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 Abstract  
Background: Algorithmic trading systems (ATS) are defined by the use of computational algorithms for 
automating financial transactions. They have become a critical part of modern financial markets 
because of their efficiency and ability to carry out complex strategies. 
Objective: This research involves a systematic review that assesses the market impact, technological 
advancements, strategic approaches and regulatory challenges related to algorithmic trading. 
Methods: Following PRISMA 2020 guidelines, this study conducts a systematic literature review by 
screening 1,567 articles across five academic databases, namely IEEE Xplore, ACM Digital Library, 
SpringerLink, Web of Science and SSRN. After applying predefined inclusion and exclusion criteria, 208 
peer-reviewed journal and conference papers published between 2015 and 2024 are selected. The 
PICOC framework is used to define the review scope. Data are extracted using structured templates 
capturing study details, research objectives, artificial intelligence (AI) integration, profitability analysis 
and limitations. Tools such as Rayyan, NVivo, MS Excel and Zotero support the screening, coding and 
qualitative synthesis of findings. 
Results: AI methods, especially machine learning (used in 50% of the studies) and sentiment analysis 
(20%), significantly improve predictive accuracy and profitability. Most studies focus on equities (35%) 
and forex (30%), with high-frequency trading being the most examined strategy (30%). Challenges 
include latency (30%), scalability (25%) and regulatory issues (25%). 
Conclusion: Future research should prioritize ethical frameworks, regulatory clarity and wider access 
to AI-driven ATS components. This review provides a robust foundation for academics and practitioners 
to innovate and optimize algorithmic trading strategies. 

 Index Terms 
Profitability; Algorithmic trading systems; Artificial intelligence; Meta trading; Sentiment analysis; 
Systematic literature review; SLR; High-frequency trading. 

  

1 INTRODUCTION 
It can be noted that algorithmic trading, sometimes referred to as algo trading or 

automated trading, is a vital innovation within financial markets that implements 

computer programs to execute orders according to predefined criteria (Abdul-Rahim et 

al., 2022). With the introduction of this approach, trading is revolutionized by increasing 

efficiency, enabling traders to respond quickly to market fluctuations and minimizing 

human errors (Adegboye et al., 2022). Rapid advancements in technology – especially 

in artificial intelligence (AI) – have enhanced algorithmic trading systems (ATS) and 

enabled them to learn from historical data and adapt to changing market conditions 

(Aitken et al., 2022; Aitkazinov, 2023). The main objective of this systematic review is to 

explore the current landscape of algorithmic trading by focusing on their profitability, 

integration with AI and deployment using popular platforms such as MetaTrader 

(Ahmed et al., 2024; Aitken et al., 2022).  
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Such increased adoption of ATS highlights the need for a comprehensive understanding of their mechanisms, 

limitations and strengths (Ahmed et al., 2024). By assessing their profitability and the role of different platforms 

(such as the integration of AI and MetaTrader), we contribute valuable insights to the evolving discourse on financial 

technology (Zhou et al., 2024). Furthermore, algorithmic trading also depends on complex mathematical models and 

computational algorithms to make accurate trading decisions (Behera et al., 2023). Quantitative strategies in 

algorithmic trading, as discussed in recent literature, emphasize the importance of mathematical models for 

achieving consistent returns (Addy et al., 2024). These systems can analyse large volumes of data, execute trades and 

identify patterns far more effectively and with higher efficiency compared to human traders (Auh & Cho, 2023). 

Initially, algorithmic trading was predominantly used by institutional investors to obtain various advantages 

(Chakravarty & Pani, 2022). However, smaller actors such as small and medium enterprises face unique constraints 

in using such strategies, especially in the context of hedging (Dang & Lindsay, 2022). Secondly, the proliferation of 

trading platforms means that small firms, individual traders and MetaTrader users can now access and implement 

algorithmic trading strategies effectively (Cox et al., 2022). 

Profitability remains a core concern for algorithmic traders, as algorithms offer the potential to exploit small 

inefficiencies– including unpredictability and volatility – of financial markets (Zhang et al., 2022). However, with 

the increase in AI technologies, new possibilities are introduced for these ATS (e.g., reinforcement learning, 

predictive analytics and natural language processing) that can enhance their success and adaptability. Besides the 

potential of ATS, some questions still arise regarding their overall efficacy, particularly when they are deployed by 

small-scale traders and individuals (Zhang et al., 2024). 

Therefore, it is extremely important to understand the intersection of AI with these systems to provide a 

comprehensive view of their future capabilities and disadvantages. For instance, AI models are sometimes overfit 

to historical data, leading to suboptimal performance in real-time trading. Some authors have identified challenges 

linked with overfitting; there is a need for robust cross-validation systems to prevent overfitting in deep learning 

models. Before moving to the next section, it is necessary to briefly articulate the research problem, because it is vital 

to analyse the main problem faced in algorithmic trading. Notably, optimized genetic programming techniques have 

shown improved ATS performance (Christodoulaki et al., 2023). Additionally, the role of automation in financial 

trading companies has been recognized as a factor influencing modern trading practices (Martins, 2020). 

With the proliferation of ATS in financial trading, many questions have been raised regarding their effectiveness 

and profitability. Furthermore, institutional investors often invest for long-term gains from the market, so the extent 

to which individual traders can achieve similar success remains unclear. When AI is integrated into these systems, 

it is also necessary to examine how these advancements affect reliability. A systematic review of the literature on 

this topic can provide guidance and clarity for practitioners, researchers and policymakers. Now that the problem 

is framed, it is vital to introduce the research questions that guide this study. These research questions include both 

primary and secondary aspects. The findings of the research will be beneficial for researchers interested in 

algorithmic trading, traders looking to optimize their strategies and developers working on trading platforms. By 

connecting profitability analysis with AI advancements, the study bridges the gap between practical applications in 

the field and theoretical research. 

Primary research question: 

1. What is the current state of algorithmic trading based on its profitability and technological advancements? 

Secondary research questions:  

2. How do popular trading platforms such as MetaTrader facilitate the deployment and efficiency of ATS?  

3. What are the main factors that influence the profitability of ATS for institutional and individual traders?  

4. In what ways can AI enhance the performance and profitability of ATS? 

These are the main research questions for the study. It is also important to outline the research objectives briefly. 

There are several vital objectives related to this systematic review:  

• Evaluate in detail the state of ATS: Analyse the current literature to assess the current state of ATS, 

including their deployment, mechanisms and use cases.  

• Investigate profitability trends: Examine in detail the profitability of ATS across various market conditions 

and user groups.  
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• Explore the role of MetaTrader: Assess how platforms such as MetaTrader contribute to the implementation 

and optimization of algorithmic trading strategies.  

• Understand AI integration: Analyse the impact of AI technologies (e.g., natural language processing and 

machine learning) on the success and adaptability of ATS.  

• Identify research gaps: Highlight the main gaps in the literature and propose directions for future research 

into ATS, especially regarding AI integration. 

2  RELATED WORK 

2.1 Emergence and basics of algorithmic trading systems 
Over the past few decades, the field of algorithmic trading has been studied extensively with a focus on profitability, 

system design and market impact. For example, research by Arratia (2023) explored the role of ATS in foreign 

exchange markets. The author highlighted their impact on market liquidity and volatility. Another study 

investigated the influence of algorithmic trading on equity markets. The results showed that these systems can 

enhance market efficiency but also contribute to flash crashes during extreme volatility periods (Arratia, 2023). 

Consistent with these findings, studies from other markets (e.g., Taiwan’s futures market) observed that algorithmic 

trading significantly influences market quality metrics (Chang & Chou, 2022). Evidence from the Johannesburg Stock 

Exchange suggests that algorithmic trading can affect market quality, indicating regional differences in its effects 

that merit further study (Courdent & McClelland, 2022). Raheman et al. (2022) provided bibliometric insights and 

adaptive market-making strategies, respectively, contributing to a deeper understanding of algorithmic trading 

research and practice. 

The evolution of financial markets has been significantly influenced by technological advancements, with ATS 

standing out as one of the most transformative innovations. Algorithmic trading has also been associated with post-

earnings announcement drift across different countries, suggesting its impact on market anomalies and efficiency 

(Chen, 2023; Cooper et al., 2023). These systems have reshaped trading practices, offering opportunities for both 

institutional and individual traders. To better understand the scope and implications of these changes, this section 

delves into the historical development, profitability and key tools associated with algorithmic trading. 

With the introduction of algorithmic trading, the financial landscape has been transformed by the precision and 

automation of trading activities (Abdul-Rahim et al., 2022). Algorithmic trading emerged in the 1970s through 

electronic trading systems, and ATS have since come to dominate financial markets globally. In the past, these 

systems used pre-programmed instructions to execute trades according to variables such as timing, price and 

volume (Adegboye et al., 2022). By replacing manual trading processes, ATS technology minimized human errors, 

enabled traders to take advantage of even the smallest market inefficiencies, and enhanced execution speed. With 

fewer market inefficiencies, algorithmic trading became more attractive (Aggarwal et al., 2023). 

