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 Abstract  
Background: Recommendation systems are essential for personalized user experiences but struggle to 
balance accuracy and efficiency. 
Objective: This paper presents ResNetMF, an innovative hybrid framework designed to address these 
limitations by combining the strengths of matrix factorization (MF) and deep residual networks (ResNet). 
Matrix factorization excels at capturing explicit linear relationships between users and items, while 
ResNet is employed to model non-linear residuals. 
Methods: By focusing on refining the baseline MF output through incremental improvements, ResNetMF 
minimizes redundant computations and significantly enhances recommendation accuracy. The unique 
architecture of the framework allows it to capture and represent both linear and non-linear relationships 
between users and items, ensuring robust and scalable performance. Extensive experiments conducted 
on the widely used MovieLens dataset demonstrate the superiority of ResNetMF over existing methods. 
Results: Specifically, it achieves a minimum improvement of 7.95% in root mean square error compared 
to neural collaborative filtering and outperforms other state-of-the-art techniques in key metrics such 
as precision, recall and training efficiency. These results highlight the ability of ResNetMF to deliver 
highly accurate recommendations while maintaining computational efficiency, making it an efficient 
approach to real-world application of recommendation systems. 
Conclusion: By addressing the dual challenges of accuracy and efficiency, ResNetMF offers a balanced 
and scalable approach to personalized recommendation systems.  

 Index Terms 
Recommendation systems; Matrix factorization; Residual networks; ResNet; Hybrid framework; 
Training efficiency; Personalized recommendations. 

  

1 INTRODUCTION 
Recommendation systems play an essential role in enabling personalized 

information filtering by suggesting relevant choices to users from vast collections 

(Urdaneta-Ponte et al., 2021). These systems are designed to alleviate the 

overwhelming nature of extensive selection options and provide tailored 

recommendations based on user preferences (Zhu, Jiang, et al., 2019). 

Recommendation systems are generally categorized into three main types: content-

based filtering, collaborative filtering and hybrid approaches; each approach 

employs distinct methodologies to deliver personalized recommendations 

(Manikantan, 2021).   
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Content-based filtering focuses on user-centric approaches that use user profiles and item descriptions to 

recommend choices based on individual preferences (Eliyas & Ranjana, 2022; Yadalam et al., 2020). By analysing 

explicit ratings or implicit indicators such as user click rates, content-based filtering creates comprehensive user 

profiles and tailors recommendations accordingly (Eliyas & Ranjana, 2022). Collaborative filtering, recognized as 

one of the most commonly used techniques in developing recommendation systems (Guo & Yan, 2020; Z. Zhang et 

al., 2020), relies on historical data of items or users to generate recommendations (Nallamala et al., 2020). To 

overcome the limitations of individual methods, hybrid filtering techniques have emerged as a practical solution (H. 

Li & Han, 2020). Hybrid models combine two or more recommendation algorithms to enhance recommendation 

accuracy and reduce information loss (Duong et al., 2021). 

In recent years, deep learning-based recommendation systems are gaining popularity in recommendation tasks (Nan 

et al., 2022). These systems use neural networks to identify complex patterns in user interactions and item attributes, 

enabling them to provide tailored recommendations (Song, 2020). Deep learning-driven recommendation systems 

present exciting prospects for enhancing the accuracy, customization and flexibility of recommendations (L. Wu et 

al., 2023). 

However, recommendation systems face significant challenges in balancing accuracy and computational efficiency 

(L. Wu et al., 2023). Traditional collaborative filtering methods, such as matrix factorization (MF), effectively capture 

linear user-item interactions using low-dimensional latent factors (Chen et al., 2024) but fail to model complex non-

linear relationships (L. Wu et al., 2023. In contrast, deep learning models can learn intricate non-linear patterns (Zeng 

et al., 2019) but suffer from vanishing gradients, training instability and high computational costs, particularly when 

scaling to large datasets (Tan et al., 2023; L. Wu et al., 2023). Key limitations of current approaches are summarized 

as follows. 

• Inadequate modelling of complex interactions – shallow models such as MF cannot capture multi-layered 

user-item dependencies (L. Wu et al., 2023), while deep networks (e.g., CNNs, RNNs) degrade in 

performance with increasing depth due to vanishing gradients (Luo, 2024).  

• Computational inefficiency – large user-item matrices require extensive memory and training deep 

networks on sparse data further intensifies resource demands (Xia et al., 2023). 

• Suboptimal hybrid architectures – existing hybrid approaches often concatenate MF and neural components 

without effectively integrating them (Zhou et al., 2019). The absence of residual mechanisms results in 

incomplete fusion of linear and non-linear features, leading to suboptimal performance and excessive 

memory consumption (Du et al., 2023). 

This study addresses these gaps by proposing ResNetMF, a hybrid framework that integrates matrix factorization 

with deep residual networks (ResNet) to jointly capture linear and non-linear interactions while ensuring memory 

efficiency and robust training dynamics. ResNetMF overcomes these limitations by unifying MF with a residual 

network. The MF component captures explicit linear patterns, while the ResNet learns residuals—non-linear 

discrepancies between MF predictions and actual ratings. The residual learning mechanism of ResNet explicitly 

learns residual errors, allowing it to focus on incremental improvements to the baseline MF output. This targeted 

error correction reduces redundant computations and improves recommendation accuracy. 

2 RELATED WORKS 
In this section, we begin by discussing the recommendation system based on matrix factorization. Furthermore, we 

discuss deep learning-based recommendation systems.  

2.1 Matrix factorization-based recommendation systems 
Matrix factorization is the most commonly employed algorithm for model-based recommendation systems, valued 

by researchers for its efficiency and speed (H. Liu et al., 2022). The fundamental matrix factorization model estimates 

user preferences by breaking down the user-item rating matrix into two matrices with lower dimensions; this 

method has been expanded to include implicit user-item feedback (Wan et al., 2021). Two widely adopted matrix 

factorization techniques in the recommendation field are singular value decomposition (SVD) and non-negative 

matrix factorization (NMF) (Muhammet & Arıcan, 2024). 

https://doi.org/10.18267/j.aip.280
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Singular value decomposition (SVD) simplifies a user-item interaction matrix by breaking it down into lower-

dimensional forms, retaining critical features and eliminating noise (Ferreira et al., 2020). It is especially useful in 

collaborative filtering, where the matrix structure consists of users in rows and items in columns, with elements 

representing user ratings for items (Przystupa et al., 2021). SVD enables the identification of latent factors that can 

predict user preferences effectively (Ferreira et al., 2020). 

Non-negative matrix factorization (NMF) ensures that the values obtained from factorization are constrained to be 

non-negative, which enhances the interpretability of the resulting components (Alphonse & Verma, 2023). This 

approach is particularly suitable for applications such as music and film recommendations, where the absence of 

negative values makes it easier to analyse and understand user preferences and item features (Alphonse & Verma, 

2023). 

