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Abstract

Background: Learning programming is often difficult for beginners, primarily because of the challenge
of providing timely and personalized feedback in large educational environments. While automated
assessment systems have improved efficiency in grading and feedback, they typically focus on
correctness and often lack personalized guidance concerning code quality, readability, and
maintainability.

Objective: This study aims to investigate whether integrating static code analysis into automated
assessment systems to provide personalized feedback can effectively enhance students code quality,
learning process, and engagement in programming courses.

Methods: We designed a personalized feedback system integrated with static analysis tools (Cppcheck
and Clang-format), deployed within an existing automated assessment platform used by undergraduate
programming students. The system was evaluated in a controlled experiment involving 60 students
randomly divided into control and treatment groups. The effectiveness of personalized feedback was
measured through quantitative metrics (style violations, potential bugs, and design issues), qualitative
surveys, and submission behaviours over multiple assignments.

Results: Results demonstrated that students receiving personalized feedback improved their code
quality, reducing the number of style violations by 76%, potential bugs by 52%, and structuralissues by
32% compared to the control group. Students also expressed higher satisfaction, increased motivation,
and greater willingness to iteratively refine their code based on personalized feedback.

Conclusion: The integration of static code analysis for personalized feedback not only enhances code
quality but also helps a deeper understanding of good programming practices among students. Future
research should focus on making feedback systems more adaptive, incorporating intelligent tutoring
techniques, and exploring long-term impacts on programming habits and skill retention.

Index Terms

Personalized feedback; Static code analysis; Student engagement; Code quality improvement;
Learning analytics; Student-centered feedback; Clean code principles; Code quality metrics;
Interactive feedback.

1 INTRODUCTION

Teaching programming effectively, especially in large classes, is naturally
challenging because of the varying skill levels and different learning speeds among
students. Beginners frequently require prompt, detailed, and individualized
feedback to identify their mistakes clearly and continuously improve (Gallien and
Oomen-Early, 2008). However, traditional methods relying on manual feedback
from instructors or teaching assistants do not scale efficiently.
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With growing class sizes, timely personalized feedback becomes difficult to achieve, often resulting in generic,
shallow comments that do not address the specific issues students encounter. As a result, learners might become
frustrated, lose motivation, or develop persistent misconceptions because they lack proper guidance.

To address this issue, educational institutions commonly employ automated assessment tools. These systems usually
focus on verifying program correctness by running predefined test cases or performing basic style checks (Rocha et
al.,, 2023). Although these tools greatly enhance feedback delivery speed, their generic and standardized nature often
limits their educational effectiveness. They mainly inform students whether their solution meets functional
requirements, often overlooking important aspects of programming such as readability, maintainability, and
compliance with good coding practices. As a result, students may receive feedback that, although technically correct,
does not effectively encourage deeper learning or meaningful improvement in their coding skills.

Static code analysis provides a promising approach for improving the quality and relevance of feedback in
programming education. Also known as linting, static analysis tools inspect source code without executing it,
identifying potential issues such as stylistic inconsistencies, poor coding practices, redundant or inefficient code, and
possible bugs (Messer et al., 2024). In professional software development, static analysis is commonly used to ensure
high code quality and consistency. Introducing these tools into educational settings holds great potential, as they
can automatically detect numerous issues in student code submissions. Unlike feedback focused exclusively on
correctness, static analysis provides students with practical suggestions for improving their coding style, structure,
and overall code quality, leading to a more complete learning experience.

However, a critical challenge remains when using static analysis tools in educational settings. Since these tools are
primarily developed for professional programmers, their feedback is often delivered as technical warnings that can
easily overwhelm novice learners (Fehnker and Blok, 2017). Beginners may struggle with interpreting the feedback
due to its technical wording, large number of warnings, or difficulty in determining which warnings to address first.
The complexity of these messages may even lead students to ignore useful suggestions, reducing the overall
effectiveness of the feedback.

To address these challenges, feedback personalization becomes essential. Personalizing static analysis feedback
involves customizing the feedback specifically to each student’s current skill level, understanding of coding
concepts, and individual learning path. Instead of presenting students with overwhelming lists of technical
warnings, personalized feedback selectively filters and prioritizes relevant issues, presents messages in instructional
and supportive language, and highlights recurring problems that students struggle with the most. This tailored
approach makes feedback clearer, more manageable, and directly useful, promoting a constructive learning
environment.

This study explores the integration of personalized static analysis feedback into introductory programming courses.
We aim to answer two primary research questions:

* RQ1: Does integrating personalized static analysis feedback into programming assignments improve
students’ code quality and learning outcomes compared to standard feedback methods?

* RQ2: How do students perceive and interact with personalized static analysis feedback in terms of usability,
helpfulness, and motivational aspects?

To explore these questions, we developed a specialized feedback system integrated with widely used static analysis
tools (Cppcheck and Clang-format). This system was implemented within an existing automated assessment
environment utilized in undergraduate programming courses at the Technical University in KoSice. We conducted a
controlled experiment involving students randomly divided into control and experimental groups. Student
submissions were evaluated quantitatively to measure improvements in code quality and qualitatively through
surveys to gauge students’ personal experiences and satisfaction with the feedback received.

