security measures are inadequate. Port 1433, which is commonly used for SQL Server, is 

also being targeted, presumably due to insecure settings or the continuous use of default credentials. Finally, while 

Port 53281 receives fewer attacks, it should still be monitored since it may suggest attempts to compromise lesser-

known services or applications. These findings highlight the need for stronger security measures, such as fixing 

vulnerabilities, encrypting data, and safeguarding service configurations, particularly for critical ports that are 

regularly targeted by attackers. 

 

Figure 7. Number of services attacked. 

Attack analysis by service in Figure 7 demonstrates that PCAP was the major target, with 11,672 attacks, followed 

by Blackhole with 8,000 attacks. Furthermore, SMB logged 6,892 assaults, MYSQLD had 3,627 attacks, and sipSession 

had 678 attacks. The large frequency of PCAP assaults suggests that attackers attempted to collect and analyse 

network traffic in order to get sensitive information, such as login credentials or unencrypted data packets. Attacks 

on Blackhole indicate the exploitation of systems with vulnerabilities or that are not constantly updated, which could 

serve as entry points for future malware distribution. 

Meanwhile, the attacks on SMB (6,892 cases) demonstrate that this protocol remains a significant target, owing to its 

extensive use in enterprise systems and the possibility of exploitation by ransomware such as WannaCry. Attacks 

against MYSQLD (3,627 incidents) indicate brute-force efforts or exploitation of database flaws, which could result 

in unauthorised access and data theft. Finally, the use of sipSession demonstrates that IP-based communication 

infrastructures are open to eavesdropping and abuse for unlawful VoIP calls. These findings highlight the 
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continuous need for strong security practices, such as effective patch management, encryption, and secure 

communication protocols, to reduce the danger of these assaults. 

4.2 Verification and malware analysis with VirusTotal 
According to the verification results from VirusTotal connected to the honeypot, one of the analysed samples 

revealed that 58 out of 67 antivirus engines correctly classified the WannaCry sample as a threat in Figure 8. This 

score indicates a fairly high detection rate, as most security systems are capable of recognising malware.  

The investigation found that different antivirus companies assigned different labels to the WannaCry sample. For 

example, Avast classified it as "Win32:WannaCrypt-A [Trj]", whilst AVG identified it as "TR/AD.WannaCry.xapz".  

Other vendors, such as BitDefender and Comodo, successfully detected the virus, labelling it as 

"Trojan.GenericKD.12015762" and "TrojWorm.Win32.Ransom.WannaCry.AB", respectively. The high detection rate 

suggests that the WannaCry sample is well-known in the cybersecurity world, allowing many antivirus engines to 

recognise it correctly. However, 9 antivirus engines failed to detect the sample, demonstrating the disparity in 

detection capabilities between providers. This highlights the need of employing a multi-layered security strategy to 

provide more comprehensive protection against evolving threats. 

 

Figure 8. Malware verification using VirusTotal. 

4.2.1 PE Malware sample analysis 

Based on VirusTotal's additional analysis of the Portable Executable (PE) structure in Figure 9, the analysed malware 

sample employs KERNEL32.dll as one of its core libraries to perform a variety of potentially dangerous system 

activities. Several API methods imported from KERNEL32.dll include CreateProcessA, CreateFileA, WriteFile, and 

CloseHandle, indicating that this malware can start new processes, read or create files, write data, and control system 

resources. 

This analysis reveals that the malware is designed to interact deeply with the system's core functionality, 

highlighting its ability to perform malicious activities such as process manipulation, file modification, and 

unauthorised data handling, all of which are common characteristics of ransomware and trojans. 
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Figure 9. Portable executable structure. 

Additionally, the presence of functions such as LoadResource, LockResource, and FindResourceA suggests that this 

malware may utilize embedded resources within its binary, possibly to extract additional payloads or execute code 

directly from memory. This is commonly seen in fileless malware techniques, where malicious code can execute 

without writing additional files to the system, making it harder to detect using traditional file-based detection 

methods. 

Although MSVCRT.dll is also present in the imported libraries list, its specific functions are not shown in the 

screenshot. However, this library often includes normal C runtime functionality, which is frequently utilised for text 

and memory processing operations. The presence of these important functions imported from KERNEL32.dll 

implies that the virus can execute system-level code, modify files, and control memory resources. The use of APIs 

such as CreateProcessA shows that the malware can generate new processes, a behaviour commonly utilised in 

persistence or propagation techniques, such as running copies of itself or launching extra processes to escape 

detection by security systems. These findings underscore the malware's complex nature, as it can function discreetly 

by using memory-based activities and changing system-level resources to persist or proliferate over the network. 

