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 Abstract  
Background: As organizations increasingly seek data-driven insights, the demand for machine learning 
(ML) expertise outpaces the current workforce supply. Automated Machine Learning (AutoML) 
frameworks help close this gap by streamlining the ML pipeline, making advanced modeling accessible 
to non-specialists. 
Objective: This study evaluates the performance of four open-source AutoML frameworks—Auto-Keras, 
Auto-Sklearn, H2O, and TPOT—in predictive analytics, focusing on both binary and multiclass 
classification. The goal is to identify performance strengths and limitations under varying dataset 
conditions and propose improvements for framework optimization. 
Methods: Quantitative experimental research design was employed. 22 publicly available datasets 
were selected from established benchmarking sources, covering diverse predictive analytics 
challenges. Framework performance was assessed across twelve data segments, defined by 
characteristics such as sample size, feature count, and categorical feature proportion. Evaluation 
metrics included AUC for binary and accuracy/F1 for multiclass classification tasks, with standardized 
runtime constraints applied to ensure comparability. 
Results: The findings show that H2O delivered strong results across diverse datasets, particularly for 
binary classification. However, no single framework achieved superior performance across all data 
segments. Auto-Sklearn performed well in multiclass classification, especially with higher feature 
counts, while Auto-Keras and TPOT demonstrated variable outcomes depending on dataset complexity. 
Performance declined notably in scenarios with high categorical proportions, severe class imbalance, 
or extensive missing values. 
Conclusion: This study demonstrates that AutoML frameworks can substantially support predictive 
analytics but exhibit distinct strengths and limitations under specific data conditions. While H2O proved 
most robust overall, targeted refinements such as enhancing feature selection in Auto-Keras and 
improving categorical variable handling in Auto-Sklearn could further optimize performance. The 
findings provide actionable insights for both practitioners selecting frameworks and developers 
enhancing AutoML design, highlighting the need for ongoing innovation to ensure adaptability to 
complex predictive analytics tasks.  

 Index Terms 
AutoML frameworks; Performance benchmarking; Predictive analytics; Binary and multiclass 
classification; Model interpretability. 

  

1 INTRODUCTION 
Automated Machine Learning (AutoML) frameworks have significantly improved 

accessibility to machine learning (ML) models, allowing non-experts to apply 

complex analytics techniques (Balaji & Allen, 2018).   
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This advancement allows for the effective bridging of the demand-supply gap in ML expertise within organizations 

(SAS Institute, 2022). The functional goal of AutoML frameworks is hereby to automate the tasks within the machine 

learning pipeline (Zöller & Huber, 2021). This automation and accessibility is crucial for organizations wanting to 

leverage ML without the need for deep technical knowledge (Eldeeb et al., 2023; Schmitt, 2023). 

Existing research has explored the efficacy of AutoML frameworks across diverse datasets. Recently, Eldeeb et al. 

(2023) examined how design decisions affect AutoML framework performance, while Schmitt (2023) focused on 

comparing H2O AutoML's performance to manual model development. Furthermore, Gijsbers et al. (2023) 

underscore the necessity for standardized benchmarking, introducing the open-source AMLB benchmark tool to 

avoid common pitfalls in AutoML comparisons and enable detailed performance analysis across numerous 

classification and regression tasks. Additionally, previous research from Balaji & Allen (2018), Gijsbers et al. (2019), 

Truong et al. (2019), Zöller & Huber (2021), Ge (2020), and Tuggener et al. (2019) on AutoML framework performance 

across datasets from diverse domains provide profound theoretical foundations, however, are missing applicability 

due to continuous updates and improvements of the AutoML frameworks. Finally, there has been research done 

with a very specific focus on tailored applications and fields such as materials science (Conrad et al., 2022), genomics 

(Khan et al., 2023), and healthcare (Lenkala et al., 2023), which, while impactful, lack broad applicability especially 

in business contexts. 

Despite these advancements in AutoML research, a critical gap remains in the up-to-date evaluation of these 

frameworks specifically for predictive analytics tasks. Although prior studies have assessed AutoML performance 

across diverse domains, they have not addressed the unique challenges posed by predictive analytics datasets – 

characterized by complex structures, high dimensionality, and pronounced class imbalances (Eldeeb et al., 2023). 

This omission is particularly consequential given the increasing reliance on predictive analytics for strategic business 

decision-making, where accurate forecasting of trends and behaviors is essential (Asniar & Surendro, 2019). 

Moreover, the systematic impact of key data characteristics - such as the proportion of categorical features and the 

degree of class imbalance – on AutoML performance remains underexplored (Schmitt, 2023; Conrad et al., 2022). 

This study addresses these gaps by evaluating the performance of four prominent AutoML frameworks on 

predictive analytics datasets. Model-specific limitations are analyzed and targeted improvements proposed to better 

manage these data challenges. In doing so, our research not only advances the theoretical AutoML framework 

understanding but also delivers actionable insights for optimizing adaptive, high-performance AutoML solutions in 

diverse business environments (Khan et al., 2023; Lenkala et al., 2023). 

As a result, this study investigates the two research questions: Which among the four AutoML frameworks—

AutoKeras, Auto-Sklearn, H2O, and TPOT—achieves the highest performance in binary and multiclass classification 

tasks when applied to predictive analytics datasets? Which specific data characteristics (e.g., class imbalance, 

categorical feature proportion) impact AutoML performance in predictive analytics, and what targeted 

optimizations could mitigate these issues? 