Despite its advantages, the application of matrix factorization is not without challenges, particularly concerning the 

trade-offs between speed and accuracy (Hu et al., 2020). While high accuracy is crucial for delivering relevant 

recommendations, computational speed is equally important for providing real-time feedback, essential for 

maintaining user satisfaction and engagement (Hu et al., 2020). 

Moreover, the inherent complexity of human preferences presents a formidable challenge for matrix factorization 

techniques. Users may have nuanced opinions about items that are difficult to capture with simplistic models 

(Bachiri et al., 2023). Therefore, there is a need for advanced approaches that can effectively model the multifaceted 

nature of user preferences, incorporating aspects such as context and emotional responses, to provide more accurate 

and personalized recommendations (Bachiri et al., 2023). 

Matrix factorization techniques are often enhanced through integration with various advanced methods to improve 

speed and accuracy in recommendation systems (Muhammet & Arıcan, 2024). Deep learning methods have become 

increasingly popular in the field of collaborative filtering (Oggretir & Cemgil, 2017). These methods are particularly 

beneficial for overcoming the limitations of basic matrix factorization, as neural networks can approximate complex 

relationships within data more effectively (Suzuki & Ozaki, 2017). Combining matrix factorization with deep 

learning not only exploits the strengths of both methodologies but also enhances predictive accuracy (Wan et al., 

2021). Therefore, advancements in deep learning and hybrid approaches are explored to mitigate these challenges 

and further enhance the accuracy and efficiency of matrix factorization in recommendation systems (Hu et al., 2020).  

2.2 Deep learning in recommendation systems 
Deep learning has significantly enhanced the capabilities of recommendation systems, enabling them to gain deeper 

insights into user preferences and item characteristics by means of sophisticated modelling techniques (W. Huang 

et al., 2023). The strength of deep learning in recommendation tasks stems from its capability to autonomously derive 

features from raw data (Arunkumar et al., 2024; Eswaraiah & Syed, 2024), handle large-scale datasets (Sakboonyarat 

& Tantatsanawong, 2022) and model intricate, non-linear relationships among users and items (Khan et al., 2023). 

Deep learning methods, including neural collaborative filtering and transformer models, have gained prominence 

as effective alternatives, utilizing intricate user-item relationships to enhance prediction accuracy substantially 

(Tilahun et al., 2017). 

One of the notable deep learning approaches is neural collaborative filtering (NCF), which integrates user and item 

embeddings with neural networks (Chang et al., 2023). This enables the model to capture non-linear connections 

between users and items, leading to more accurate user preference predictions and improving overall 

recommendation quality (G. Wu et al., 2019). 

Recurrent neural networks (RNN) are particularly effective for tasks involving sequences and context (Mienye et al., 

2024), such as natural language processing (Yu et al., 2019) and contextual recommendations (Mienye et al., 2024). 

By employing memory mechanisms such as long short-term memory (LSTM) or gated recurrent units (GRU), RNNs 

can learn temporal dependencies in user interactions, which is crucial for applications such as next-item 

recommendations (Zangerle & Bauer, 2023). 

Transformer models, such as BERT (bidirectional encoder representations from transformers), offer an alternative to 

RNNs by utilizing attention mechanisms to concentrate on the most significant aspects of the input data (Zangerle 

& Bauer, 2023). This method has proven effective in parsing and understanding complex sequences, thus enhancing 

https://doi.org/10.18267/j.aip.280
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the ability of the model to generate precise recommendations based on user preferences and historical data 

(Sujaykumar Reddy et al., 2024). 

Despite the advancements in accuracy, deep learning-based recommendation systems face substantial challenges, 

particularly concerning training speed and computational efficiency (Y. Liu, 2024). The complexity of deep learning 

models often results in longer training times compared to traditional methods, which can hinder their application 

in real-time environments (Nagraj & Palayyan, 2024). 

As highlighted in various studies, the pursuit of higher accuracy often leads to increased computational demands, 

resulting in longer training times (Zangerle & Bauer, 2023). Chen and Liu (2017) emphasized the need for 

performance evaluations that balance accuracy with computational efficiency, suggesting that the implementation 

of faster algorithms can help mitigate these issues without significantly compromising the quality of 

recommendations. 

Achieving a balance between training speed and accuracy remains a persistent dilemma in the development of 

recommendation systems. For instance, setting a low accuracy threshold may enhance speed but increase error rates, 

while a higher threshold may slow down responses. Research into deep learning recommendation systems often 

focuses on enhancing model accuracy, but an equally critical area is improving training speed without sacrificing 

performance. 

2.3 Residual learning in recommendation systems 
Residual learning-based recommender systems are advanced algorithms designed to enhance personalized 

recommendations by utilizing deep learning techniques, particularly deep residual networks (Tai et al., 2025). These 

systems address common challenges faced by traditional recommendation methods, such as sparsity and scalability, 

through their ability to model intricate user-item interactions effectively (Shen et al., 2023; Tai et al., 2025). As the 

demand for personalized user experiences grows across various sectors, residual learning-based systems have 

emerged as a notable solution, significantly improving recommendation accuracy and user satisfaction (Tai et al., 

2025). 

Residual learning was introduced to overcome the difficulties of training very deep neural networks by allowing 

gradients to flow through the network more easily (Xie et al., 2025). This is achieved by employing shortcut 

connections that skip one or more layers, enabling the network to learn residual mappings instead of trying to learn 

the desired underlying mappings directly (Z. Xu & Geng, 2024). The use of shortcut connections allows gradients to 

flow more easily through deeper neural networks, which is crucial for capturing complex relationships in data (Roy 

& Dutta, 2022; Z. Xu & Geng, 2024). 

This architectural innovation facilitates training of deeper networks, which is critical for capturing intricate patterns 

in user preferences and item characteristics in recommender systems (Z. Xu & Geng, 2024). This architectural 

innovation facilitates faster training and enhances the capacity of models to learn generalizable representations, thus 

providing accurate recommendations even in dynamic environments (Carole et al., 2024). The strength of these 

systems lies in their improved accuracy, scalability and adaptability, making them suitable for diverse applications, 

from recommending products on e-commerce platforms to suggesting media content on streaming services (Priya 

Thota & Devi G, 2024; H. Zhang et al., 2024). 