In the following sections, we first discuss existing research related to automated feedback methods, particularly
focusing on static code analysis and personalization strategies. Then, we describe the methodology employed,
including details of our experimental setup and feedback system development. Afterward, we present the results
obtained and interpret them within the broader context of existing literature, also addressing any limitations
identified. Finally, we summarize our main contributions and propose potential directions for future research
focused on personalized feedback in programming education.
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2 RESEARCH BACKGROUND

The challenge of delivering effective feedback in programming education has been widely discussed in recent
literature (Binas and Pietrikova, 2022). Automated assessment systems are now common in both large-scale
university settings and online courses. These systems help reduce instructors’ workload while providing timely
feedback to students. A systematic review found that most tools emphasize correctness, typically through dynamic
analysis like unit tests or static comparisons with a reference solution (Messer et al., 2024). Feedback in such systems
is often limited to binary outcomes (Horvath and Gurbal, 2024), such as “passed” or “failed”, or output differences.
Although immediate, this type of feedback does not explain how students could improve their code in terms of
structure, readability, or style. The same review emphasized that only a small proportion of tools consider deeper
code quality factors like maintainability or documentation, and even fewer include static analysis metrics.
Nevertheless, it confirmed that rapid feedback delivery supports iterative development, helping students improve
over multiple submissions, which in turn contributes to higher satisfaction and more learning opportunities.

Static analysis in educational contexts has been explored by several researchers aiming to supplement correctness-
based assessment with code quality evaluation (Truong et al., 2004). Study (Nutbrown and Higgins, 2016) evaluated
the integration of static analysis into Java assignment grading and initially found that the alignment between rule-
based static analysis and human grading was weak, suggesting that many automated warnings were not relevant
or were misleading for novice code. However, after refining the selected rules and adjusting the way feedback was
presented, the correlation with instructor assessments improved substantially. This study underlined the importance
of calibration and thoughtful selection of rules when using static analysis in learning environments.

Another contribution (Fehnker and Blok, 2017) proposed a set of custom static rules added to the PMD tool
(Copeland, 2005) specifically designed for beginners. These rules addressed frequent novice mistakes such as
inconsistent naming, redundant code, or misuse of control structures. Their system was embedded in an IDE and
provided live feedback while coding. Students responded well to these personalized suggestions, and the system
successfully identified many issues relevant to their skill level. On the other hand, the study also highlighted that
warnings from professional tools often contain information that is either too advanced or irrelevant to novices, which
can distract or overwhelm learners. A separate study observed that students addressed simple issues like formatting
or unused variables quickly but struggled more with abstract warnings such as overly complex methods or
architectural suggestions. In several cases, students acknowledged the feedback but postponed resolving design-
level problems due to time constraints or fear of breaking functionality. These findings collectively suggest that static
analysis tools can assist in education, but must be filtered, explained, and contextualized properly.

The issue of feedback overload and clarity is echoed across multiple studies. Large volumes of warnings, especially
without prioritization or explanation, can reduce student engagement. This has led to calls for educational static
analysis systems that are simplified, filtered, and accompanied by tailored explanations. Several researchers point
out that linters designed for industrial use may not translate well into classrooms unless adapted. Even basic
formatting or naming violations can confuse students if not clearly connected to coding principles they are learning.
Hence, tools must balance between guiding students and overwhelming them with details. Another important
strand of related work is the personalization of feedback in computing education. General education literature has
long recognized the benefits of personalized learning interventions. In the context of programming, intelligent
tutoring systems attempt to offer this kind of adaptivity by analysing student performance over time and tailoring
feedback accordingly. A recent mapping study concluded that personalization is one of the most underdeveloped
aspects in automated feedback systems (Gallien and Oomen-Early, 2008). Most systems continue to present static,
generic messages without accounting for student history, performance patterns, or learning progress. The review
proposed several design directions for incorporating personal learning profiles into future systems, including rule
prioritization, graduated hints, and differentiated language complexity.

The broader trend in computing education supports moving beyond binary correctness toward richer, formative
feedback. Research shows that students benefit more from feedback that explains why something is problematic and
how to address it, not just that it is wrong. However, building such systems is complex, particularly when balancing
automation, precision, and accessibility. Combining static analysis with personalization is seen as a promising
direction. Instead of overwhelming students with every warning, a system could prioritize messages based on past
behaviour, hide repeated information, or escalate detail gradually. Some proposals include dynamic systems that
adapt based on submission history, student profile, or demonstrated skill level.
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Our contribution builds on these themes by proposing a static analysis feedback system that incorporates basic
personalization. We adopt static tools not just for correctness but to evaluate code clarity and structure and filter the
feedback to match the student’s learning needs. By doing so, we attempt to address the gaps reported in prior work.
Absence of adaptive guidance, the risk of feedback overload, and the lack of educational tailoring in static analysers.
In the following section, we describe how our system was implemented, the configuration choices made for
educational appropriateness, and how it was tested in a real classroom setting.

2.1 Maintaining Code Quality

Following up on the need for meaningful feedback in programming education, it is equally important to guide
students in writing code that is not only functionally correct but also readable, maintainable, and consistent. As
students’ progress beyond solving simple problems, the clarity and structure of their solutions become increasingly
important. In this context, teaching code quality forms a key part of programming education.

Article (Martin, 2008) emphasizes that good code should be easy to read, understand, and modify. According to him,
software is not done until it is done right. Instilling this mindset in students early in their education encourages
habits that go beyond getting the program to work; it teaches them to think critically about their code as a long-term
artifact that might be read or reused by others later. These ideas help shift the focus from “getting it done” to "doing
it well”, which is relevant in collaborative or long-term software projects. At the same time, Martin also warns against
excessive commenting, arguing that clear structure and naming should make the code self-explanatory. In our
approach, we encourage students to use comments meaningfully, but not as a substitute for clean and
understandable code.

2.2 Static Analysis

One way to help students write better code is using static code analysis (Molnar et al., 2020). This approach allows
tools to examine code without running it, using pre-defined rules to identify issues such as poor structure or
violations of style guidelines. For students, these tools act as early support mechanisms, offering hints and
corrections before the code is ever compiled or executed.