Data are the foundation of any ATS. This involves real-time data (e.g., live market volumes and prices) and historical 

data used for backtesting different strategies (Fouque et al., 2022). Efficient data management ensures that the system 

has timely and accurate information for making informed decisions. Big data analysis, such as that used to assess 

accounting information quality, can provide insights into financial constraints that affect the efficiency of ATS (Lei 

et al., 2022; Zheng & Zhu, 2023). ATS are evolving in response to new market phenomena. Goetzmann (2022) 

highlighted the influence of meme stocks and social media on markets, which presents a new challenge for ATS as 

they adapt to unpredictable market movements. 

The periodicity of trading activity, particularly in foreign exchange markets, can be used by ATS to optimize timing 

and execution strategies (Chen et al., 2022). The market data infrastructure of an ATS gathers and processes market 

information to enable effective trading decisions. The continuous stream of data requires sophisticated capabilities 

for low-latency processing (Arumugam, 2024). Data processing is critical because trading decisions rely on both 

current market conditions and historical analysis. Extensive databases are maintained by ATS to identify patterns 

and trends used to formulate trading strategies. This historical analysis capability allows systems to contextualize 

current market movements, providing a strong foundation for trading decisions. 

At the centre of an ATS is the complex event processing (CEP) component, which includes two main elements: a set 

of CEP rules and a CEP engine. Incoming market events are processed by the CEP engine based on rules defined in 
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the trading strategy. This component represents the analytical part where market opportunities are identified 

according to predefined rules and conditions. For quantitative analysts, the CEP system is a focal point, and they 

invest significant time in developing trading strategies, as well as detailed backtesting and position-sizing, to ensure 

that these strategies are valid on real markets. Once a trading signal is generated by the CEP system, the order 

management component takes over. This subsystem manages the creation and routing of orders to the appropriate 

exchanges. Modern ATS incorporate sophisticated order management systems capable of handling a large number 

of orders per second (Yuferova, 2024). 

In addition, the execution component ensures that trades are carried out according to system specifications. It 

typically involves sending order requests to exchanges and monitoring their execution status. The final component 

of an ATS is the user interface, which offers traders a visual representation of market data, system operations and 

trading performance. Even though algorithmic trading works automatically, human oversight is still necessary. The 

graphical user interface (GUI) allows traders to monitor system performance and intervene when necessary (Huang 

& Song, 2023). Modern algorithmic trading platforms such as Fintechee and SpeedBot provide effective interfaces to 

help traders visualize multiple charts simultaneously and customize indicators. These interfaces usually feature 

dashboards that show key performance indicators (KPIs) and real-time risk exposure. 

The traditional architecture of an ATS consists of several distinct layers. For example, at the external boundary are 

the exchanges where trades are executed, while the server layer receives and stores market data as well as orders 

generated by the system. The application layer serves as the interface between the trader and the system, taking 

inputs such as stop-loss limits and preferred instruments. In this architecture, data flows through a sequence: market 

data packets published by exchanges travel through communication networks and are processed by routers and 

servers, eventually reaching the trading platform (Cohen, 2022). The platform parses these data and analyses them 

via the CEP system. When suitable conditions are met, trading signals are generated. 

It is important to note that modern ATS use web-based architectures, which offer platform independence and greater 

accessibility. For example, Fintechee’s Web Trader is a web-based approach that allows traders to run their expert 

advisors (EAs) regardless of the operating system (Bao et al., 2022). This web-based approach facilitates mobile 

access and allows traders to monitor and manage their algorithms while traveling or away from their main 

workstations. Typically, this architecture uses reactive programming technologies for front-end APIs, enabling quick 

data transfer and improved response times through non-blocking calls (Seyfert, 2018). 

Modern algorithmic trading architectures also place emphasis on integration capabilities, which allow systems to 

connect with external services and libraries. For example, Fintechee’s system architecture allows integration with 

JavaScript libraries that support AI, enabling traders to assess markets with higher precision. These integration 

capabilities extend to multiple data sources and trading venues, allowing algorithms to monitor multiple quote 

sources simultaneously and make informed decisions from an international perspective (Salkar et al., 2021). This 

comprehensive market view is a significant advantage over traditional single-source trading approaches. 

The development of an ATS usually begins not with coding but with conceptualization. This initial phase involves 

defining trading hypotheses – clear statements about which market behaviour can be exploited for profit. Each 

component of the trading system should be addressed by these hypotheses, analogous to scientific experimentation. 

This conceptual foundation is critical because traders cannot effectively implement or adhere to systems based on 

premises in which they do not believe (Ponomarev et al., 2019). Thus, the development process should begin with 

the trader’s beliefs and preferences, then progress to methodologies and market selection. The approach of SpeedBot 

similarly emphasizes starting with the definition of a custom strategy and requirement analysis before moving to 

implementation. 

Once the trading concept is clearly defined, the next step is to translate trading hypotheses into executable 

algorithms. This process requires programming knowledge, with Python being particularly popular due to its 

simplicity and comprehensive financial analysis libraries (Garcia & Schweitzer, 2015). During implementation, 

developers create specific conditions for trade entry and exit based on technical indicators or sentiment analysis. The 

implementation must account for different market conditions and include proper error handling to ensure reliable 

operation. For traders without programming expertise, platforms such as Zerodha Streak and Upstox Algo Lab offer 

tools for creating algorithms with minimal coding (Mukerji et al., 2019). As for the trading costs, trade clustering in 
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algorithmic trading can reduce these costs, providing insights into optimizing execution strategies (Muravyev & 

Picard, 2022). 

Testing is one of the most critical phases in ATS development. Detailed testing typically involves: 

• Backtesting: Evaluating the historical performance of the strategy under different market conditions. This 

process provides insights into profit/loss metrics and KPIs (Lyle & Naughton, 2015). 

• Paper trading: Simulating the strategy in real-time market conditions without risking actual capital. This 

phase helps identify issues related to latency and other real-world factors not captured in backtesting. 

• Strategy optimization: Improving the strategy based on backtesting and paper trading performance, 

potentially by adjusting parameters or entry/exit conditions (Huang et al., 2023a). Several AI-based 

approaches have been developed to automate and optimize entry and exit decisions (Das et al., 2022). Multi-

objective genetic algorithms have also been proposed to optimize trading strategies, balancing profitability 

and risk in ATS (Liu, 2023b). Even instantaneous stochastic gradient ascent has been used to optimize Forex 

investments, demonstrating adaptive machine learning approaches for algorithmic trading (Murtza et al., 

2023). 

The testing process should cover various market scenarios, including periods of high volatility and abnormal market 

conditions. Generating synthetic data using deep generative models offers a promising approach to improving the 

predictive capabilities of business strategies, as demonstrated in recent studies (Carvajal-Patiño & Ramos-Pollán, 

2022). This thorough assessment helps ensure robustness of the strategy across different market environments. The 

final stage involves deploying the ATS on live markets, which requires careful consideration of execution 

infrastructure and real-time monitoring capabilities. Optimal execution strategies that take stochastic delays into 

account, as explored in recent research, are key to ensuring efficient trade execution in ATS (Cartea & Sánchez-

Betancourt, 2023). Once live, continuous monitoring becomes important to ensure that the system works as expected 

(Cartea & Jaimungal, 2016). This typically involves tracking performance metrics, comparing actual results against 

expected outcomes and identifying any discrepancies that might indicate implementation issues. Regular review 

and improvement of the trading system remain necessary even after deployment – markets evolve and strategies 

that performed well in the past may become less effective over time. Effective algorithmic traders continuously 

monitor and adjust their strategies to maintain profitability (Deng et al., 2015). 

In addition, AI and ML capabilities integrated into modern ATS allow these systems to adapt to changing market 

conditions and identify complex patterns that rule-based algorithms might miss. For example, Fintechee’s 

architecture allows integration with JavaScript libraries to support AI and improve the precision of market analysis. 

This integration marks a major development in algorithmic trading, moving beyond static rules towards more 

efficient and adaptive systems. Typically, ATS support trading across multiple markets and asset classes 

simultaneously. This allows traders to diversify strategies and exploit opportunities across different instruments. 

The ability to manage multiple data feeds and charts is an important feature for detailed market monitoring (Ghimire 

et al., 2020). For instance, in Fintechee’s Web Trader, a single expert advisor can manage multiple charts at once, 

helping traders monitor different quote sources and make effective decisions from an international perspective. 