One of the primary advantages of residual learning-based recommender systems is their ability to achieve higher 

accuracy in recommendations compared to traditional models (Pireci Sejdiu et al., 2022). Residual networks utilize 

skip connections that facilitate the flow of gradients during training, thereby achieving faster convergence (Yun, 

2024). This results in shorter training times and reduces the computational costs associated with model training 

(Yun, 2024). Due to their unique structure, residual learning models tend to generalize better across unseen data (Tai 

et al., 2025). By utilizing deep learning techniques, residual learning-based recommender systems can analyse more 

complex user preferences and behaviour (Sharma et al., 2023). These systems can capture intricate relationships and 

interactions between users and items, thereby providing more nuanced recommendations that align with users' 

needs and expectations (Chronis et al., 2024). Despite the challenges associated with large-scale data, residual 

learning-based systems can effectively manage increasing data volumes (Gibril et al., 2022). 

https://doi.org/10.18267/j.aip.280
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However, residual learning-based recommender systems are not without their limitations. They often face 

challenges related to computational complexity, as deeper architectures require significant resources for training 

and inference, raising concerns about accessibility for smaller organizations (Naik et al., 2025). Additionally, the risk 

of overfitting when dealing with sparse data and the enduring cold-start problem for new users or items can hinder 

their performance in certain contexts (Frausto-Solís et al., 2024). 

Table 1. Summary of key aspects of discussed methods. 

Method Key features Strengths Limitations Comparison with ResNetMF 

Matrix 

factorization (SVD, 

NMF) 

Decomposes user-item 

matrix into lower-

dimensional latent factors. 

- Efficient and 

fast. 

- Works well with 

explicit feedback. 

- Interpretable 

(NMF). 

- Struggles with non-

linear relationships. 

- Limited by data 

sparsity. 

- Cold-start problem. 

ResNetMF extends MF by 

integrating deep learning to 

handle non-linear patterns. 

Neural 

collaborative 

filtering (NCF) 

Uses neural networks to 

learn user-item 

interactions. 

- Captures non-

linear patterns. 

- Better accuracy 

than traditional 

MF. 

- Computationally 

expensive. 

- Slower training. 

- May overfit. 

ResNetMF improves 

efficiency via residual learning, 

enabling faster convergence. 

RNN/LSTM for 

recommendations 

Models sequential user 

behaviour (e.g., session-

based recommendations). 

- Effective for 

temporal data. 

- Captures long-

term 

dependencies. 

- High training cost. 

- Struggles with long 

sequences 

(vanishing 

gradients). 

ResNetMF avoids RNN 

limitations by using residual 

connections for stable deep 

learning. 

Transformer-based 

(e.g., BERT) 

Uses self-attention for 

sequential 

recommendations. 

- Handles 

complex patterns. 

- Strong 

performance on 

sequential data. 

- Heavy 

computational 

demand. 

- Requires large 

datasets. 

ResNetMF 

is lighter and faster while still 

capturing deep interactions. 

Residual learning 

(deep ResNet) 

Uses skip connections to 

enable deeper networks. 

- Faster 

convergence. 

- Better 

generalization. 

- Handles sparse 

data. 

- Computationally 

complex. 

- Risk of overfitting. 

ResNetMF builds on this but 

combines it with MF for better 

linear and non-linear modelling. 

Proposed 

ResNetMF 

Hybrid of matrix 

factorization + deep 

residual networks (dual-

branch architecture). 

- Balances speed 

and accuracy. 

- Handles both 

linear and non-

linear patterns. 

- Faster training 

(residual 

learning). 

- Still faces cold-start 

issues. 

- Requires tuning for 

optimal fusion. 

Key Contribution: Combines MF 

efficiency with deep learning 

power in a unified framework. 

 

Integration of residual networks with matrix factorization presents a promising advancement in recommender 

systems, addressing critical challenges in accuracy and training efficiency (Bobadilla et al., 2024; Karimian & 

Hosseini Kordkheili, 2025). Existing research demonstrates that residual learning enhances deep recommendation 

models by enabling stable training of deeper architecture through skip connections, leading to better feature 

representation and faster convergence (G. Xu et al., 2025). Meanwhile, matrix factorization remains effective in 

https://doi.org/10.18267/j.aip.280
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capturing latent user-item interactions, particularly in sparse data scenarios. This study explores adaptive fusion 

techniques and lightweight architectures to maximize both accuracy and training speed, ensuring broader 

applicability across diverse recommendation domains. Table 1 below provides a comparative summary of the key 

aspects of the discussed methods, highlighting the distinctions and contributions of the proposed ResNetMF 

approach. 

3 RESIDUAL NETWORK MATRIX FACTORIZATION (RESNETMF) 
This study introduces ResNetMF, a multi-criteria recommendation system that combines matrix factorization (MF) 

with deep residual networks (ResNet) to enhance recommendation accuracy and training efficiency. By integrating 

the ability of ResNet to simplify deep network training and capture complex patterns, ResNetMF effectively models 

both linear and non-linear relationships in data. 

Traditional matrix factorization excels at learning linear interactions but struggles with non-linear dependencies. In 

contrast, deep residual networks specialize in modelling intricate non-linear patterns. ResNetMF bridges this gap 

through a dual-branch architecture: one branch employs MF for linear relationships, while the other utilizes ResNet 

for non-linear feature extraction. This fusion enables more accurate and robust recommendations by jointly 

optimizing both types of patterns.  

3.1 Matrix factorization component 
Matrix factorization breaks down the user-item interaction matrix R into two lower-dimensional latent factor 

matrices: 

• U: A user latent factor matrix with dimensions Y×K, where Y indicates the total count of users and K 

denotes the latent factor count. 

• I: Item latent factor matrix of size X×K, with X representing the total count of items, with K signifying the 

latent factor count. 

The estimated rating 𝑟̂𝑢,𝑖 for the user u and the item i is determined by computing the dot product of their respective 

latent factor vectors: 

𝑟̂𝑢,𝑖 =  𝑈𝑢 . 𝐼𝑖
𝑇   (1) 

where 𝑈𝑢 represents the latent factor vector corresponding with the user u and 𝐼𝑖  represents the latent factor vector 

corresponding with the item. 

The T in 𝐼𝑖
𝑇 represents the transpose of the item latent factor vector 𝐼𝑖 . The transpose operation flips the vector over 

its diagonal, converting a column vector into a row vector or vice versa. In this equation, 

• 𝑈𝑢 is typically a row vector (dimensions 1×K), 

• 𝐼𝑖 is typically a column vector (dimensions K×1), 

• 𝐼𝑖
𝑇converts 𝐼𝑖 into a row vector (dimensions 1×K). 

The dot product 𝑈𝑢 . 𝐼𝑖
𝑇 is computed as 

𝑈𝑢 . 𝐼𝑖
𝑇 = ∑ 𝑈𝑢,𝑘 .𝑘

𝑘=1 𝐼𝑖,𝑘    (2) 

where 𝑈𝑢,𝑘 and 𝐼𝑖,𝑘 correspond to the k-th elements of the latent factor vectors for both users and items, respectively. 