Static analysis is distinct from dynamic analysis, which requires program execution. While dynamic tools examine
how code behaves at runtime, static tools analyse structure, logic, and syntax at rest. This makes static tools
particularly useful during early stages of development or in educational settings where immediate feedback is
valuable. The aim is not only to detect bugs or vulnerabilities but also to highlight opportunities for cleaner, more
maintainable code (Cooper and Torczon, 2023).

These tools provide feedback that can help learners recognize and address issues that go beyond correctness, such
as naming, code duplication (Bubenkova et al., 2025), complexity, or unused variables. They are often used in
industry to enforce code quality standards and catch problems early. By incorporating them into programming
education, students can adopt similar habits that professional developers rely on. Several studies (Jurado, 2021; Chen
et al.,, 2022) have shown that using static analysis as a feedback tool for students can not only help them catch
mistakes earlier but also improve their understanding of how good code is written. In this way, the analysis becomes
a learning tool, not just a correctness checker.

2.3 Code Conventions

Alongside static analysis, consistent code conventions are essential in helping students learn to write clean,
understandable code. These rules provide a shared style and vocabulary that make the code easier to read, review,
and maintain. While style alone does not determine correctness, poor formatting or naming can make code harder
to understand, which often leads to bugs or miscommunication. Author (McConnell, 2004) argues that consistent
style is one of the cornerstones of good software construction. Teaching conventions early helps form habits that
reduce friction in collaborative environments and align with professional development practices.

To illustrate this, Table 1. presents selected code snippets that contrast common mistakes with their improved
counterparts. These examples are intentionally brief to emphasize clarity and stylistic consistency.

Table 1. Selected examples of common code convention mistakes and their improved versions.
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Incorrect (non-compliant) Correct (compliant)

int computeSquare (int number) {
int a(int b) { return number * number;

return b*b; }

if (x > 0) {

if (x>0)y=10;else y=20; y = 10;
} else {
y = 20;

for (int i = 0; 1 < 5; i++) {
for(int

i=0;i<5;1i++)printf ("sd", i) ; printf ("5d®, 1);

double a = w * h; double area = width * height;

As these examples suggest, even small improvements in naming or formatting can make a substantial difference in
code clarity. Encouraging students to adopt such practices helps reduce misunderstandings and improves
maintainability. These habits become especially valuable in collaborative or long-term projects where readability is
crucial.

3 SYSTEMIMPLEMENTATION AND STUDY DESIGN

The study follows a quasi-experimental design, conducted in a real-world educational setting without random
assignment. Its aim was to evaluate whether integrating personalized static code analysis into a programming course
would influence student behavior and code quality. Student groups from different semesters were exposed to
varying levels of automated and personalized feedback, which enabled comparative analysis of outcomes. Although
no formal control group was defined, the study included multiple naturally occurring cohorts, allowing us to assess
the impact of feedback interventions over time. To support this objective, we extended an existing submission and
feedback system by embedding tools capable of analysing student source code from multiple perspectives. These
tools included Cppcheck for static code analysis and Clang-format for style and formatting evaluation (Delev and
Gjorgjevikj, 2017). The extended system generated tailored feedback that students received via email as they
progressed through their assignments. Feedback was delivered during the process of completing the assignment,
allowing for iterative improvements. This personalized feedback was constructed by interpreting raw outputs from
the analysis tools and mapping them to readable explanations and actionable suggestions. In addition to identifying
problems, the messages aimed to explain their rationale, impact, and possible solutions. Feedback generation was
governed by several heuristics. The system prioritized serious issues over stylistic ones and reduced redundancy by
downplaying repeated warnings. Feedback wording varied depending on prior student behavior. For instance,
students who had previously addressed similar warnings received shorter suggestions, while others were provided
more detailed guidance. The tone across all messages was constructive, in accordance with findings from (Fehnker
and Blok, 2017) that overly technical or judgmental messages reduce effectiveness in novice-oriented environments.
Examples of feedback transformations are illustrated in Table 2. These demonstrate how a raw warning from a tool
like Cppcheck was reframed to offer pedagogically valuable guidance.
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The evaluation was performed over two programming assignments during one academic semester. Students were
divided into three target groups to ensure a broader perspective. The first group consisted of students currently
enrolled in the course who received personalized feedback while working on assignments. The second group
included students from previous semesters who had access to standard feedback but were later exposed to the
updated version of the feedback system. The third group comprised students who had never received any such
feedback during their coursework, including both recent graduates and current students with relevant programming
experience. All groups worked within the same infrastructure, and students were allowed to make multiple
submissions. The feedback for the active group was refreshed with every new submission, enabling them to address
issues iteratively. To assess the impact, we collected several types of data:

e Submission logs and code snapshots to track resolution of detected issues.

e Final static analysis reports to evaluate remaining problems at the deadline.
e Assignment grades to determine if feedback affected performance.

e Survey responses from 171 participants across three groups.

Survey items were constructed to measure both objective outcomes and students’ subjective perceptions. These
included statements such as “did the feedback help you find and fix mistakes?’’ or ““was the feedback helpful or confusing?"’.
Thematic coding was applied to open-ended responses to identify commonly mentioned benefits and drawbacks.
Following recommendations from (Rocha et al., 2023) and (Nutbrown and Higgins, 2016), the survey design and
feedback mechanism emphasized clarity, accessibility, and individual relevance. This methodology enabled us to
observe not only how the feedback affected immediate outcomes but also how students perceived its role in their
learning.

Table 2. Comparison of Static Analyzer Messages and Personalized Feedback.

Detected Issue Typical Static Analyzer Message Personalized Feedback to Student

Unused variable Unused variable temp. The variable temp is declared but never used. Consider
removing it to clean up your code.