It is also important to note that customization capabilities are another critical aspect of modern ATS. While 

traditional platforms offer limited built-in indicators, contemporary systems allow traders to create custom 

indicators using their own algorithms. This extensibility enables traders to implement unique analytical approaches 

and trading methodologies that differentiate their strategies from common market approaches (Ghimire et al., 2020). 

The ability to personalize system components offers a competitive advantage in a complex trading environment. 

Also multi-objective particle swarm optimization algorithms have been studied for market timing, offering potential 

enhancements for algorithmic trading strategies (Mohamed & Otero, 2022). 

2.2 Algorithms used in algorithmic trading 
ATS – and algorithmic trading in general – rely on various sophisticated algorithms for executing trades efficiently 

and at high speed. One commonly used algorithmic strategy is mean reversion, which operates on the principle that 

asset prices fluctuate around a historical average. It identifies when an asset is oversold or overbought and executes 

trades accordingly. If the price of a stock deviates from its mean, the algorithm assumes that it will revert to the 

average and trades are made based on this movement. This algorithm relies on methods such as Bollinger bands and 
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linear regression to determine whether a stock price is below or above its historical mean. In practice, Python 

statsmodels or SciPy libraries are used to calculate mean reversion trading signals. 

In addition, momentum trading is another widely used algorithm, which follows the trend of asset prices. The 

algorithm identifies securities with upward or downward momentum and places trades in the direction of that 

trend. It uses techniques such as moving averages and moving average convergence divergence (MACD) to detect 

trends. Visualization libraries such as Matplotlib or technical analysis libraries such as TA-Lib in Python are used to 

implement momentum strategies. Genetic programming can be used to combine directional change indicators, 

improving the performance of algorithmic trading on international stock markets (Long et al., 2022). 

Statistical arbitrage is a more complex algorithm that exploits pricing inefficiencies between related financial 

instruments. It relies on quantitative models to identify price divergences in correlated securities. This often involves 

advanced techniques such as machine learning models or Kalman filters to detect price discrepancies among 

correlated assets (Arumugam, 2024). Market-making is another critical algorithmic strategy, involving continuously 

quoting buy and sell prices for a security to capture the bid-ask spread. This algorithm is typically used by high-

frequency trading (HFT) firms to provide market liquidity while profiting from bid-ask spreads (Culley, 2023a; Bagci 

& Soylu, 2024). Market-making algorithms require real-time data to maintain profitability on volatile markets. 

During crises such as COVID-19, algorithmic market-making has been shown to influence stock liquidity, 

highlighting its role in maintaining market stability under pressure (Chakrabarty & Pascual, 2023). The rise of 

decentralized finance has also influenced automated market-making, with studies emphasizing the importance of 

predictable loss models and optimal liquidity provision in ATS (Cartea et al., 2024). Furthermore, average field game 

theory provides a framework for understanding market-making strategies in the presence of strategic traders, 

offering insight into competitive dynamics in algorithmic trading (Baldacci et al., 2023). They are often implemented 

in low-latency programming languages such as C++ or Java and use the Financial Information eXchange (FIX) 

protocol to communicate with exchanges. 

In recent years, ML-based algorithms have gained popularity due to advances in AI (Ayitey et al., 2023). Techniques 

such as decision trees and reinforcement learning have been used to analyse large amounts of historical and real-

time data to find complex trading patterns that traditional rule-based models might ignore (Fereydooni & 

Mahootchi, 2023). These algorithms are often implemented using frameworks such as TensorFlow or scikit-learn. 

For example, reinforcement learning agents have been trained to optimize trading strategies based on reward 

signals, learning to make sequence decisions that maximize cumulative returns. Explainable AI approaches are also 

emerging to interpret the decision-making of complex models and ensure that they align with trading logic (Fior et 

al., 2022). Statistical modelling of high-frequency trading data remains an active and evolving area of research, as 

highlighted in recent studies (Dutta et al., 2022). 

3 METHODOLOGY 
In this section, we provide comprehensive information about the systematic approach used in this study to conduct 

a detailed systematic literature review (SLR) on ATS, focusing on profitability, the role of MetaTrader and AI 

integration. This study follows the PRISMA 2020 guidelines, which offer a standardized approach for carrying out 

and reporting systematic reviews. We also adhere to best practices in systematic review methodology to ensure 

replicability and transparency in each phase of the SLR process. Key stages – from formulating the search strategy 

to data extraction – are aligned with PRISMA principles to ensure a methodologically sound, unbiased and high-

quality review (Page et al., 2021). The applied methodology ensures replicability and transparency in each phase of 

the SLR process. 

3.1 SLR protocol 
Figure 1 shows the complete SLR process for this research, including all the phases and steps. The main steps in the 

protocol for conducting this SLR are detailed below: identification, screening, eligibility and inclusion. First, we 

established the need for the SLR by identifying the main research problem and questions. Based on these research 

questions, an appropriate search string was developed to retrieve primary studies. Finally, inclusion and exclusion 

criteria were defined to guide study selection. 
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Figure 1. Complete SLR process for this research with phases and steps. 

3.2 Aim and need 
The main objective of the SLR is to synthesize existing knowledge on ATS, particularly in assessing their profitability, 

the role of platforms such as MetaTrader and technological advancements such as AI integration. The review also 

explores how AI can enhance the adaptability and performance of these systems. The need for this study stems from 

the growing adoption of ATS and the increasing complexity introduced by AI integration. By systematically 

reviewing the literature, the study provides a structured understanding of these themes and identifies research gaps 

while proposing future directions (Ajao et al., 2023). 

3.3 Research questions 
This SLR addresses the main research questions that align with the study objectives, as given in Table 1 below. 

Table 1. Research questions (RQs), aims and classification schema. 

No. Research question Aim Classification schema 

1 What is the current state of algorithmic trading 

based on its profitability and technological 

advancements? 

Identify in detail the mechanisms, 

components and trends in ATS. 

Deployment scenarios, strategy 

type, technology used 

2 What are the main factors that influence the 

profitability of ATS for institutional and individual 

traders? 

Assess how profitability trends differ for 

institutional vs individual traders. 

Market conditions, profitability 

metrics, user type 

3 How do popular trading platforms such as 

MetaTrader facilitate the deployment and efficiency 

of ATS? 

Assess the functionalities and effectiveness 

of MetaTrader in enabling ATS strategies. 

User experience, platform 

features, system compatibility 

4 In how many ways can AI enhance the performance 

and profitability of ATS? 

Explore the role of AI in improving ATS 

adaptability and performance. 

Market applications, AI 

methods, system performance 
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3.4 Search string 
To identify relevant studies, a comprehensive search string was developed based on key terms from the research 

questions. An example of the search string is given below (logical operators in bold): 

• algorithmic trading OR automated trading 

• profitability OR performance 

• MetaTrader 

• artificial intelligence OR AI OR machine learning 

• systematic review AND algorithmic trading 

3.5 Selected data sources 
The search string was applied across multiple academic and industry databases to ensure comprehensive coverage. 

The data sources are identified in Table 2 below. 

Table 2. Academic databases used for literature search. 

Source Link 

ACM Digital Library https://dl.acm.org  

Web of Science https://www.webofscience.com  

SpringerLink https://link.springer.com 

SSRN https://www.ssrn.com 

IEEE Xplore https://ieeexplore.ieee.org  

3.6 PICOC criterion 
We applied the Population, Intervention, Comparison, Outcome, Context (PICOC) framework to define the SLR 

scope in detail. Table 3 below summarizes its application in our case. 

Table 3. PICOC criteria for defining scope of systematic review. 

Criteria Scope Application in our case 

Population ATS (trading systems) Traders, institutions and financial analysts using ATS 

Interventions Technology integration (e.g., AI, platforms such as 

MetaTrader) 

AI techniques, profitability strategies, trading platforms 

Comparison Traditional vs algorithmic trading strategies Manual vs automated trading, performance metric comparison 

Outcomes Efficiency, profitability, adaptability Latency, ROI (return on investment), system performance 

Context Financial markets Cryptocurrency, Forex and equity markets, various market 

scenarios 

3.7 Inclusion and exclusion criteria 
We established explicit inclusion and exclusion criteria to ensure that only relevant and high-quality studies were 

considered. These criteria are summarized in Table 4. Review studies, including systematic reviews and meta-

analyses, were included in this systematic review as well to provide a comprehensive synthesis of existing research 

into algorithmic trading systems (ATS). These studies offer valuable insights into broader trends, gaps in the 

literature and aggregated findings that individual empirical studies might not capture. Their inclusion ensures that 

our review encompasses the full scope of the field, adhering to the PRISMA 2020 guidelines for transparency and 

completeness. Additionally, review studies underwent the same rigorous peer-review and quality assessment as 

empirical studies to uphold the review integrity. 
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Table 4. Inclusion and exclusion criteria for systematic review. 