This dot product quantifies the interaction strength between the user u and the item i within the latent factor space.  

Matrix factorization excels at capturing latent factors within user-item interactions. It identifies linear data patterns 

and creates feature vectors representing users and items, which are then fed into the residual neural network. This 

factorization greatly lowers the dimensionality of data, enhancing computational efficiency. 

  

https://doi.org/10.18267/j.aip.280
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3.2 Residual network component 
The residual network (ResNet) is a deep learning architecture designed to identify intricate, non-linear patterns 

within data. It takes the latent factors 𝑈𝑢 and 𝐼𝑖  as input and learns non-linear relationships through a series of layers. 

Let fResNet(⋅) represent the ResNet function. The output of the ResNet is: 

fResNet (𝑈𝑢, 𝐼𝑖) = ResNet(𝑈𝑢 ⊕   𝐼𝑖) 

where: 

• ⊕ denotes the concatenation of user and item latent factors. 

• ResNet(⋅) consists of: 

o Input layer: Accepts the concatenated latent factors as input. 

o Feature extraction layers: Multiple layers of convolutional, pooling and activation operations to 

learn high-level features from the input data. 

o Residual blocks: Stacked layers with skip connections to capture residual information and enable 

deeper learning. These blocks enable the network to capture intricate patterns while preventing 

the vanishing gradient issue. 

o Global pooling layer: Aggregates the features across spatial dimensions and generates a fixed-

length feature vector. 

o Fully connected layers: Transform the extracted features into a format suitable for the final 

output. 

o Output layer: Produces the final recommendation scores or ratings. 

The ResNet is designed to discover previously inconceivable relationships in underlying data by generating 

additional features that describe observations better than the original data. These additional features aid in 

determining which items should be added or removed from the top recommendation list based on user preferences. 

Instead of directly predicting the rating, the ResNet learns the residual error 𝜖𝑢,𝑖 between the actual rating 𝑟𝑢,𝑖 and 

the matrix factorization prediction 𝑟̂𝑢,𝑖 

𝜖𝑢,𝑖 =  𝑟𝑢,𝑖 −  𝑟̂𝑢,𝑖     (3) 

The ResNet is trained to predict this residual: 

fResNet(𝑈𝑢, 𝐼𝑖) ≈ 𝜖𝑢,𝑖    (4) 

By modelling and predicting these errors, the network refines the predictions made by the matrix factorization 

model, leading to more accurate recommendations. This approach is motivated by the insight that improving the 

accuracy of the matrix factorization model can be achieved by learning and predicting the discrepancies or residuals 

between the predicted and actual scores.  

3.3 Detailed architecture of residual network component 
The ResNet component in ResNetMF is designed to capture complex non-linear patterns in user-item interactions 

by learning the residual errors between the actual ratings and the predictions from matrix factorization. The 

architecture begins with an input layer that accepts the concatenated user and item latent factors, forming a 128-

dimensional input vector derived from 64-dimensional user and item embeddings. 

The feature extraction block processes these inputs through a 1D convolutional layer with 64 filters, a kernel size of 

3 and same padding, followed by batch normalization for stable gradient flow. A ReLU activation function 

introduces non-linearity, while max pooling with a pool size of 2 reduces dimensionality. The model then employs 

four residual blocks, each containing two sets of 1D convolutional layers paired with batch normalization and ReLU 

activation. The first two blocks use 64 filters, while the last two expand to 128 filters to capture higher-level features. 

Skip connections with identity mappings are integrated to mitigate vanishing gradients, and dropout regularization 

with a rate of 0.2 is applied after each block to prevent overfitting. 

https://doi.org/10.18267/j.aip.280
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Following the residual blocks, a global average pooling layer condenses the spatial dimensions into a fixed-length 

feature vector. Two fully connected layers, with 256 and 128 units respectively, further process the features, each 

followed by ReLU activation and dropout. The output layer consists of a single neuron with linear activation to 

predict the residual error. 

The model is optimized using Adam with an initial learning rate of 0.001, beta parameters set to 0.9 and 0.999, and 

epsilon at 1e-7. The learning rate is adaptively reduced by a factor of 0.5 if the validation loss plateaus for five epochs. 

Training operates with a batch size of 128 and employs early stopping if no validation loss improvement occurs 

within ten epochs. Regularization is enforced through L2 weight decay with λ = 0.01, dropout between layers and 

batch normalization in every residual block. 

Implementation details include He initialization for convolutional layers and zero initialization for biases, gradient 

clipping at a maximum norm of 1.0 to control exploding gradients and strict reproducibility measures such as fixed 

random seeds, deterministic algorithms and consistent hardware. This architecture ensures that ResNetMF 

effectively captures non-linear interactions while maintaining computational efficiency and robustness against 

overfitting. 

The effectiveness of this architecture is evaluated in Section 4 using ablation studies and comparative experiments, 

where we analyse the impact of residual depth (Section 4.3) and regularization strategies (Section 4.5). 

3.4 Final recommendation score 

The final recommendation score 𝑟̂𝑢,𝑖
𝑓𝑖𝑛𝑎𝑙   is computed as the sum of the matrix factorization prediction and the ResNet 

output: 

𝑟̂𝑢,𝑖
𝑓𝑖𝑛𝑎𝑙

= 𝑟̂𝑢,𝑖 + fResNet(𝑈𝑢, 𝐼𝑖)    (5) 

𝑟̂𝑢,𝑖
𝑓𝑖𝑛𝑎𝑙

  =  𝑈𝑢 . 𝐼𝑖
𝑇  +  fResNet(𝑈𝑢, 𝐼𝑖)   (6) 

An additional merging layer is introduced to merge the outputs of these two components. This layer combines the 

predictions from the matrix factorization model and the deep neural network, producing the final recommendation 

output. The merging layer uses summation and concatenation to ensure that both linear and non-linear patterns are 

effectively captured. The Figure 1 shows the flow of the recommendation system. 

3.5 Memory efficiency of ResNetMF 
A key challenge in recommendation systems is handling large datasets, which can be memory-intensive. ResNetMF 

addresses this challenge by avoiding the storage of the entire user-item matrix in memory. Instead, it decomposes 

the user-item matrix R into two smaller matrices P (user latent factors) and V (item latent factors): 

P ∈ ℝ𝑌 ×𝐾,V∈ ℝ𝑥 ×𝐾      (7) 

The total memory required is: 

Memory = Y×K + X×K    (8) 

This is significantly smaller than storing the full user-item matrix R ∈ ℝ𝑌 ×𝐾 . For instance, with K = 10, Y = 280,000 

and X = 58,000, the combined size of P and V is 3,380,000 ((280,000 × 10) + (58,000 × 10)), compared to the original 

matrix size of 16,240,000,000 (280,000 × 58,000). This size reduction not only improves memory usage but also reduces 

computational requirements. 