Naming convention not | Variable name my_vardoes not Try renaming my_varto follow naming conventions (e.g., myVar).

followed match naming standard. Consistent naming improves readability.

Method too long Method calculateResults is Your method calculateResults could be split into smaller

excessively long. functions. This would improve clarity and make testing easier.

Potential null Null pointer risk (object data may data might be null here. Consider adding a check before

dereference be null). accessing it to prevent possible crashes.

Magic number usage Magic number used: 42. Avoid using numbers like 42 directly in your code. Defineitas a
constant with a descriptive name to improve clarity.

Duplicated code block | Code block is repeated. This section of code appears multiple times. Consider creating a
function to eliminate redundancy and improve maintainability.

Unused include Unused include: math.h. The math.hheader is not used in your program. You can safely

directive remove it to reduce clutter.

Missing return Control reaches end of non-void This function is expected to return a value, but no return

statement function. statement was found. Add a return to ensure the function

behaves correctly.

3.1 Integration of Static Analysis with Cppcheck

Our automated evaluation system (Horvath et al., 2024) regularly tests programming assignments using unit tests
and tracks various performance metrics. We extended this feedback system with support for static code analysis
using Cppcheck, a tool designed to analyse C source code and detect potential issues without running it (Pereira and
Vieira, 2020). The tool examines structure, logic, and syntax to identify possible bugs, warnings, or violations of
coding conventions. After student code is submitted, it is processed by Cppcheck with parameters --enable=all to
activate all checks and --std=c11 to match the course’s compilation settings. The output is stored in [SON format and
parsed into structured statistics linked to the student's record. The issues are divided into three categories:
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e Errors are serious issues that should be corrected to prevent potential runtime failures. These represent
logical or syntactic mistakes that can result in undesired behavior.

¢ Warnings indicate constructs that may not break the code but suggest poor design or risky patterns. Students
are encouraged to consider them carefully.

e Style issues relate to code formatting and readability. Although they do not affect execution, they influence
maintainability and clarity.

Static Analysis
Style issues

e File:ps3/mm.c

e Line: 19

e Description: The scope of the variable 'help_number’ can be
reduced.

Advices

Below, we provide advice based on the errors detected in vour code. Our
primary goal 15 10 assist you in improving the cleanliness and
mamntamability of vour code. By followmg these suggestions, you can
work towards making your code cleaner, more maintainable, and
develop proficiency in employing good coding practices. We hope that
these pieces of advice prove helpful to you

Scope Overextension Error

The scope of the variable variable_name' can be reduced.

Imagine you're telling a storv, and you have a special object in your
hand. This object has a purpose in vour story, but instead of keeping it
close and relevant to the specific scenes where it matters, you're carrying
it around everywhere, even in scenes where it doesn't contribute
anything.

In the programming world, this is similar to what happens when you get
the Scope Overextension Error. It basically means that you're using or
declaring a variable more broadly than necessary. It's like carrying that
special object throughout your entire story when you only need 1t fora
few specific parts. The advice 1s to be more focused and keep that
variable only where it's really needed in your code

Learn more

e Reduce Scope of Vanable

¢ The scope of the vanable can be reduced (and loop)

Figure 1. Feedback example showing an overextended variable scope warning.

The feedback students receive (Figure 1) is structured to reflect this categorization. Each type of message includes
file name, line number, and a brief description. To increase usefulness, we added explanations for frequent errors.
This includes summaries, fix suggestions, and in many cases, hyperlinks to external resources. Initially, we analysed
code from 100 student repositories to determine which types of errors appeared most often. From this analysis, we
selected the top 20 most frequent error patterns and developed advice for each of them. This advice includes
simplified explanations and practical tips tailored to novice programmers. We noticed that simply listing errors in
emails was often insufficient, some students ignored the messages or didn’t understand how to act on them.
Therefore, we modified the email content to include explanations next to each error. Each message now starts with
the original diagnostic from Cppcheck, followed by a human-readable summary, an explanation of the issue, and a
suggestion for improvement. Where relevant, the message includes a link to trusted documentation or tutorials.
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By narrowing the focus to common and recurring issues, we kept the feedback manageable while maintaining
relevance. Covering every possible Cppcheck output would have been unrealistic, so we emphasized those findings
most useful to most students. This setup transformed error detection into a feedback loop with an educational
function. The system not only detects issues but also guides students in understanding and resolving them, turning
static code analysis into a practical tool for learning good coding habits.

3.2 Automated Formatting Feedback with Clang-Format

To help students write code that is not only functional but also clean and easy to read, we integrated Clang-format
into our feedback workflow (Babati et al., 2017). While Cppcheck addresses deeper structural or logical problems,
clang-format focuses on surface-level consistency, such as indentation, spacing, and bracket placement, that
significantly affects how readable and maintainable the code is. The intention was not to enforce style for its own
sake, but to show students how consistent formatting helps communicate ideas clearly and avoids unnecessary
confusion. We prepared a custom clang-format configuration file tailored to the educational context. The rules we
used covered the basic aspects of layout such as indentation width, brace styles, line length, and use of blank lines.
The configuration aligns with common professional conventions but also avoids overly strict enforcement to reduce
cognitive overhead for beginners.

Coding conventions

Thus duff file 15 used to check how well the code follows the standard
rules and styles for wniting in the C programming language Although
following these rules and stvles 1sn't part of the final evaluation, we
recommend using them, as clean code and good formatting are crucial
for programmers to improve the quality, readability, and maintainability
of their code.

racer.c
@@ -1,38 +1,27 @@

s#include <math.h>
#include <stdio.h»

+float racer{int t, int s[], int v[], int n) {

float low = @.8;
float high = @.@;
float speed = v[8];
float track;

for (int 1 =8; 1 < n; 1++) {

if (v[i] < speed) {

+

speed = v[i];
T

Figure 2. Formatting feedback example showing changes suggested by the system.