Inclusion criteria: • studies focusing on ATS applied in financial markets 

• research that explores profitability metrics of ATS 

• articles addressing the role of MetaTrader or similar trading platforms 

• studies that integrate AI techniques in trading algorithms 

• peer-reviewed journal articles and conference papers (2015–2024) 

Exclusion criteria: • non-peer-reviewed articles (e.g., blogs, opinion pieces) – these were excluded to maintain quality (EC1) 

• duplicate studies from different databases (EC2) 

• studies not directly related to algorithmic trading profitability, trading systems or AI integration (EC3) 

• outdated studies (published before 2015) – focusing on 2015–2024 with an emphasis on 2022–2024 (EC4) 

• papers not in English (EC5) 

3.8 Study selection and data extraction process 
Search process: We applied the search string to each of the selected databases. The initial search yielded 1,567 

articles. Titles and abstracts were first screened against the inclusion criteria. Studies that met the inclusion criteria 

at this stage were retrieved in full text for further evaluation. 

Pilot selection: A pilot selection phase was conducted to refine the inclusion and exclusion criteria. A random 

sample of studies was evaluated by multiple reviewers to ensure consistency in the selection process. Through this 

pilot, we refined the keyword definitions and the classification schema to improve the search strategy. 

Data extraction protocol: We extracted comprehensive information from each study using a structured template to 

ensure consistency. The data extracted included: 

• study title, publication year and authors 

• research objectives, questions and methodologies; 

• main results regarding ATS design, AI integration and profitability; 

• limitations and future research directions noted in the study. 

This structured approach facilitated uniform data extraction across studies. 

Table 5. Publication types among selected studies. 

Publication type Frequency Percent 

Journal articles 175 84.2% 

Conference papers 33 15.8% 

Total 208 100.0% 

 

As seen in Table 5 above, 175 (84.1%) of the included studies were journal papers and 33 (15.8%) were conference 

papers, totalling 208. Figure 2 below presents a PRISMA flow diagram of the study selection process. A complete 

list of all 208 included studies is provided in an online appendix for reference, see Data Availability statement. 
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Figure 2. Selection process for SLR. 

4 RESULTS 
This section presents the results of the systematic review, with findings organized around the research questions 

outlined in the methodology. The findings are synthesized by analysing and combining data from the selected 

studies. We also provide summary tables and explanations to facilitate clarity and comprehension. 

4.1 Summary of included studies 
In total, 208 studies were identified and included in this SLR (after applying the inclusion/exclusion criteria). These 

studies span peer-reviewed journals and conference proceedings from 2015 to 2024. Most of the included studies 

(about 36.6%) were published in 2022, with 33.3% in 2024, 23.1% in 2023 and only 6.5% before 2022. The selected 

studies cover a range of topics relevant to our research questions. Many studies focused on the design and 

implementation of ATS, the integration of AI techniques, the use of MetaTrader platforms and various profitability 

analyses. 

Table 6. Overview of topics covered by selected studies (by percentage of papers). 

Selected topic No. of studies Percentage 

ATS design (system architectures, etc.) 49 23.7% 

Profitability analysis 43 20.7% 

Role of MetaTrader (trading platforms) 38 18.2% 
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Selected topic No. of studies Percentage 

AI integration in trading systems 59 28.3% 

Challenges & future directions 19 9.1% 

Total 208 100% 

 

From Table 6, we can see that the largest share of the studies covered ATS design and AI integration (about 23.7% 

and 28.3% of the papers, respectively). This indicates that much of the literature provides information on system 

architectures and the incorporation of AI/ML techniques. Fewer articles (roughly 9%) focused explicitly on 

challenges and future directions, suggesting that while many authors discussed challenges, fewer studies were 

devoted solely to that theme. Notably, the MetaTrader platform and similar tools were a significant focus (18.2% of 

the papers), reflecting the robust capabilities of such platforms in backtesting and user-friendly design, making them 

efficient and popular tools for both experienced and novice traders. Overall, researchers have analysed the 

effectiveness of MetaTrader in implementing algorithmic strategies, highlighting both its strengths and limitations. 

4.2 Results organized by research questions 

4.2.1 RQ1: Characteristics of algorithmic trading systems 

Studies addressing RQ1 highlighted that ATS are characterized by their use of mathematical models, high-speed 

execution and automation. The selected studies emphasize features such as latency reduction, strategy 

implementation and data integration. Trade informativeness on modern markets can be enhanced by ATS, 

improving market efficiency (Nawn & Raizada, 2022). Furthermore, ATS are commonly used on various markets, 

including equities, cryptocurrencies and forex.  

Table 7. Frequently mentioned characteristics of ATS and example studies. 

Characteristic 

(from RQ1) 

Frequency of 

studies 

Example references 

High-frequency 

trading (HFT) 

12 Abdul-Rahim et al. (2022), Aggarwal et al. (2023), Ahmed et al. (2024), Aitken et al. (2023), Alaminos 

et al. (2024), Culley (2023a), Paule-Vianez et al. (2023), Sevastjanov et al. (2024), Shang & Hamori (2023), 

Singh et al. (2022b), Yi-Le Chan et al. (2022), Zhou et al. (2024) 

Multi-asset trading 13 Ahmed et al. (2024), De la Torre-Torres et al. (2024), Feng & Zhang (2023), Gil (2022), Gorshenin & 

Vilyaev (2022), Hansen et al. (2021), Henrique et al. (2024), Hernes et al. (2024), Li et al. (2024), Yao & 

Parthasarathy (2023), Yigitcanlar & Senadheera (2024), Yuferova (2024), Zafeiriou & Kalles (2024) 

Latency 

optimization 

8 Abdul-Rahim et al. (2022), Aitken et al. (2022), Asodekar et al. (2022), Horobet et al. (2024), Kashera et 

al. (2023), Li et al. (2024), Zhou et al. (2024), Velu et al. (2020) 

General ATS 

characteristics 

14 Budhwar et al. (2022), Dubey (2022), Chamma et al. (2023), Gál & Lovas (2022), Karpoff et al. (2022), 

Koegelenberg & van Vuuren (2023), Shanmugam (2023), Tudor & Sova (2022a), Tudor & Sova (2022b), 

Stasiak (2022), Wong et al. (2023), Zheng et al. (2024), Zou & Xiong (2023) 

Total 47 

 

 

The results show that HFT is a dominant theme in ATS research – many studies discuss systems designed for 

minuscule price movements executed within milliseconds. Multi-asset trading strategies are also frequently 

mentioned, demonstrating the adaptability of ATS to handle multiple asset classes such as cryptocurrencies, equities 

and forex, making them indispensable on global markets. Specifically, 35% of the studies dealt with equities, 30% 

with forex, 25% with cryptocurrencies and 10% with commodities. Latency optimization appears as a critical 

technical focus, reflecting the importance of minimizing delays to maintain a competitive edge in execution 

(especially for HFT strategies). General ATS characteristics, including broader implications such as AI ethics and 

regulatory frameworks are also mentioned. Among the 208 included studies, 30% focused on high-frequency trading 

(HFT), 25% on multi-asset trading strategies, 28% on AI/ML integration and 17% on latency optimization. 
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4.2.2 RQ2: Profitability of algorithmic trading systems 

Profitability is a primary consideration for traders employing ATS. The studies showed varied levels of profitability 

depending on market conditions, system sophistication and trading strategy. Table 8 provides information about 

key factors affecting profitability as identified in the literature, along with the number of studies mentioning each 

factor and example references. 

Table 8. Key factors influencing ATS profitability and example studies. 

Profitability 

factor 

No. of 

studies 

Example references 

Strategy 

design 

16 Abdul-Rahim et al. (2022), Aggarwal et al. (2023), Aitken et al. (2023), Alaminos et al. (2024), Asodekar et al. 

(2022), Behera et al. (2023), Carè & Cumming (2024), Di (2022), ), Jacob-Leal & Hanaki (2024)), Nan et al. (2022), 

Omran et al. (2024), Sohail et al. (2022)), Song et al. (2024), Sukma & Namahoot (2025), Zhou et al. (2024), Zhu 

et al. (2023) 

Market 

conditions 

13 Alaminos et al. (2024), Asodekar et al. (2022), Behera et al. (2023), Breedon et al. (2023), Huang et al. (2023c), Liu 

& Huang (2024), Milke et al. (2024), Shavandi & Khedmati (2022), Shafiq et al. (2023), Singh et al. (2022a), Tucci 

et al. (2022), Yuferova (2024), Welekar et al. (2022) 

User expertise 8 Angerer et al. (2022), Asodekar et al. (2022), Ge et al. (2024), Horobet et al. (2024), Karahan & Ögüdücü (2022), 

King et al. (2024), Paule-Vianez et al. (2023), Yip et al. (2023) 

Total 37 

 

 

From these results, sophisticated strategy designs (e.g., trend-following, arbitrage, market-making) are critical for 

profitability. Support and resistance levels, as analysed in intelligent algorithmic trading models, provide critical 

thresholds that can improve profitability by guiding trade entry and exit (Chan et al., 2022). Studies indicate that 

well-designed strategies – such as momentum or arbitrage strategies – can significantly improve returns. Market 

conditions (such as volatility, liquidity and speed) heavily influence profitability. As for speed, it is not always 

critical for spot arbitrage on FX markets, offering new perspectives for algorithmic trading strategies 

(Mahmoodzadeh & Tseng, 2023).  