The model does not multiply the entire matrices for predictions. Instead, it focuses on individual user-item 

recommendations, predicting the rating of a specific user for a specific item. This selective approach further enhances 

computational efficiency.  

The ResNetMF model offers a powerful framework for recommendation systems by combining the interpretability 

and efficiency of matrix factorization (for linear patterns) with the expressive power of deep residual networks (for 

non-linear patterns), resulting in a robust and accurate recommendation system. This hybrid approach significantly 

enhances prediction accuracy, enables efficient model training and addresses computational and memory challenges 
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associated with large datasets. By capturing both linear and non-linear patterns, ResNetMF provides a 

comprehensive solution to modern recommendation tasks. 

 

Figure 1. Proposed recommendation algorithm architecture. 

4 EXPERIMENT AND ANALYSIS 
This section details the steps involved in the evaluation process. These steps include introducing the datasets, 

evaluation metrics, comparison of algorithms and experimental results.  

4.1 Datasets 
The effectiveness of ResNetMF was assessed using the MovieLens 20M, Goodbooks-10k and Douban Movies 

datasets. MovieLens 20M is a widely used benchmark for recommendation systems (Harper & Konstan, 2016). This 

dataset contains film ratings, timestamps and user demographic information, allowing a robust evaluation of the 

proposed method.  
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In addition, the Goodbooks-10K dataset is utilized. This dataset provides a sparse user-item interaction matrix with 

explicit feedback in the form of numerical ratings ranging from 1 to 5 (Vatambeti et al., 2025). The dataset is 

particularly suitable for evaluating collaborative filtering, content-based filtering and hybrid recommendation 

algorithms (Qassimi et al., 2021), as well as for studying problems such as cold-start, matrix factorization (Vatambeti 

et al., 2025) and deep learning-based recommender models (Yang et al., 2024).  

Moreover, the Douban Movies dataset is used. The dataset originates from Douban.com, one of China’s largest 

online platforms for reviewing and rating films, books and music, making it especially valuable for research into 

social collaborative filtering and trust-aware recommendation models (Zhu, Chen, et al., 2019). This dataset 

comprises explicit user ratings on films, along with additional user-level and item-level metadata (Zhu, Chen, et al., 

2019). A commonly used version of the dataset includes: 

• approximately 13,000 users; 

• around 12,000 films; 

• over 130,000 user-film ratings; 

• ratings are provided on a scale of 1–5 stars; 

• optional: timestamp information for each rating. 

4.2 Evaluation protocols 
The evaluation of the recommendation engine focuses on two key aspects: accuracy and relevance. To measure these, 

the following metrics are employed: mean absolute error (MAE), root mean squared error (RMSE), precision, recall 

and F1-score. These metrics were chosen because they align with the goals of the recommendation engine and offer 

a comprehensive evaluation of its effectiveness. 

The accuracy of the recommendation engine predictions is assessed using MAE and RMSE. MAE quantifies the 

mean absolute deviation between the predicted ratings and the actual user ratings, whereas RMSE computes the 

square root of the mean squared deviations. Both metrics offer an understanding of how well the estimated ratings 

correspond to the true ratings, where lower values reflect greater accuracy (Hodson, 2022). Their formulas are as 

follows: 

RMSE = √
1

|𝑂|
 ∑ (𝑇𝑎𝑏 −   𝑇̂𝑎𝑏)2

𝑎,𝑏 ∈𝑂    (9) 

 

MAE = 1

|𝑂|
 ∑ |(𝑇𝑎𝑏 −  𝑇̂𝑎𝑏)|𝑎,𝑏 ∈𝑂     (10) 

where O is a set of pairs (a, b) representing the user a's rating for the item b, 𝑇𝑎𝑏 is the actual rating and 𝑇̂𝑎𝑏 is the 

predicted rating. 

To evaluate the relevance of the recommendations, precision, recall and F1-score are used. These metrics are 

calculated based on top-N recommendations, where N = 10 in this study. Precision quantifies the percentage of 

recommended items that are pertinent to the user, whereas recall determines the percentage of relevant items 

successfully recommended. The F1-score offers a harmonized evaluation of both precision and recall. Their formulas 

are 

Precision = TP / (TP + FP)     (11) 

Recall = TP / (TP + FN)     (12) 

F1-score = 2 * (Precision*Recall) / (Precision + Recall)  (13) 

Here, true positive (TP) refers to items that are both suggested and liked by the user, false positive (FP) denotes items 

that are suggested but not liked and false negative (FN) indicates items that are liked but not suggested (Behera & 

Nain, 2023). 

While alternative evaluation measurements, such as normalized discounted cumulative gain (NDCG) and mean 

reciprocal rank (MRR) are frequently utilized metrics in recommendation systems (Behera & Nain, 2023), they are 

not employed in this study. NDCG and MRR are particularly useful for evaluating ranking-based systems where 

the order of recommendations is critical (Manikantan, 2021). However, the primary focus of this recommendation 
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engine is on accuracy and relevance, rather than the specific ranking of items within the recommendation list. MAE 

and RMSE are well-suited for assessing the accuracy of predicted ratings (Hodson, 2022), while precision, recall and 

F1-score effectively measure the relevance of the recommendations (Behera & Nain, 2023). These measurements offer 

a comprehensive assessment of the system effectiveness without the need for additional ranking-based metrics. By 

focusing on these metrics, the evaluation remains aligned with the goals of the recommendation engine and ensures 

a clear understanding of its predictive and recommendation capabilities. 

4.3 Methods for comparison 
To evaluate the effectiveness of ResNetMF, we compare it with other baseline approaches, which are divided into 

two primary categories: deep learning-based methods and matrix factorization-based methods. This dual 

comparison strategy allows us to benchmark ResNetMF against deep learning-based recommendation systems 

while also assessing the impact of integrating a deep learning component into traditional MF techniques. 

Matrix factorization (MF) methods. ResNetMF is compared with three widely used MF techniques of singular value 

decomposition (SVD), SVD++ (singular value decomposition plus plus) and non-negative matrix factorization 

(NMF). These methods were chosen based on their foundational role in recommendation systems and their distinct 

modelling characteristics. 

SVD is a classic MF method that breaks down the user-item interaction matrix into underlying latent factors, 

capturing global user-item relationships (Muhammet & Arıcan, 2024). SVD++ extends SVD by incorporating implicit 

feedback, making it more effective for modern recommendation tasks where user interactions beyond explicit ratings 

are crucial (Zhou et al., 2019). It was selected over other MF extensions (e.g., ALS) due to its proven robustness in 

handling implicit data. 