The system was extended to run clang-format automatically during the feedback generation process. When a student
submits code, the tool reformats it according to the defined rules and compares the result with the original
submission. If there are differences, the system extracts the relevant changes and includes a brief message in the
feedback. Rather than listing every line that was altered, we highlight only the relevant violations and summarize
them in a way that points students to the underlying principle. To improve clarity, each style issue is accompanied

https://doi.org/10.18267/j.aip.283 61 https://aip.vse.cz


https://aip.vse.cz/

Acta Informatica Pragensia Volume 15, 2026

by a short explanation. A visual example of this kind of feedback can be seen in Figure 2, where an overly broad
variable declaration is flagged and described using an analogy that makes the concept more relatable.

We found that simply informing students about formatting violations has limited value unless they understand why
these rules matter. That's why each part of the feedback combines the technical detail with commentary written in
accessible language. These messages aim to build intuition for clean code over time, helping students internalize
good habits rather than memorize rules. This integration of clang-format turns formatting feedback into something
more than a mechanical critique. It becomes an opportunity to practice discipline in presentation, to develop
attention to detail, and to treat code as a form of communication. These skills are often underemphasized in early
programming courses, yet they are essential for long-term development as a programmer.

3.3 Feedback system implementation

After incorporating new forms of feedback focused on static analysis and code formatting, we needed to evaluate
how these changes affected students' perception of their own code quality. During the semester, students received
multiple feedback emails while working on assignments, as well as a final one with summary statistics. Since the
feedback was delivered throughout the assignment process, students had a chance to identify and fix issues while
still working on their solutions. It is important to note that the intention of these improvements was not to improve
final scores directly, but rather to help students recognize mistakes, refine their style, and develop awareness of code
quality. In programming, clearer and more structured code often leads to fewer logical errors and easier
maintenance. Still, the impact of such interventions is not always visible through traditional evaluation metrics.

To gain insight into how students perceived the usefulness of the new feedback, we conducted a questionnaire
evaluation. We prepared a structured form designed to assess how feedback supported the development of readable
and maintainable code. The form contained several groups of statements rated on a five-point scale, along with open
questions. These invited students to share what they found helpful and suggest improvements. Questions were
divided into four thematic parts such as overall experience, code analysis, formatting, and proposals for future
development.

We also included a visual example of the feedback (Figure 2) to help respondents recall the format and nature of the
messages they had received. This figure illustrates how code formatting suggestions are presented when comparing
the student's version to the corrected one.

We distributed adapted versions of the questionnaire to three different groups:

1. group consisted of current students enrolled in the introductory programming course who received
feedback during the semester. These respondents had the most direct exposure to the system in practice.

2. group included students from previous years who completed the same course before the feedback
extensions were introduced. They were shown updated examples based on two older assignments, allowing
them to reflect on the differences.

3. group consisted of students who had never received any form of feedback from the assistant. Many of them
were already graduates working in the software industry, while others were still studying. Before filling out
the questionnaire, they were asked to review feedback examples and reflect on their usefulness from a more
experienced perspective.

By comparing responses from these three groups, we aimed to understand how different levels of experience and
exposure to feedback affected students' perceptions. This helped us assess the broader impact of the changes beyond
the course setting itself.

4 RESULTS

To evaluate the real impact of the personalized feedback mechanism integrated into the automated evaluation
system, we analysed student responses from three target groups with different levels of exposure to the system. A
total of 171 valid responses were collected, offering a detailed picture of how the feedback was received and how it
influenced students’ perceptions, habits, and coding outcomes.
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4.1 Feedback from First Respondent Group

The first group consisted of students who worked with the feedback in real time while solving assignments.
According to the responses, 82.5% evaluated the feedback positively. Students appreciated the system's ability to
highlight not only functional mistakes but also code quality issues. About 66% agreed that the feedback helped them
write higher-quality code. The static code analysis component was singled out as useful by 73% of respondents,
suggesting that students paid attention to these details and found them beneficial. Only 43% reported using coding
conventions before the course. Nevertheless, about half of the group found the formatting comparisons useful, and
54% felt that this part of the feedback was clearly presented. This gap between previous habits and current
appreciation suggests that students were exposed to new expectations and learned from them.

Open-ended responses reinforce these findings. Several students mentioned they had never considered formatting
or naming conventions until the feedback pointed them out. One remarked, “I always just checked if my program passed
the tests, but this time I saw where my code could be better even if it worked.” Others mentioned that the emails encouraged
them to revisit their code even after they had received a passing score. The addition of links to external resources
was often cited as helpful, giving students the chance to read more about specific problems if they were interested.
Some also described how their workflow changed over time. After the second or third feedback round, students
began checking for certain recurring issues in advance. As one noted, “By the third assignment I was already writing
code with those suggestions in mind.” This illustrates a transfer effect, feedback on one assignment influenced how
students approached the next one.

To explore how students perceived the role of feedback in their learning process, three specific statements were
included in the questionnaire:

*  Q1: "] think that this kind of feedback is a great idea.”
*  Q2: "] think that Oracle feedback would help me to improve my results and working skills.”
*  Q3: "Oracle feedback would motivate me to get better.”

Student Perception of Oracle Feedback

6 Q1: Feedback is a great idea
B Q2: Would help me improve
mmm Q3: Would motivate me

Number of responses

1 2 3 4
Rating (1 = strongly disagree, 5 = strongly agree)

Figure 3. Responses to three questionnaire items (Q1-Q3) about perceived usefulness and motivational impact of the
feedback, measured on a five-point Likert scale.