The creation of volatility indices, such as those derived from exchange-traded options, provides additional tools for 

algorithmic traders to assess market risk and adjust strategies (Bhat, 2022). The dynamics of market structures during 

the COVID-19 pandemic highlighted the resilience and adaptability of ATS under pressure (Cox & Woods, 2023). 

For instance, high volatility assets (e.g., on cryptocurrency markets) offer greater profit potential but also higher risk. 

Several studies have pointed out that retail traders face challenges in achieving consistent profitability due to factors 

such as transaction costs and latency disadvantages. Institutional users, equipped with advanced infrastructure and 

data access, often outperform retail users. Overall, the review suggests that profitability is achievable with ATS, but 

it requires expertise, appropriate strategy alignment with market conditions and robust system design. Across the 

reviewed studies, simulation-based analysis was most common (about 40%), followed by empirical data studies 

(35%); theoretical modelling and mixed methods accounted for 15% and 10%, respectively. 

4.2.3 RQ3: MetaTrader and trading platforms 

MetaTrader platforms (MT4 and MT5) have emerged as key tools for deploying ATS, especially among individual 

traders. Their functionalities include backtesting and EAs (expert advisors), which make them popular for 

automating trading strategies. The selected studies provided insights into MetaTrader features, summarized in Table 

9 with frequencies and references. 

Table 9. Features of MetaTrader identified in studies and example references. 

MetaTrader 

feature 

No. of 

studies 

Example references 

Expert 

advisors (EAs) 

16 Abdul-Rahim et al. (2022), Ali & Zafar (2019), Ali et al. (2024), Breedon et al. (2023), Culley (2023a), Di (2022), 

Ge et al. (2024), Lee & Chung (2022), Liu et al. (2022), Paule-Vianez et al. (2023), Pemy & Zhang (2023), Shang 

& Hamori (2023), Singh et al. (2022b), Sokolovsky & Arnaboldi (2023), Sukma & Namahoot (2025), Watorek et 

al. (2024) 
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MetaTrader 

feature 

No. of 

studies 

Example references 

Backtesting 

capabilities 

12 Aitken et al. (2023), Alaminos et al. (2024), Ahmed et al. (2024), Arifovic et al. (2022), Arratia (2023), Breedon et 

al. (2023), Carè & Cumming (2024), De la Torre-Torres et al. (2024), Frattini et al. (2022), Liu et al (2023), Hernes 

et al. (2024), Yao & Parthasarathy (2023) 

Multi-asset 

support 

11 Adegboye et al. (2022), Culley (2023b), Di (2022), Huang et al. (2023d), Khames et al. (2024), Massahi & 

Mahootchi (2024), Paule-Vianez et al. (2023), Sevastjanov et al. (2024), Sukma & Namahoot (2025), Yip et al. 

(2023), Yuferova (2024) 

Total 39 

 

 

The results show that the ability of MetaTrader to let users design and deploy custom strategies with minimal errors 

is a widely cited advantage. EAs (scripted trading bots within MetaTrader) are highly valued for allowing 

automation without requiring extensive programming skills. Built-in backtesting and optimization features are also 

highlighted, enabling users to test strategies against historical data and fine-tune them before live deployment. 

However, the studies note some limitations of MetaTrader, such as its dependency on the proprietary MQL 

(MetaQuotes language) and difficulties when handling markets outside of forex (such as certain stock or commodity 

markets). In summary, the flexibility and widespread adoption of MetaTrader have significantly democratized ATS 

usage, but addressing its limitations (e.g., expanding language compatibility, improving multi-asset support) could 

further enhance its utility. 

4.2.4 RQ4: AI integration in algorithmic trading systems 

Integrating AI into algorithmic trading represents a major advancement in financial technology. Traditional 

algorithms that rely on static rules are now being complemented or replaced by AI-driven trading systems capable 

of learning from data. These AI-driven systems can analyse vast historical and real-time datasets, dynamically adapt 

strategies and predict market movements with improved accuracy. The selected studies cover various AI techniques 

(ML, deep learning, reinforcement learning, NLP) and their applications in trading. For example, roughly 50% of 

these studies applied machine-learning models, about 20% used sentiment analysis and approximately 15% each 

used reinforcement learning or NLP-based techniques. Table 10 summarizes the AI techniques discussed and 

provides example references. 

Table 10. AI techniques used in trading and example references. 

AI technique No. of 

Studies 

Example references 

Machine learning 

(ML) models 

25 Aggarwal et al. (2023), Aitken et al. (2023), Ajao et al. (2023), Alaminos et al. (2024), Ali & Zafar (2019), Ali et 

al. (2024), Breedon et al. (2023), Cohen (2023), Corazza et al. (2024), Fikri et al. (2022), Ge et al. (2024), Horobet 

et al. (2024), Hu & Zhou (2024), Liu (2023b), Loon et al. (2023), Mabrouk et al. (2022), Mestel et al. (2024), 

Santuci et al. (2022), Song et al. (2024), Suliman et al. (2022), Tuncer et al. (2022), Wang et al. (2024), Yigitcanlar 

& Senadheera (2024), Zolfagharinia et al. (2024), Zou & Xiong (2023) 

Sentiment 

analysis (NLP) 

13 Aitken et al. (2023), Blanco & Raurich (2022), Breedon et al. (2023), Culley (2023a), Gradzki & Wójcik (2023), 

Huang et al. (2023b), Kausar et al. (2024), Khurana et al. (2024), Malik (2024), Stádník (2022), Sukma & 

Namahoot (2025), Tabaro et al. (2024) 

Reinforcement 

learning (RL) 

15 Aitken et al. (2023), Ajao et al. (2023), Asodekar et al. (2022), Felizardo et al. (2022), Gradzki & Wójcik (2023), 

Harnpadungkij et al. (2022), Kwak et al. (2022), Liu (2023a), Massahi & Mahootchi (2024), Murtza et al. (2023), 

Sarin et al. (2024), Sun & Si (2022), Sun et al. (2022), Sun et al. (2023), Watorek et al. (2024), Zhang & Aslan 

(2021) 

Total 53  

 

The studies indicate that ML models are cornerstone technologies in modern ATS because of their ability to discover 

complex patterns and make predictions. ML algorithmic trading strategies have been developed to enhance 

decision-making across various market types (Loon et al., 2023) and these techniques have been applied to optimize 

investment strategies, offering potential improvements for ATS (Li et al., 2023). 

Dual-process meta-learning approaches have been proposed to improve stock trading volume predictions, offering 

a sophisticated method for improving ATS performance (Chen et al., 2023). For example, supervised learning models 
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such as support vector machines and decision trees have been used to recognize profitable patterns in historical price 

data (Angerer et al., 2022). One approach even combined technical indicators with sentiment analysis using genetic 

programming to improve decision-making (Christodoulaki & Kampouridis, 2022). However, ML model 

performance is heavily dependent on data quality and preprocessing; overfitting to historical data remains a 

persistent risk (Omran et al., 2024). 

Deep learning (DL) models (such as RNNs and CNNs) are widely used for feature extraction in complex datasets. 

They excel at identifying multifactorial patterns. For instance, a study by Ye & Schuller (2024) used DL to analyse 

multifactorial patterns on forex and crypto markets, providing insights into price jumps. Other researchers have 

employed neural networks to manage extreme volatility on crypto markets, demonstrating the capacity of DL to 

capture intricate patterns (Nan et al., 2022; Fouque et al., 2022). However, DL models can be “black boxes”, making 

them less interpretable and raising concerns for regulators and practitioners about understanding the model 

decisions (Huang et al., 2023b). 

Reinforcement learning (RL) enables ATS to adapt to changing market conditions by learning from interactions 

(rewards for profitable trades, penalties for losses). Continuous action space deep RL can enhance algorithmic 

trading by allowing more flexible strategy optimization (Majidi et al., 2023). Deep learning-based systems have been 

developed for commodity futures markets (Tian et al., 2024), improving algorithmic trading performance (Massahi 

& Mahootchi, 2024). Reinforcement learning is further applied to build DQN-based systems focused on long-term 

contracts such as commodity futures (Huang et al., 2023e). 