 

Figure 10. Detailed information. 

4.2.2 Malware detailed information 

Based on further research of the VirusTotal report, the analysed malware sample contains multiple cryptographic 

hash values, such as MD5, SHA1, and SHA256, as indicated by VirusTotal in Figure 10. These identifications are 

used to confirm the legitimacy and unique identity of the examined file. The availability of these various forms of 

hashes is critical in the malware analysis process since it enables for the rapid detection of known variants and 
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comparison of the sample to current threat databases. Using MD5 and SHA256, security professionals can compare 

this malware to previously detected samples in various cybersecurity archives. Furthermore, the file's metadata 

indicates that it is 5.0 MB (5,267,459 bytes) in size and is classified as a Win32 DLL, implying that this malware 

operates in the Windows environment and is most likely structured as a dynamic-link library (DLL) that can be 

injected into other processes or used to execute malicious code. The Magic Literal and TrID sections show that this 

file is a PE32 executable for Windows (DLL) with a 32-bit architecture. This shows that the infection was most likely 

constructed with Microsoft Visual C++, a popular development tool for generating sophisticated malware. These 

details help to better comprehend the malware's design, capabilities, and possible impact on affected computers. 

5 DISCUSSION 
In this research, the DORA captured 32,395 connections and 2,892 malware samples, offering valuable information 

into current cyber threat patterns. For example, the dominance of attacks on port 445 (SMB) and the discovery of 

1,076 WannaCry malware infections demonstrate that the MS17-010 vulnerability is still a primary attack vector. 

These findings confirm that honeypots not only work as detection tools but also serve as significant data sources for 

understanding the techniques and targets used by attackers. Although honeypots excel in collecting attack data with 

a low false positive rate, they also have limitations. Since they only capture attacks specifically targeting their system, 

honeypots may not fully represent the entire range of threats within a network. To enhance their effectiveness, future 

research could integrate honeypots with machine learning for real-time attack analysis or expand the network 

coverage by implementing multiple honeypots in various configurations. With this approach, honeypots will 

continue to be an important tool in understanding and mitigating increasingly complex cyber threats. 

Furthermore, the use of honeypots must also be considered within the context of regulations and ethics. Data 

collection by honeypots should comply with applicable privacy and security regulations, avoiding potential misuse 

of the collected data. Therefore, honeypot implementation should be supported by clear policies and procedures to 

ensure responsible use. As such, honeypots will continue to be a valuable tool in efforts to understand and mitigate 

cyber threats. Through further development and integration with other technologies, honeypots can make 

significant contributions to safeguarding network security and protecting IT infrastructure from cyberattacks. 

6 CONCLUSION 
This study introduces and demonstrates the effectiveness of DORA, a new approach to integrating the capability of 

Dionaea in data collection of malware attacks and VirusTotal’s features of in-depth analysis and reporting of the 

malware through exploiting VirusTotal API. 

Based on our 24/7 observation period, the DORA captured 32,395 connections from 6,276 attacker IP addresses and 

collected 2,892 malware samples, of which 1,401 were successfully analysed, and 369 were confirmed as malware 

based on VirusTotal analysis. The five most dominant types of malware identified in the study 

were WannaCry (1,076 cases), Generic Malware (405 cases), Trojan Agent-AYFU (94 cases), MySQL UDF SYS library 

(PUA) (87 cases), and Conficker-A (87 cases). These findings highlight that the exploitation of SMB (MS17-

010) through WannaCry remains a significant threat, while the presence of generic malware and trojans suggests 

that network exploitation techniques continue to be diverse. DORA is also able to show a detailed report of each 

malware attack, such as MD5, SHA1, SHA256, metadata and many more in real time using VirusTotal’s API. 

These findings demonstrate that DORA has successfully integrated Dionaea as a beneficial passive monitoring tool 

with VirusTotal features in analysis and reporting, resulting in a novel real-time malware attack surveillance and 

threat intelligence platform. Future development will focus on using real-time machine learning approaches to 

improve DORA's threat detection and response capabilities. 
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