These questions aimed to assess the general acceptance of feedback (Q1), its perceived impact on skill improvement
(Q2), and its motivational potential (Q3). The summary of responses is presented in Figure 3. The data show that
most students responded with values of 4 or 5 on the Likert scale, suggesting strong agreement with all three
statements. While Q1 reflects general appreciation, Q2 and Q3 indicate that students also found the feedback
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beneficial for their learning and self-improvement. These results further support the idea that timely and relevant
automated feedback can positively influence both the quality of students' code and their motivation throughout the
course.

4.2 Feedback from Second Respondent Group

Students in the second group, who had completed the same course earlier, were sent updated examples of feedback
based on their past assignments. Nearly all respondents supported adding the feedback system permanently to the
course. One-third said it would have improved their results, and almost 78% believed the static analysis section
would have helped them write better code. Only 45% indicated they would act on every suggestion, yet 88% found
the advice helpful. Several noted that the tone of the messages was encouraging rather than punitive. One student
wrote, “It told me what to improve, not just what I did wrong.” Suggestions for improvement included adding more
context to the reported errors, such as showing a few lines of code before and after the issue. Some also recommended
highlighting the specific change in formatting with colours or better contrast. Formatting suggestions received mixed
reviews. 67% found the comparison to formatted code helpful, but only 44% thought it was clearly presented. Several
students commented that they initially found the visual formatting diff difficult to read but appreciated it more after
understanding how it worked.

Multiple responses pointed out that feedback on quality is often missing from automated systems. One respondent
wrote, “When I was taking the course, all that mattered was passing the tests. 1 would have appreciated this kind of feedback.”
Such statements reinforce the notion that correctness and quality must be addressed together in early programming
education.

Student perception also confirmed that static code analysis was seen as a valuable addition. Many students agreed
that Oracle should be used every year during ZAP and PV]C courses (Q1), and more than half reported that static
code analysis was useful (Q2). This aligns with the observation that such feedback helped them not only identify
issues but also understand the reasoning behind corrections. Moreover, several students stated that feedback based
on static analysis helps them write code of better quality (Q3). These reactions support the idea that early exposure
to code quality principles can influence long-term coding habits. Figure 4 summarizes the distribution of responses
to these questions, showing generally strong agreement across all three.

Student Feedback on Static Analysis and Oracle Usage

Q1: Recommend Oracle
mmm Q2: Static analysis useful

mmm Q3: Feedback improves code
50+t

Number of responses

2 3 4
Rating (1 = Strongly disagree, 5 = Strongly agree)

Figure 4. Distribution of student responses to three evaluation items concerning
the impact of Oracle feedback and static analysis.
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4.3 Feedback from Third Respondent Group

The third group, composed of students with no prior experience with the feedback system, reviewed examples
before completing the form. A strong 95% supported the idea of integrating it into the course. Around 84% believed
the static analysis messages could help students write cleaner code, and most said they would act on the suggestions
provided. In fact, most respondents agreed with the statement “I would try to fix all the issues mentioned in the emails
so there are none left” (Q2), which indicates a readiness to actively engage with the feedback. The section dealing with
formatting feedback was also well received. 79% found the comparisons helpful, and 84% said that following code
conventions had benefited them professionally. Many respondents also indicated that they “found the static code
analysis part useful” (Q3), reinforcing the value of static techniques even for those who had not previously
encountered them. Some noted that such habits are usually only acquired later, during internships or jobs, and
should ideally be introduced earlier. Furthermore, a large portion of students believed that this improvement “would
help them write code of better quality” (Q1), which supports the idea that educational tools like these can foster
professional-level awareness early in the learning process.

Suggestions from this group focused on presentation and usability. Several proposed an interactive version of the
feedback, where one could click on the message and see examples or links in a side panel. Others wanted better
formatting visibility, “If I could see the old and new version side by side, it would be much easier to understand.” These
observations reveal a general openness to using such a tool, paired with expectations shaped by experience with
professional environments. Figure 5 summarizes the results of all three items.

Oracle Feedback - TUKE Students and Alumni

10+ Q1: Helps quality
Im Q2: Fix issues
EEE Q3: Useful analysis
st
n
]
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o
f—
]
Q
E 4p
S
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2+
0 .

1 2 3 4
Rating (1 = Strongly disagree / Not useful, 5 = Strongly agree / Very useful)

Figure 5. Distribution of responses from TUKE students and alumni.

4.4 Aggregated Results and Visual Summary

Across all groups, the feedback system was positively received. About 85% of respondents considered it useful and
worth using regularly. The static analysis segment was mentioned by 74% of all students as helpful for learning how
to improve their code. Feedback was not just accepted; it was engaged with. Students used it to discover overlooked
mistakes, improve readability, and internalize conventions that are otherwise treated as secondary.

Open-ended responses emphasized the value of error explanations and actionable advice. Many appreciated that
the emails did not simply say “this is wrong” but went further, offering concrete suggestions. Students used phrases
like “I didn’t know about that rule before, but now I do” and “This taught me something I hadn't heard in the lectures.” Such
responses show that the feedback supported learning outside of formal instruction. This is also reflected in the
overall distribution of responses shown in Figure 6.
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Formatting suggestions were rated slightly lower in clarity, though still seen as valuable. Several students said they
had to read the diff output multiple times to understand what had changed, but even those who found it less clear
admitted that it pushed them to reflect on their own style. Suggested improvements included better code
highlighting, integration with code editors, and showing formatted output in a split view.

Perception of Feedback and Code Improvement
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Figure 6. Summary of Student Perceptions Regarding Feedback and Code Improvement.