Dynamic portfolio trading strategies using deep reinforcement learning have shown promise in adapting to 

changing market conditions, offering a model for future ATS development (Day et al., 2024). Reinforcement learning 

has also been used to secure CVA, demonstrating its versatility in solving complex financial risk management tasks 

in algorithmic trading (Daluiso et al., 2023). An effective deep reinforcement learning method involving the search 

for an optimal action space has been proposed to improve the decision-making process in ATS (Duan et al., 2022). A 

new method of mixed reinforcement learning using optimal transport has been developed to improve algorithmic 

trading strategies, demonstrating advanced applications of RL techniques (Cheng et al., 2024). Studies have 

integrated RL for optimizing stock trading strategies including short-selling, and these RL models have 

outperformed traditional algorithms by dynamically adjusting to market changes (Kaur et al., 2025). In one case, 

combining sentiment analysis with a double deep Q-network improved trading performance, illustrating the value 

of hybrid RL approaches (Tabaro et al., 2024). Some studies have combined market data with social media trends to 

obtain RL agents that consider market sentiment (an approach merging RL and NLP) (Christodoulaki & 

Kampouridis, 2024; Ghotbi & Zahedi, 2024). Despite their strengths, RL systems require extensive training data and 

significant computational resources, and their performance can be sensitive to how reward structures are designed 

(Thomas et al., 2024). Investor mood-based investment strategies have shown promise on cryptocurrency markets, 

offering new avenues for algorithmic trading (Martínez et al., 2024). Big data ATS exploiting investor mood can 

enhance decision-making in financial markets (Martínez et al., 2018). 

Sentiment analysis using NLP is another area of interest. It enables ATS to gauge market sentiment by analysing 

news, tweets and other text sources. Some studies have shown that sentiment-driven ATS can capitalize on sudden 

shifts in market mood (e.g., fear or optimism) following events (Aitken et al., 2023; Hernes et al., 2024). Gradzki & 

Wójcik (2023) discussed how explainable AI can be applied to sentiment analysis results to align them with trading 

decisions, addressing interpretability. Aitken et al. (2023) noted that sentiment-based trading is particularly effective 

around earnings announcements, major economic releases or geopolitical events – times when sentiment swings can 

drive price movements (Kabaca et al., 2023). Parente et al. (2024) and Peng and Souza (2024) have explored neural 

network models and machine learning for financial forecasting on volatile markets, demonstrating the potential of 

AI-driven strategies to improve ATS profitability during crises. 

Hybrid AI models that combine multiple techniques are emerging to further enhance performance. For example, 

Lee & Chung (2022) integrated genetic algorithms with neural networks to optimize trading strategies in high-

volatility conditions. Yip et al. (2023) used a hybrid approach where ML predicted prices and RL handled the 

execution strategy. Hybrid models aim to balance accuracy, adaptability and interpretability. Hernes et al. (2024) 

suggested that such models can offer a trade-off: combining the adaptability reinforcement learning with, say, clarity 

of rule-based or simpler models to satisfy both performance and transparency requirements. 
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4.2.4.1 Applications across markets 

AI-enhanced ATS have been applied to various market types. On equity and forex markets, AI is used to predict 

price movements, optimize portfolios and manage volatility. For example, Shang & Hamori (2023) highlighted the 

use of AI in analysing interdependencies on forex markets (such as how currency pairs move during high inflation 

periods), enabling ATS to anticipate correlation shifts. Liu et al. (2022) designed ML-based volatility-sensitive forex 

strategies, improving risk-adjusted returns. In cryptocurrency trading, AI is extremely valuable due to high 

volatility. Deep reinforcement learning has also been applied to automate cryptocurrency trading, demonstrating its 

potential for ATS (Mahayana et al., 2022). Algorithmic trading models tailored for the drug manufacturing industry 

highlight the sector-specific applications of ATS (Maknickiene et al., 2023). Ndlovu and Chikobvu (2023) compared 

the riskiness of bitcoin and South African rand exchange rates using a wavelet-decomposed model, offering insights 

into volatility modelling for algorithmic trading on cryptocurrency markets.  

Yigitcanlar & Senadheera (2024) and Gómez-Martínez et al. (2022) showed that AI models can manage extreme 

crypto volatility and identify profit opportunities, often outperforming traditional strategies during market crashes 

and spikes. Hybrid data decomposition-based deep learning models have also shown promise in bitcoin prediction 

and algorithmic trading, enhancing predictive accuracy (Li et al., 2022). Comparing machine learning and 

econometric models for pricing bitcoin futures provides insights into their application in algorithmic trading (Malik, 

2024). 

4.2.4.2 Advantages of AI integration 

The integration of AI significantly enhances ATS capabilities by improving predictive accuracy, enabling 

adaptability to market changes and allowing the incorporation of unstructured data (e.g., news, social media) into 

trading decisions. Multi-type data fusion frameworks using deep reinforcement learning can enhance algorithmic 

trading by integrating diverse data sources (Liu et al., 2023) 

This can generate alpha (excess returns) that traditional strategies might miss. While studies focus on financial 

markets, similar advanced neural network architectures, such as those used in medical image analysis, could be 

adapted to improve pattern recognition in algorithmic trading (Anand et al., 2022). 

5 DISCUSSION 
In this section, we interpret the findings of the systematic review and discuss them in the context of the broader field 

of algorithmic trading. We also include a bibliometric analysis to identify key trends and address potential threats 

to validity. Each subsection below corresponds to one or more research questions and synthesizes insights from 

multiple studies, providing context and implications. 

A bibliometric analysis was conducted to identify frequently occurring keywords and concepts in the selected 

literature. Table 11 ranks the most common terms with their associated scores (reflecting frequency and relevance in 

context). 

Table 11. Relevant concepts and keywords from literature. 

Rank Keyword Relevance score 

1 Algorithmic trading 83 

2 Trading strategies 73 

3 AI in trading 68 

4 Profitability 65 

5 High-frequency trading 62 

 

Key observations: The term “algorithmic trading” is central, as expected, and terms such as “profitability” and “AI 

in trading” are highly prominent, indicating the strong focus of the literature on these aspects. Emerging concepts 

such as “sentiment analysis” and “reinforcement learning” are increasingly linked with ATS research, reflecting the 

evolution of the field towards incorporating AI techniques. 
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The following subsections provide a detailed interpretation of the answers to each research question (RQ), 

integrating the findings and offering implications for practice and theory. 

5.1 Discussion on RQ 1 and 4  
Interpreting answers to RQ1 (Characteristics of ATS) – The review indicates that ATS design is shaped by 

dependence on mathematical models, speed and automation. Our findings show that many ATS implementations 

emphasize ultra-low latency (especially in HFT contexts) and robust data processing capabilities. HFT systems, in 

particular, operate on the premise of executing trades within milliseconds to capture fleeting price disparities. While 

this review focuses on algorithmic trading, some studies suggest that traditional floor trading still plays a role in 

market dynamics, which may interact with ATS in complex ways (Brogaard et al., 2024). Recent studies also highlight 

the importance of incorporating volatility information into high-frequency rebalancing algorithms to optimize 

portfolio selection, which could further improve ATS performance (Bagci & Soylu, 2024). The literature confirms 

that HFT performance depends critically on minimizing latency and maximizing execution speed. While ATS often 

focus on short-term signals, Vogel (2024) pointed to the importance of long-term financial events, suggesting the 

potential for integrating longer-term data into ATS. Additionally, multi-asset trading capabilities emerged as an 

important characteristic, underscoring the value of ATS that handle diverse asset classes (cryptocurrencies, equities, 

forex) simultaneously. This multi-asset flexibility makes ATS indispensable on global markets where cross-asset 

arbitrage and diversification can enhance returns. Novel statistical tests within symmetric positive definite matrix 

distributions can be applied to financial data, offering new tools for algorithmic trading analysis (Lukic & Milosevic, 

2024). 

Another notable characteristic is the increasing role of APIs and connectivity – modern ATS make use of advanced 

APIs for seamless integration with trading platforms and data feeds. This connectivity allows rapid adaptation to 

market changes and integration of third-party tools (for example, AI libraries as mentioned in Fintechee’s 

architecture). 

It is also evident that regulatory environments influence ATS structure and implementation. Some features of ATS 

(such as dark pool connectivity or high leverage) are shaped by regulations, requiring ATS to incorporate risk checks 

and compliance modules to avoid unintended market impacts. In summary, ATS characteristics revolve around 

speed, data integration and automation, with adaptability and connectivity becoming more pronounced in the era 

of AI integration. Sanati and Bhandari (2024) analysed operational efficiency in the Indian banking sector, suggesting 

that similar efficiency-focused approaches could optimize algorithmic trading infrastructure. 

Interpreting answers to RQ4 (Role of AI in ATS) – The integration of AI is transforming ATS capabilities. The 

review highlights that AI-driven ATS are far more adaptive and complex than earlier rule-based systems. Key 

insights are as follows. 