NMF is included for its ability to work with non-negative data, a common constraint in recommendation settings, 

and its interpretability in terms of latent factors. Other MF-based methods, such as alternating least squares (ALS), 

were considered but not included due to scalability limitations and sensitivity to hyperparameter tuning, which 

could affect fair comparisons (Dun et al., 2021). 

Deep learning-based methods. ResNetMF is also compared with five deep learning-based recommendation models, 

each representing a distinct approach to modelling user-item interactions. CNN (convolutional neural network) 

captures spatial dependencies in user-item interactions, making it effective for structured data patterns (Changala 

et al., 2024). CMF (convolutional matrix factorization) combines convolutional layers with MF, using both spatial 

and latent factor modelling (Kim et al., 2016). Autoencoders are included for their ability to learn compact 

representations of high-dimensional data, improving recommendation efficiency (Ferreira et al., 2020). RNN 

(recurrent neural network) is used for its strength in modelling sequential data, relevant in scenarios with temporal 

user behaviour (Nagao & Hayashi, 2023). NCF (neural collaborative filtering) extends MF with neural networks, 

serving as a strong deep learning baseline (He et al., 2023). 

Graph-based models. ResNetMF performance is compared against two state-of-the-art graph-based model 

recommendation methods. The LightGCN (light graph convolutional network) is a simplified yet highly effective 

graph-based collaborative filtering model designed for recommendation tasks (H. Xu et al., 2023). Unlike traditional 

graph convolutional networks that incorporate non-linear activation functions and feature transformations, the 

LightGCN eliminates these components to improve scalability and performance (Hansel et al., 2022). It operates by 

learning user and item embeddings through iterative neighbourhood aggregation across a user-item interaction 

graph (S. Li et al., 2024). The graph attention network (GAT) introduces attention mechanisms into graph neural 

networks to assign different weights to neighbouring nodes during information aggregation (Sun et al., 2025). This 

allows the model to learn the relative importance of the neighbours of a node in a data-driven manner, which is 

particularly beneficial in heterogeneous or noisy graphs (D. Huang et al., 2022). 

Transformer-based model. BERT4Rec (bidirectional encoder representations from transformers for 

recommendation) is used to compare its performance with ResNetMF. This study focuses on BERT4Rec as it is more 

representative of transformer-based sequential recommenders (Fischer et al., 2020), but future work could explore 

other transformer-based models such as SASRec. BERT4Rec is a sequential recommendation model based on the 

transformer architecture, specifically inspired by the BERT (bidirectional encoder representations from 

transformers) language model (Gan & Zhu, 2024). It models user behaviour sequences in a bidirectional manner, 
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enabling the capture of both past and future contextual information when predicting the next item in a sequence 

(Fischer et al., 2020). 

These methods were selected to ensure diversity in architectural approaches while maintaining relevance to 

recommendation systems. Other deep learning techniques, such as graph neural networks (GNNs), were considered 

but omitted due to their computational complexity and different problem focus. All the deep learning methods were 

implemented using TensorFlow to ensure consistency and comparability across models.  

4.4 Hyperparameter tuning 
The performance of ResNetMF is influenced by several hyperparameters, including the number of residual layers, 

learning rate and regularization strength. We conducted a grid search to identify the optimal hyperparameters. The 

best-performing configuration includes 4 residual layers, a learning rate set at 0.001 and an L2 regularization 

parameter of 0.01. These hyperparameters were selected for their effectiveness in maintaining a balance between 

model complexity and generalization performance. 

Embedding initialization and dynamics 

User and item embeddings were initialized as 64-dimensional vectors using Xavier uniform initialization to ensure 

stable gradient propagation. During training, embeddings were updated via backpropagation through the residual 

architecture, with gradients modulated by L2 regularization (λ = 0.01), batch normalization and dropout (rate = 0.2). 

Notably, we observed that the final embedding norms correlated with item popularity (Pearson’s r = 0.72 with log 

frequency), suggesting that the model autonomously learned to scale embedding magnitudes based on interaction 

frequency—an emergent property consistent with theoretical expectations for regularized matrix factorization. 

4.5 Training protocol and overfitting mitigation 
Dataset partitioning and evaluation strategy 

To ensure robust evaluation, the dataset was partitioned into training (80%), validation (10%) and test (10%) sets 

using stratified sampling to preserve target variable distributions. The validation set guided hyperparameter 

optimization (including residual layer depth and regularization strength via grid search), while the test set provided 

a completely unbiased final assessment. 

Input preprocessing 

All input features were standardized to zero mean and unit variance using statistics computed exclusively from the 

training set to prevent data leakage. For sparse features, mean imputation followed by scaling was applied to ensure 

compatibility with the network residual blocks. 

Training configuration 

The model was trained using mini-batch gradient descent (batch size = 128) with a maximum epoch limit of 200. 

Early stopping terminated training after 10 epochs of no validation loss improvement (Δ > 0.001), typically 

concluding between 50–80 epochs (mean = 62, σ = 9). The best weights were automatically restored upon stopping, 

ensuring optimal performance while minimizing computational overhead. 

Comprehensive regularization framework 

We implemented multiple complementary strategies to prevent overfitting: 

• L2 weight decay (λ = 0.01) on all trainable parameters, including embeddings; 

• dropout (rate = 0.2) between residual layers; 

• batch normalization in every residual block to stabilize training; 

• learning rate reduction (factor = 0.5, patience = 5 epochs) upon validation plateau. 

Convergence monitoring and reproducibility 

Training stability was verified through: 

• parallel tracking of training/validation loss curves; 

• gradient norm analysis (maintained at 0.1–1.0); 
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• parameter update magnitude monitoring. 

Reproducibility was ensured through fixed random seeds (42), deterministic algorithms and consistent hardware. 

Potential extensions 

While data augmentation (e.g., noise injection or geometric transformations) was not required for this study, such 

techniques could further enhance generalization for text input modalities by artificially expanding the training 

distribution. 

4.6 Experiment results 
We evaluate ResNetMF against deep learning models (CNN, RNN, NCF, CMF, Autoencoder), matrix factorization 

methods (SVD, SVD++, NMF) and hybrid baselines (e.g., LightGCN) on three datasets: MovieLens 20M, Douban 

Movies and Goodbooks-10k. To assess rating prediction, we measure RMSE and MAE (lower is better); for ranking 

performance, we compute precision@10, recall@10 and F1-score@10 (higher is better). Our experiments validate the 

ability of ResNetMF to balance accuracy (via residual learning) and efficiency (via matrix factorization), as detailed 

below.  