We also observed differences in how students approached the feedback. Some saw it as guidance and fixed their
code in multiple iterations, while others chose to address only the most obvious or required changes. Still, there was
a general trend of increased awareness. One student described the process “It was a lot at first glance, but I tackled the
easiest fixes first and then the code got much cleaner step by step.”

The system’s tone and timing were also key factors. Students commented positively on the feedback arriving during
the assignment window, giving them time to respond. Several mentioned that they viewed the assistant as a
companion in the coding process. One described it as “a second pair of eyes that helped me catch things I missed.”

In summary, the collected data suggests that personalized feedback based on static analysis and formatting is both
effective and appreciated. It addresses a known gap in programming education, guidance on code quality, and does
so in a way that students find understandable and actionable. Although there is room to improve how the feedback
is displayed, especially in terms of formatting clarity, students across all backgrounds recognized its value and
encouraged its continued use.

4.5 Code Quality Improvement

To provide additional insight into student progress beyond survey responses and experimental tasks, we also
analyzed performance data across several distinct problem sets used in multiple academic years. These tasks vary
in complexity and are designed to assess not only correctness but also aspects of code structure, readability, and
coding conventions. We compared average scores between submissions where students received personalized static
analysis feedback and those evaluated under standard conditions without such feedback.
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Figure 7. Average assignment scores across selected programming tasks with and without personalized feedback.

As shown in Figure 7, the results indicate that students exposed to personalized feedback consistently achieved
higher scores across most tasks. This effect was especially notable in problems where structural clarity and naming
conventions played a larger role. While causality cannot be definitively claimed, the repeated pattern across different
cohorts and assignments supports the assumption that targeted feedback may encourage more careful coding
practices and lead to improved outcomes over time. These results align with the original intention of our system, to
raise awareness of code quality and not just correctness. Some problem sets, particularly in 2024, show smaller or
even inverse differences, which may reflect varying task designs or external factors. Observed trend is consistent
with the hypothesis that guided feedback helps reinforce clean coding habits and contributes positively to student
development.

5 DISCUSSION

The findings of this study suggest that integrating static code analysis into personalized feedback can support
students in improving code quality, particularly in areas that are often underemphasized, such as formatting and
clarity. While correctness has long been a central metric in programming education, our results show that students
are willing and able to respond to qualitative insights when those are presented in a way that is understandable and
relevant to their learning stage. In the target group, students corrected a higher number of style related issues and
showed greater attention to readability and structure. They did this without compromising correctness. Rather than
focusing only on passing automated tests, students reflected on feedback and made iterative improvements. This
was supported by submission behavior, where feedback recipients more often resubmitted their work and addressed
elements that did not directly affect their grade. Several students also remarked that the messages were “not
overwhelming” and helped them understand what good code should look like, not just how to get it working.

These findings correspond with prior work that highlights the value of targeted formative feedback in programming
courses. Nutbrown and Higgins (2016) showed that static analysis can surface issues that human graders care about,
but which are difficult to capture using test-based assessment. Our study extends that idea by showing that giving
static analysis feedback directly to students can prompt proactive correction and reflection. The feedback system
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was designed to present only the most relevant information in a friendly tone. This avoided excessive output, which
in earlier studies has been shown to confuse or discourage learners. One student even described it as "like having a
mentor that watches over your code”. The comparison between issue types also reveals a pattern in what students
prioritize. Style issues were addressed more frequently, while design-related suggestions, such as refactoring
complex functions, remained largely unresolved. This reflects a realistic strategy given the time constraints of
assignments. Students fixed what they could, starting with the easier parts, while postponing more structural
changes.

To summarize key aspects of the proposed solution, its advantages and limitations, Table 3 provides overview of
current observations and potential directions. While the observations presented in this analysis indicate promising
possibilities, further work is needed to evaluate long term effects, generalizability to different student, and the
impact on deeper programming comprehension.

Table 3. SWOT analysis of the personalized static analysis feedback system.

Strengths Encourages active learning and reflection, improves code quality beyond correctness, scalable
integration into automated grading systems, minimal instructor intervention required, aligns
with professional coding habits.

Weaknesses |Limited adaptation to individual skill levels, predefined rule set may not cover complex cases,
occasional superficial fixes by students without full understanding, dependent on proper rule
selection and configuration.

Opportunities | Integration with adaptive feedback mechanisms, application in other courses and languages,
combination with Al-based coding assistants for advanced explanation generation, incorporation
of pattern recognition, contextual understanding, self-learning and efficiency into educational
workflows.

Threats Risk of students developing dependency on external Al tools, potential shift towards passive
coding behavior when fully automated tools dominate, balancing automation and skill
development remains critical.

These insights suggest that introducing feedback earlier in the workflow, or embedding it directly into the
development environment, might result in better outcomes. If students encounter suggestions while still writing
their code, rather than after submission, they may be more inclined to make meaningful improvements. While
modern IDEs and Al tools such as GitHub Copilot provide comprehensive real time suggestions directly during
coding, their use in introductory courses raises certain pedagogical concerns. Fully automated suggestions may lead
novice programmers to over rely on such systems without adequately developing their own code reasoning skills.
Our approach, in contrast, intentionally delivers controlled feedback post-submission, encouraging students to
reflect on their mistakes and actively engage in code revisions. At our institution, introductory programming courses
are intentionally designed to expose students to minimal tooling like basic editors such as Vim, which ensures that
students first master fundamental programming concepts before transitioning to more advanced integrated
environments.