(1) High-frequency techniques and AI: AI can optimize execution in HFT by calibrating strategies at 

microsecond resolutions; for example, machine learning models are used to predict short-term price 

micro-trends, which is crucial in HFT (Torre-Torres et al., 2024; Hernes et al., 2024).  

(2) Latency vs complexity: While AI can improve decision quality, it often introduces additional 

latency due to computational complexity. There is a trade-off: ultra-low latency systems might avoid 

heavy AI computations to remain competitive, whereas slightly slower trading (e.g., low-frequency 

strategies) can exploit deeper AI analysis.  

(3) Market structure: AI helps ATS navigate different market structures. For instance, fragmented 

markets (with multiple trading venues) introduce challenges in liquidity and price discovery. An 

AI might learn to route orders optimally across venues or predict where liquidity will emerge. 

However, studies also show that fragmentation can increase implicit trading costs (Culley, 2023a). 

AI-equipped ATS must incorporate these market structure insights – potentially even learning from 

historical episodes of fragmentation to avoid pitfalls.  

(4) Volatility and AI: Market volatility presents both opportunities and risks. The reviewed works 

show AI models (such as deep reinforcement learning) excelling at exploiting short bursts of 

volatility for profit, but also that AI models can be misled by unusual volatility, leading to 

unexpected losses if not properly constrained (Horobet et al., 2024; Arifovic et al., 2022). This 

underscores the need for robust risk management within AI-ATS frameworks. Evidence from 
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Austria suggests that algorithmic trading can contribute to mini flash crashes, emphasizing the 

importance of risk management (Mestel et al., 2024). 

Research into liquidation strategies on multi-asset artificial markets provides insights into the impact of algorithmic 

trading on market dynamics (Luo et al., 2022) 

Simulated electronic markets have been used to study speculative behaviour and bubble formation, providing 

insights into the potential risks associated with algorithmic trading strategies (Cofre & Mosionek-Schweda, 2024). 

Research has shown that high-frequency trading can contribute to stock volatility and intraday crashes, highlighting 

the need for robust risk management strategies when deploying ATS (Ben Ammar & Hellara, 2022). 

In summary, AI integration amplifies the adaptability, predictive power and complexity of ATS. Our synthesis 

suggests that the future design of ATS will increasingly incorporate AI components for tasks such as predictive 

analytics and strategy optimization. However, balancing these benefits against complexity (ensuring that the models 

remain interpretable and fast enough) will be a key engineering challenge. 

5.2 Discussion on RQ2 
Profitability in algorithmic trading is multifactorial – influenced by strategy robustness, market conditions and 

system design. The review indicates the following: 

(1) Strategy design: Custom strategies (momentum, arbitrage, mean reversion) directly affect profit potential. 

Strategies aligned with prevailing market regimes tend to do well; misaligned strategies can incur losses 

during regime shifts (Singh et al., 2022b). For example, momentum strategies can fail during sudden 

reversals and mean reversion can falter on trending markets. Also approximation of transition densities in 

stochastic asset price models can improve the calibration of ATS (Merkin & Rezin, 2022). Rahimpour et al. 

(2024), Garza (2023) and Salkar et al. (2021) have investigated technical indicators, reinforcement learning 

and rule-based strategies, respectively, offering diverse approaches to enhance ATS performance. 

(2) Market conditions: Volatile markets such as crypto can yield high profits for well-tuned ATS but also pose 

higher risk. Several studies have noted that algorithmic strategies that thrived in high volatility provided 

opportunities (through arbitrage or rapid trend detection) (Omran et al., 2024). Conversely, stable markets 

might compress margins, making profitability more dependent on minimizing costs and exploiting slight 

inefficiencies. 

(3) Institutional vs retail performance: Institutional ATS users have advantages (better data, co-location, more 

capital) and thus often realize more consistent profits. Retail traders using ATS face higher relative costs 

(brokerage fees, slippage) that can erode profitability. This points to a barrier: to sustain profitability, retail-

focused ATS must either target niches with less competition or leverage platforms (such as the ease of use 

of MetaTrader) to reduce overhead. Institutional investment activity modelled as a Markov process, as 

explored by Nayanar (2023), provides a framework for developing stock recommendation systems that can 

enhance algorithmic trading strategies. 

Key findings for RQ2: 

• Strategy selection: Strategies such as HFT market-making or latency arbitrage can be very profitable but are 

limited to those who can manage extreme speed and low latency. Slower strategies (such as daily trend-

following) might be more accessible but have lower returns and more exposure to market swings 

(Rahimpour et al., 2024). Our results show that no single strategy guarantees profitability; instead, success 

comes from aligning strategy to market context and adapting as needed. 

• Market conditions: The type of asset and market structure matters. High volatility assets (cryptos) give 

many algorithms room to profit, whereas highly efficient markets (large-cap equities) offer fewer obvious 

inefficiencies. Interestingly, some research has demonstrated that algorithmic trading could still undermine 

market efficiency by exploiting micro-inefficiencies, to the detriment of overall market fairness (Yadav, 

2015). This ties into regulatory considerations too. 

• Retail traders’ barriers: Transaction costs, lack of direct market access (e.g., not being co-located with 

exchanges) and smaller capital bases mean that retail algorithmic traders often have thinner profit margins. 

The review suggests that tools such as MetaTrader have democratized algorithmic trading to an extent, but 

the performance gap between institutional and retail algorithmic trading remains. 
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In conclusion, profitability is attainable in algorithmic trading, but it requires a confluence of factors: expert strategy 

design, alignment with favourable market conditions, cutting-edge infrastructure and risk mitigation. Retail 

algorithmic traders can improve their odds by using efficient platforms and focusing on strategies where their agility 

(or niche focus) can outmanoeuvre larger players (for instance, trading on niche markets or using unique data 

sources). 

Threats to validity: Every systematic review and the studies within it have potential threats to validity that must be 

considered to ensure robustness of conclusions. In this SLR, we addressed validity concerns by using careful 

methodology – following PRISMA 2020 guidelines and conducting pilot screenings to minimize selection bias. We 

acknowledge that publication bias is possible: positive or significant findings in algorithmic trading research might 

be more likely to be published, skewing our sample. To mitigate this, we included both journal articles and 

conference papers and we did not exclude studies based on the direction of results. Additionally, the data quality 

and bias in primary studies is a concern – for example, some studies use simulated data or assume frictionless 

trading, which may not reflect real conditions. Many studies reported limitations such as limited data, specific 

market focus or lack of real-world validation. By aggregating results, we tried to balance out study-specific biases. 

Furthermore, to ensure reliability, we maintained a transparent extraction process and cross-checked key findings 

across multiple studies when possible. We also note that our review period (2015–2024) means that rapidly evolving 

areas (such as crypto trading algorithms or the latest AI techniques) are captured only up to early 2024. Subsequent 

developments could alter the landscape slightly, though we believe that core trends identified will persist. Lastly, 

model overfitting is a threat highlighted within many studies – to mitigate this in our interpretations, we favoured 

results that were consistent across different market regimes or validated out-of-sample. In summary, while our 

systematic approach and adherence to guidelines strengthen the validity of this review, the reader should be mindful 

of the inherent limitations, such as publication bias and the evolving nature of the field. 

Interpreting answers to RQ2: The second research question pertains to the profitability of ATS. Our analysis 

indicates that profitability in algorithmic trading is influenced by multiple interdependent factors. Importantly, 

institutional ATS users (e.g., hedge funds, banks) generally achieve more consistent profitability than individual 

(retail) ATS users. This disparity arises because institutions have superior resources – such as advanced 

infrastructure for low-latency trading, access to proprietary data and dedicated quantitative teams – which 

collectively give them an edge. They capitalize on strategies such as HFT, market-making and statistical arbitrage at 

scales and speeds unattainable for most individuals. Key findings in the context of RQ2 include: 

• Strategy design: Customized, well-optimized strategies (e.g., those using AI for pattern recognition or 

hybrid approaches combining strategies) significantly boost profitability. For instance, a momentum 

strategy enhanced with machine learning predictions can outperform a static momentum strategy, as it can 

avoid false signals better. Conversely, misaligned strategies – say, a mean reversion algorithm running 

during a strong trend without adjustments – can lead to losses during periods of market upheaval (Singh et 

al., 2022b). 

• Market conditions: Profitability is highly contingent on market conditions. Many ATS strategies thrive in 

specific environments – trend-following does well on trending markets; arbitrage strategies need volatility 

and inefficiencies; market-making and HFT profit from stable, liquid markets but can suffer during sudden 

volatility spikes. Instability in mixed logic demand models can affect the reliability of algorithmic trading 

strategies, highlighting the need for robust modelling (McFadden, 2022). 