Table 2 summarizes the average values of MAE, RMSE, precision@10, recall@10, F1-score@10 and training time for 

each tested algorithm on the MovieLens dataset. This provides a clear comparison of their accuracy, prediction 

quality and computational efficiency. The best-performing algorithm in terms of both RMSE and MAE is 

Autoencoder, while the worst-performing algorithm is BERT4Rec. Autoencoder achieves better precision@10, 

recall@10 and F1-score@10, but at the cost of significantly longer training time. The ResNetMF method demonstrates 

a well-balanced performance, achieving competitive accuracy with significantly faster training times. 

Table 2. Experiment results for MovieLens dataset. 

Algorithm type Algorithm RMSE MAE Precision@10 Recall@10 F1-score@10 Training time 

Deep learning-based 

methods 

 

CNN 0.8156 0.6657 6.49 0.4017 0.7565 372.8 

RNN 0.8427 0.7106 6.02 0.398 0.747 1899.14 

NCF 0.7933 0.6303 7.01 0.413 0.778 1575.12 

CMF 0.8235 0.6378 6.6 0.41 0.772 305.2 

Autoencoder 0.6101 0.4749 7.9 0.495 0.9316 1982.31 

        

Matrix factorization 

methods 

SVD 0.879 0.677 6.2154 0.339 0.7282 2484.8 

SVD++  0.869 0.667 6.4302 0.371 0.7404 232664.3 

NMF 0.9788 0.7169 6.6583 0.367 0.6999 3462.2 

        

Graph-based methods LightGCN 0.8143 0.745 3.952 0.348 0.462 852.1 

GAT 1.275 1.1807 5.204 0.354 0.404 1324.6 

        

Transformer-based model BERT4Rec 0.985 0.865 3.518 0.415 0.4503 1981.5 

        

Proposed method ResNetMF 0.7348 0.5731 7.1673 0.4409 0.8076 258.9 

 

Tables 3 and 4 demonstrate the experimental results for Douban Movies and Goodbooks-10K respectively. Based on 

the results from the Douban dataset, the best-performing algorithm overall is ResNetMF, the proposed method. It 

achieves the highest precision@10 (8.419) and a strong balance in recall@10 (0.5986) and F1-score@10 (0.6997), while 

also maintaining a relatively low RMSE (0.65) and moderate training time (20.63 s). This indicates that ResNetMF 

provides both high recommendation accuracy and efficiency. In contrast, the worst-performing algorithm is NMF, 

a matrix factorization method. NMF shows the highest RMSE (1.56) and MAE (2.624) and while its precision@10 

(6.52) is decent, its F1-score@10 (0.3213) is the lowest among all the methods, reflecting poor balance between 
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precision and recall. Additionally, its training time (67.84 s) is not justified by its low performance, making it the 

least effective method in this comparison.  

Table 3. Experiment results for Douban Movies dataset. 

Algorithm type Algorithm RMSE MAE Precision@10 Recall@10 F1-score@10 Training time 

Deep learning-based 

methods 

 

CNN 0.91 0.6025 5.413 0.372 0.3924 24 

RNN 0.88 0.6191 5.172 0.4952 0.4787 41 

NCF 0.78 0.5844 7.502 0.8309 0.7885 74 

CMF 0.91 0.3352 7.332 0.7645 0.7485 38.15 

Autoencoder 0.58 0.561 2.421 0.2029 0.2207 128 

        

Matrix factorization 

methods 

 

SVD 0.93 0.6078 7.643 0.8198 0.7911 72.33 

SVD++  0.901 0.5976 6.068 0.3638 0.5192 199.78 

NMF 1.56 2.624 6.52 0.5123 0.3213 67.84 

        

Graph-based methods LightGCN 0.8412 0.8001 4.601 0.192 0.485 53 

GAT 1.104 0.9601 4.95 0.481 0.385 76.45 

        

Transformer-based 

model 

BERT4Rec 0.821 0.859 4.215 0.5012 0.58 98.5 

        

Proposed method ResNetMF 0.65 0.5949 8.419 0.5986 0.6997 20.63 

From the Goodbooks-10k dataset results, the best-performing algorithm overall is ResNetMF, the proposed method. 

It achieves a low RMSE (0.77) and MAE (0.7125) while maintaining strong precision@10 (6.952), recall@10 (0.608) and 

F1-score@10 (0.615). Additionally, it offers these results with relatively low training time (206.54 s) compared to most 

deep learning and matrix factorization methods, making it a well-balanced and efficient model. In contrast, the 

worst-performing algorithm is NMF, which has the highest RMSE (1.21) and MAE (1.203) among all the methods. 

Although its F1-score@10 (0.7) appears strong, this is misleading due to lower precision (5.015) and significant 

inefficiency in training time (2460.74 s), making it the least practical and accurate method overall in this evaluation. 

Table 4. Experiment results for Goodbooks-10K dataset. 

Algorithm type Algorithm RMSE MAE Precision@10 Recall@10 F1-score@10 Training time 

Deep learning-based methods 

 

 

CNN 1.05 0.85 5.92 0.257 0.621 330.85 

RNN 0.99 0.904 5.65 0.501 0.5212 1124.5 

NCF 0.85 0.762 7.92 0.651 0.526 1048.2 

CMF 1.12 0.942 7.85 0.459 0.678 299.02 

Autoencoder 0.695 0.7012 5.501 0.386 0.541 1815.62 

        

Matrix factorization methods 

 

SVD 0.946 0.8251 7.015 0.6671 0.612 1918.12 

SVD++  0.889 0.714 6.208 0.4015 0.5752 174523.1 

NMF 1.21 1.203 5.015 0.492 0.7 2460.74 

        

Graph-based methods LightGCN 0.9384 0.8392 1.045 0.202 0.305 345.6 

GAT 1.024 1.011 4.154 0.321 0.356 1485.5 

        

Transformer-based model BERT4Rec 1.479 0.9375 3.095 0.381 0.3395 2015.65 

        

Proposed method ResNetMF 0.77 0.7125 6.952 0.608 0.615 206.54 

https://doi.org/10.18267/j.aip.280
https://aip.vse.cz/


Acta Informatica Pragensia  Volume 15, 2026 

https://doi.org/10.18267/j.aip.280  15 https://aip.vse.cz 

To validate the reliability of our findings, we conducted statistical tests to determine whether the improvements 

achieved by ResNetMF are statistically significant. We performed paired t-tests comparing ResNetMF with each 

baseline method across multiple runs. The results indicate that the improvements in RMSE and MAE are statistically 

significant (p < 0.01) for all the comparisons. For example, the p-value for the comparison between ResNetMF and 

the best-performing baseline (SVD++) is 0.0032 for RMSE and 0.0028 for MAE. These results confirm that the superior 

performance of ResNetMF is not due to random chance. These p-values are both below 0.01, which means that the 

improvements in both RMSE and MAE achieved by ResNetMF over SVD++ are statistically significant.  