The role of personalization was central to this approach and appeared to enhance its effectiveness. Students
appreciated the supportive tone and the tailored nature of the feedback, which was based on their recurring mistakes
or ignored issues from past submissions. Rather than providing broad recommendations, the system generated
specific messages that aligned with each student’s needs. This likely helped them stay focused and less
overwhelmed, especially compared to generic output from traditional static analysers. While personalization in this
study was based on simple heuristics, such as frequency of issues or repetition, more advanced modelling could
make it even more impactful. A system that tracks long-term patterns and adapts suggestions accordingly could
address not only what students got wrong but also what they continue to struggle with over time. Some students
indicated that they remembered the feedback and used the suggestions in later tasks. Although we did not formally
measure long-term transfer, these observations point toward potential lasting benefits.
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Static analysis combined with personalized delivery shows potential to enhance programming education in a way
that supports learning without adding pressure. Students benefit from understanding not just whether their code
works, but how it can be improved.

5.1 Institutional and Educational Implications

While the primary focus of this system was to enhance student learning outcomes, its implementation has also
demonstrated several positive effects for educators and the institution. For instructors, the automated feedback
system reduces the repetitive and time consuming task of manually reviewing common code quality issues such as
formatting inconsistencies, naming conventions, or redundant structures. This allows teaching staff to dedicate more
time to more advanced discussions with students, focusing on logic, algorithms, and conceptual problem solving
rather than technical corrections that can be easily automated. Aggregated feedback data collected over multiple
assignments provides instructors with a broader overview of common mistakes across the class. This insight can be
used to adjust lecture content, design targeted tutorials, or clarify topics that students systematically struggle with.
The system also provides benefits at the institutional level. Introducing standardized feedback on code quality helps
maintain consistency across different instructors, semesters, and parallel course sections. As programming courses
are often taught by multiple instructors with slightly different styles and expectations, a unified feedback system
supports harmonization of course standards and learning objectives. Over time, this may contribute to more
consistent development of coding habits across the student population and may reduce discrepancies in grading
related to subjective style differences. From a broader perspective, adopting such systems can also serve as a step
towards improving internal quality assurance processes within the institution by documenting recurring problem
areas and monitoring gradual improvements in student code quality.

5.2 Study Limitations

There are, however, several limitations that should be acknowledged. The experiment involved a single course with
a moderate sample size and was conducted over only two assignments. Broader testing across different institutions,
programming languages, or student populations would be necessary to confirm generalizability. Also, the feedback
configuration was designed for our course context, which may differ from others. Instructors elsewhere would need
to adapt rule sets and message content based on local expectations. The system supports such adjustments through
a configurable file, but this requires effort and familiarity with the tool. Another issue is the lack of direct evidence
on whether students fully understood the advice. In some cases, we observed superficial fixes. One student removed
an unused variable warning by simply printing the variable, which eliminated the warning but did not improve the
program. This kind of workaround highlights a known challenge in automated feedback, it can lead to shallow
compliance if not supported by instruction. A possible remedy is to occasionally review selected feedback items in
lectures or tutorials, helping students see the rationale behind certain suggestions. Despite these challenges, most
students reported that the feedback helped them understand programming more deeply and write better code
overall. Many even requested that such tools be made part of all future programming courses. From a teaching
perspective, the collected data could also serve to inform instructors about common mistakes. If a large portion of
students repeatedly makes similar errors, those could be addressed during class sessions.

6 CONCLUSION

This study explored the integration of personalized static code analysis into an automated feedback system used in
introductory programming education. By combining tools such as Cppcheck and Clang-format with a feedback
generation layer that contextualizes technical messages in student-friendly language, we created a system capable
of identifying common problems and guiding students toward better practices. The evidence gathered from both
quantitative performance data and qualitative student feedback suggests that learners were not only able to improve
their code iteratively.

The impact of the intervention was not limited to immediate improvements in code submissions. Many students
explicitly stated that the personalized suggestions helped them recognize issues they previously ignored and
encouraged them to reflect more deeply on their work. Iterative behavior, such as making additional submissions to
improve code clarity even after achieving correctness, highlights that the system influenced their learning strategies.
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In addition to the subjective feedback collected through surveys, we also observed a measurable improvement in
students final assignment outcomes across multiple academic years. These assignments include criteria related to
code clarity and maintainability, not just functional correctness. The upward trend in results following the
introduction of personalized static feedback supports the assumption that such interventions can positively
influence student performance.

What distinguished our feedback from more conventional static analysis outputs was the manner of delivery. By
prioritizing messages based on severity, tailoring tone to student behavior, and including explanations or examples,
we avoided the overload commonly associated with linters in education. The tone of the feedback was described as
helpful and clear, with several students mentioning they felt more supported in the process.

Our results suggest that embedding static code analysis within student workflows can significantly enrich
programming education, particularly when presented in a pedagogically mindful manner. Rather than simply
relying on static tools to flag issues, systems should be designed to guide students through the reasoning process
behind improvements. These findings open several opportunities for future research and enhancement:

e Develop adaptive feedback mechanisms that learn from student history and adjust both message priority
and complexity over time.

e Incorporate the system into additional programming languages and course levels to evaluate
generalizability.

e Improve integration with development environments to offer feedback during active coding, rather than
post-submission.

e Explore the combination of static analysis with Al-based tools to generate dynamic explanations or enable
follow-up questions.

e Conduct longitudinal studies to assess how early exposure to feedback impacts coding practices in more
advanced courses.

e Investigate how concepts addressed by modern Al-based coding assistants such as pattern recognition,
contextual understanding, self-learning, and efficiency can be incorporated into programming education
while preserving student engagement with core problem solving skills.

By continuing to refine and scale these systems, educators can support student learning at both technical and
conceptual levels. Personalized static analysis feedback has the potential to bridge the gap between automated
testing and meaningful mentorship, making quality instruction more accessible and scalable in programming
education.
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