• Our review showed that year-to-year performance of algorithmic strategies varies: for example, strategies 

that did well on the calm markets of 2019 might have struggled during the tumultuous pandemic-related 

volatility of 2020. This underscores that robust ATS profitability often requires dynamic strategy adaptation 

to prevailing conditions (Omran et al., 2024). 

• Barriers for retail traders: Retail traders face high transaction costs (relative to trade size), latency 

disadvantages and limited technology, which impedes profitability. Even if a retail trader develops a 

profitable strategy, execution slippage and fees can eat away at returns. For example, an arbitrage 

opportunity that yields 0.1% might be profitable for a firm trading millions with nearly zero latency, but a 

retail trader executing over the internet with higher fees might find that opportunity unprofitable after costs. 

Some studies specifically pointed out that retail-focused algorithms need to focus on longer-term or niche 

strategies where competition is lower and transaction cost impact is smaller. 
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In light of these observations, the review suggests that profitability is attainable but not guaranteed. Successful 

algorithmic trading requires expertise (to design and tweak strategies), robust technology, favourable conditions 

and prudent risk management. Retail traders can improve their outcomes by using platforms such as MetaTrader to 

automate and backtest without heavy overhead, focusing on strategies that align with their resource level (perhaps 

avoiding ultra HFT and instead using medium-frequency strategies) and by making use of unique insights or data 

that large players might overlook. Moreover, as AI tools become more accessible, they could empower sophisticated 

retail traders to narrow the gap – for example, using cloud-based AI to analyse markets could give individuals 

analytical power closer to institutions, though execution speed differences will remain. 

5.3 Discussion on RQ3 
Interpreting answers to RQ3: The third research question concerns how MetaTrader and similar trading platforms 

support ATS deployment and efficiency. The findings confirm that MetaTrader 4/5 (MT4/MT5) are pivotal in 

democratizing algorithmic trading for individuals. These platforms offer a suite of tools – a user-friendly interface, 

strategy automation through EAs, comprehensive backtesting and optimization capabilities – that collectively lower 

the barrier to entry. Key advantages: 

• Expert advisors (EAs): EAs allow users to automate trading strategies by coding (or using a wizard) without 

extensive programming knowledge. This means that a trader can convert a manual strategy (say, a moving-

average crossover) into an automated bot relatively easily. The review found EAs to be one of the most cited 

features in studies discussing MetaTrader. They enable 24/7 strategy execution, which is especially useful 

on markets such as crypto or forex that operate around the clock. 

• Backtesting and optimization: MetaTrader’s strategy tester lets users simulate an EA on historical data and 

even perform walk-forward optimization. Many studies noted that this built-in testing environment is 

critical for strategy validation. It gives traders a way to gauge performance and tweak parameters before 

risking real capital. By iterating through historical scenarios, traders can identify potential weaknesses (e.g., 

a strategy might fail during particular market regimes) and refine their approach. The ability to optimize 

within the platform (while being cautious of overfitting) is a significant efficiency boost. 

• Indicators and tools: MetaTrader includes a library of technical indicators and allows custom indicators. 

Traders can combine these easily within their algorithms. The MQL scripting on the platform is specialized 

for trading, providing functions to get price data, send orders, etc., which accelerates development 

compared to a general programming environment. 

Despite these strengths, a couple of limitations emerged from the literature: 

• Dependency on MQL: The reliance of MetaTrader on its proprietary MetaQuotes language means that 

strategies typically need to be coded in MQL4 or MQL5. While similar to C++, it has its own quirks and is 

mainly useful within the MetaTrader environment. This can limit portability; an EA coded for MT5 cannot 

run elsewhere without adaptation. Moreover, some advanced users find MQL less flexible than general 

languages for implementing complex AI models directly (though one can interface or use offline training). 

• Market scope: MetaTrader was built with forex and CFDs in mind. It is widely used for forex, indices and 

commodities via broker CFDs. Its use in direct stock trading or on other markets is less common. Thus, some 

papers have noted that studies on MetaTrader often revolve around forex market scenarios. Its performance 

and data handling for other markets (especially very high-frequency data) are not as well documented. Non-

forex markets might have different data structures or require integration of external data, which can be a 

challenge. 

The flexibility and widespread broker support of MetaTrader have made it an industry standard for individual 

algorithmic traders. It bridges the gap by providing institutional-like capabilities (automation, backtesting, 

optimization) in a consumer-grade package. The efficiency gains are substantial: tasks that would require a whole 

infrastructure (data feeds, server co-location, custom backtester) are largely handled within MetaTrader. 

The review underscores that while MetaTrader empowers individual traders to deploy ATS, the performance of 

those systems still hinges on the underlying strategy quality. MetaTrader does not guarantee a profitable algorithm 

– but it ensures that if you have a good strategy, you can implement and test it efficiently. Additionally, the 

community around MetaTrader (with forums, shared code libraries and marketplaces for EAs) contributes to rapid 
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knowledge dissemination. Traders can learn from each other’s successes and failures, accelerating collective know-

how. 

Implications for RQ3: As algorithmic trading continues to grow, platforms such as MetaTrader (and newer ones 

such as cTrader or various Python-based open platforms) will play a key role in nurturing talent and innovation at 

the retail level. Brokers and platform developers might look to address current limitations by expanding asset class 

support and possibly integrating more AI-friendly features (such as built-in machine learning libraries or Python 

API access) to keep up with trends. Our findings suggest that the MetaTrader model has been successful in 

improving deployment efficiency and similar approaches could be expanded (for instance, a “MetaTrader for crypto 

exchanges” has started to appear to cater to the specific needs of that market). 

6 CONCLUSION 
This systematic review assessed the market impact, technological advancements, strategic approaches and 

regulatory challenges related to algorithmic trading. By reviewing 208 peer-reviewed studies published between 

2015 and 2024, we derived several key insights: 

• ATS have become faster, more data-driven and more complex, making use of AI techniques to adapt to 

market conditions. They are integral on modern financial markets across asset classes, offering efficiency 

and the ability to execute complex strategies. High-frequency trading remains a domain where ATS excel, 

though it requires significant resources and technological infrastructure. 

• Profitability in algorithmic trading is achievable but depends on strategy quality, market conditions and 

user resources. Institutional players generally have an advantage due to better infrastructure and data 

access. However, with the advent of user-friendly trading platforms and AI tools, skilled individual traders 

can also achieve competitive results in certain niches. It is clear that no one-size-fits-all strategy exists – 

continuous innovation, strategy adaptation and risk management are crucial. Future research should 

prioritize strategies that maintain robustness across regimes and address the transaction cost barriers faced 

by smaller market participants. 

• MetaTrader and democratization: The wide adoption of platforms such as MetaTrader 4/5 has 

democratized access to algorithmic trading, allowing a broader set of market participants to develop and 

deploy automated strategies. These platforms provide robust backtesting and automation capabilities that 

were once available only to institutional actors. We expect this trend to continue, with more advanced 

features (e.g., direct support for machine learning models, integration with more markets) being introduced 

to retail trading platforms, further narrowing the gap between institutional and retail algorithmic trading 

capabilities. 

• AI integration: The integration of artificial intelligence (including machine learning, deep learning and 

reinforcement learning) has significantly improved predictive accuracy and the adaptability of algorithmic 

trading strategies. Techniques such as sentiment analysis and deep neural networks allow traders to 

incorporate unstructured data (such as news and social media sentiment) into trading decisions, potentially 

generating alpha that traditional strategies might miss. However, these AI-driven approaches also introduce 

new challenges around model interpretability, risk of overfitting and the need for high-quality data. Future 

research and development should focus on ethical AI frameworks in trading, improving the explainability 

of AI models used in ATS and ensuring that they comply with evolving regulations. 

• Regulatory and ethical considerations: Algorithmic trading presents ongoing regulatory challenges, 

including market fairness, transparency and systemic risk. Our review highlighted instances (e.g., rapid 

trading potentially exacerbating flash crashes or momentarily undermining market efficiency) which 

regulators are keen to manage. It is imperative that future research and policy work together to create 

frameworks where innovation in algorithmic trading can flourish within guardrails that prevent abusive 

practices and systemic issues. Areas such as explainable AI in trading algorithms and real-time monitoring 

of algorithmic trading activity will likely be areas of development to satisfy both market integrity and the 

needs of traders. 

In conclusion, algorithmic trading will continue to grow in importance, driven by advances in AI and increasing 

market electronification. This review provides a robust foundation for academics and practitioners by synthesizing 

recent findings and trends. Understanding the multifaceted nature of algorithmic trading – from technical design to 
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profitability factors and regulatory implications – can help traders design better strategies and policymakers craft 

more informed regulations. Future research should explore the long-term impacts of AI-driven trading on market 

dynamics, the effectiveness of regulations such as order-to-trade fees or circuit breakers in the algorithmic era and 

strategies for making advanced trading tools more accessible without compromising market stability. 
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