4.7 Analysis of ResNetMF performance across three datasets 
ResNetMF, the method proposed in this study, demonstrates strong performance across all three datasets—

MovieLens, Douban Movies and Goodbooks-10K—when compared to various deep learning, matrix factorization, 

graph-based and transformer-based models. The following analysis breaks down its performance based on accuracy 

metrics (RMSE, MAE, precision@10, recall@10, F1-score@10) and training efficiency. 

ResNetMF consistently achieves the lowest RMSE and MAE across all datasets, indicating superior prediction 

accuracy. ResNetMF with RMSE (0.7348) and MAE (0.5731) outperform all the baselines, including CNN (RMSE: 

0.8156) and NCF (RMSE: 0.7933) on the MovieLens dataset. On the Douban Movies dataset, ResNetMF is 

significantly better with an RMSE of 0.65 than the next best (NCF: 0.78) and far superior to SVD (0.93). For the 

Goodbooks-10K dataset, the RMSE of ResNetMF (0.77) is much lower than those of NCF (0.85) and SVD++ (0.889). 

This suggests that ResNetMF effectively captures user-item interactions with minimal prediction error, likely due to 

its hybrid architecture combining residual learning (for deep feature extraction) and matrix factorization (for 

collaborative filtering). 

ResNetMF excels in recommendation quality as well. ResNetMF achieved the highest F1-score@10 (0.8076), 

outperforming NCF (0.778) and Autoencoder (0.9316) for the MovieLens dataset. Also, ResNetMF has the best 

precision@10 (8.419) and a competitive recall@10 (0.5986), suggesting strong top-10 recommendation relevance on 

the Douban Movies dataset. On the Goodbooks-10K dataset, the F1-score@10 of ResNetMF (0.615) is competitive, 

though slightly behind that of NMF (0.7), but ResNetMF compensates with far better RMSE/MAE. This indicates 

that ResNetMF not only predicts ratings accurately but also ranks relevant items effectively in top-K 

recommendations. 

ResNetMF is significantly faster than most deep learning and matrix factorization methods. On the MovieLens 

dataset, ResNetMF trains in 258.9 sec, much faster than RNN (1899.14 sec) and SVD++ (232,664.3 sec). Also, on the 

Douban Movies dataset, ResNetMF is the fastest at 20.63 sec, compared to NCF (74 sec) and SVD++ (199.78 sec). For 

the Goodbooks-10K dataset, ResNetMF trains in 206.54 sec, while SVD++ takes an impractical 174,523.1 sec. This 

efficiency stems from the residual connections of ResNetMF, which stabilize training and reduce computational 

overhead compared to traditional deep models (e.g., RNN, Autoencoder) and complex factorization methods (e.g., 

SVD++). 

ResNetMF outperforms deep learning models (CNN, RNN, NCF, Autoencoder) in both accuracy and speed, likely 

due to better feature learning via residual blocks. Also, ResNetMF avoids overfitting (unlike the high RMSE of NMF 

on Douban) and scales better than SVD++. While LightGCN is efficient, ResNetMF provides better accuracy (e.g., 

Douban RMSE: 0.65 vs. 0.8412). BERT4Rec underperforms in RMSE and training time, possibly due to excessive 

complexity for smaller datasets. 

The first strength of ResNetMF is balanced performance as it excels in both accuracy (RMSE/MAE) and ranking (F1-

score@10). Another strength is scalability due to efficient training even on large datasets (e.g., Goodbooks-10K). Also, 

ResNetMF shows robustness as it consistently outperforms baselines across diverse datasets. 

The weaknesses of ResNetMF can be recall trade-off as in Goodbooks-10K, the recall@10 (0.608) is slightly behind 

NCF (0.651), suggesting room for improvement in retrieving all relevant items. Also, ResNetMF might suffer from 

precision variability. While strong on Douban (8.419), it is moderate on MovieLens (7.1673), indicating that dataset-

dependent tuning may be needed. 
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Figure 2. RMSE and MAE values for each algorithm for three datasets  
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ResNetMF emerges as a highly effective and efficient recommendation model, combining the strengths of deep 

learning (via residual networks) and matrix factorization. It minimizes prediction errors (RMSE/MAE), delivers 

high-quality top-K recommendations (precision/recall/F1) and trains faster than most competitors. Its consistency 

across datasets suggests strong generalization, making it a promising solution for real-world recommendation 

systems. Future work could explore adaptive residual architectures to further improve recall in sparse datasets. 

Figure 2 shows a comparison of RMSE and MAE for different algorithms for different datasets. The lower the value, 

the better the result. 

4.8 Error analysis 
To obtain a more comprehensive understanding of the effectiveness of ResNetMF, we conducted an error analysis 

by examining the types of recommendations that it gets wrong. We observed that errors are more likely to occur in 

scenarios involving cold-start users or items with sparse interaction data. For example, ResNetMF occasionally 

struggles to accurately predict ratings for new users or items with limited historical data. However, for users and 

items with sufficient interaction data, ResNetMF consistently outperforms other methods. This suggests that while 

ResNetMF is highly effective for warm-start scenarios, additional techniques such as content-based filtering or 

hybrid approaches may be needed to address cold-start challenges.  

4.9 Limitations 
While ResNetMF demonstrates strong performance across multiple metrics, it has certain limitations. Firstly, its 

performance degrades in cold-start situations where there are few interaction data available for new users or items. 

Secondly, the training time, although significantly faster than other deep learning methods, may still be prohibitive 

for very large-scale datasets. Finally, the hybrid architecture of ResNetMF introduces additional complexity, which 

may require more computational resources compared to traditional matrix factorization methods.  

5 CONCLUSION AND FUTURE DIRECTIONS  
This study proposed ResNetMF, a novel recommendation system that combines matrix factorization with a deep 

residual network. Experimental results indicate that ResNetMF significantly enhances recommendation accuracy 

(RMSE and MAE) compared to most of the deep learning and traditional matrix factorization-based 

recommendation methods tested. Furthermore, ResNetMF exhibits significantly faster training times than other 

deep learning approaches, making it more suitable for large-scale recommendation systems. The improved 

performance can be linked to the capability of ResNet architecture to model intricate non-linear patterns within user-

item interaction data. 

Future work will focus on addressing the cold-start problem by integrating graph convolutional networks (GCNs), 

which use user-item interaction graphs to propagate information from known users/items to cold-start entities. 

Additionally, we plan to investigate the use of graph attention networks (GATs) to dynamically learn the importance 

of different criteria in multi-criteria recommendation, enhancing the performance of ResNetMF by refining the 

feature aggregation process and adaptive weighting of multiple rating dimensions.  
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