To address the research questions at hand, a quantitative approach is employed, utilizing an experimental research 

design (Bell, 2009) to systematically manipulate data characteristics and analyze their impact on the performance of 

the AutoML frameworks. 

Concerning the theoretical implications of the research, this study provides an up-to-date evaluation of AutoML 

framework performance, focusing on binary and multiclass classification tasks within predictive analytics. By 

demonstrating performance fluctuations across various data conditions, this research builds upon the findings of 

Gijsbers et al. (2019), Truong et al. (2019), Eldeeb et al. (2023), and Tuggener et al. (2019), who have also noted the 

variability in AutoML framework performance. This study also contributes to the ongoing discourse on the impact 

of data characteristics - such as categorical feature proportions, class imbalance, and missing values - on AutoML 

efficacy and extends it to the field of predictive analytics. By identifying these limitations and proposing targeted 

technical improvements, it extends the work of researchers like Gijsbers et al. (2019) and Truong et al. (2019) to 

provide actionable insights for optimizing AutoML. Lastly, the study highlights the advancement of AutoML 

framework performance in multiclass classification tasks, both supporting and contradicting the results of Eldleeb 

et al. (2019), Zöller & Huber (2021), and Conrad et al. (2022). 
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1.1 AutoML frameworks 
Automated machine learning (AutoML) frameworks represent an advancement in the field of machine learning 

(ML) deployment and accessibility. These frameworks are aimed for automating the repetitive, complex, and time-

consuming tasks within a ML pipeline (Schmitt, 2023). The structure of AutoML frameworks is built on the classical 

ML pipeline, which involves the following key phases: data collection, exploratory data analysis, data preprocessing, 

feature engineering, model training, and model evaluation (Zöller & Huber, 2021).  

Following the data collection, the exploratory data analysis phase can start to utilize AutoML frameworks to 

understand data characteristics and guide subsequent preprocessing steps (Khan et al., 2023). Afterward, the 

AutoML frameworks automate data preprocessing tasks such as handling missing values and normalizing data 

(Zöller & Huber, 2021). The fourth phase leverages the frameworks to streamline feature engineering (Bilal et al., 

2022). In the fifth phase the AutoML frameworks automate the selection of the ML models and their hyperparameter 

optimization (Zöller & Huber, 2021). This is followed by the last phase, where the AutoML frameworks evaluate the 

trained models using appropriate metrics (Topsakal & Akıncı, 2023). 

1.2 Performance of AutoML frameworks 
The performance of AutoML frameworks is primarily influenced by the framework’s design, however time 

constraints, computational resources, and dataset characteristics also have a significant impact. Especially for the 

dataset characteristics – as also the research focus of this paper - larger datasets increase the complexity of feature 

engineering and computational demands, while issues like class imbalances, categorical variables, and missing 

values can significantly degrade model performance (Topsakal & Akıncı, 2023). Existing literature underscores the 

varying strengths and weaknesses of AutoML frameworks across different datasets and classification tasks. Given 

the architectural differences and prior benchmark results of the four AutoML frameoworks chosen, the following 

hypotheses were formulated to explore their relative strengths under varying dataset conditions. 

H1: H2O-AutoML outperforms other frameworks under diverse dataset conditions in binary classification tasks for predictive 

analytics tasks.  

In binary classification, H2O-AutoML emerges as particularly effective due to its use of stacked ensemble 

methods and random search for hyperparameter tuning, making it efficient and reliable for this task type 

across varied datasets (Truong et al., 2019; Gijsbers et al., 2023; Schmitt, 2023). Studies confirm that H2O 

maintains robust performance under diverse dataset conditions and generally excels in binary settings, a 

result of its optimized ensemble approach, which balances model accuracy with computational efficiency 

(Balaji & Allen, 2018; Truong et al., 2019). Gijsbers et al. (2023) note that H2O’s stability holds even as dataset 

complexity increases, though performance may be affected with highly imbalanced classes if extensive 

tuning is absent. Given its ability to deliver reliable accuracy and speed across benchmarks, H2O-AutoML’s 

architecture allows it to manage variability in binary classification effectively.  

H2: Auto-Sklearn performs the best with multiclass classification tasks within predictive analytics, excelling particularly where 

the dataset feature count is high.  

Auto-Sklearn is notably effective in multiclass classification due to its meta-learning and ensemble strategies, 

which allow it to optimize pipeline configurations flexibly for datasets with complex categorical 

distributions (Balaji & Allen, 2018; Eldeeb et al., 2023). This adaptability, enhanced by ensemble construction 

that combines top-performing models, enables Auto-Sklearn to achieve high performance across feature-

rich multiclass datasets, as identified by Gijsbers et al. (2019, 2023) and Eldeeb et al. (2023). Comparisons in 

Zöller & Huber (2021) and He et al. (2021) show that Auto-Sklearn outperforms frameworks lacking meta-

learning, such as H2O, especially when categorical diversity is high, supporting its leading position in 

multiclass classification. Gijsbers et al. (2023) further highlight Auto-Sklearn’s stability across multiclass 

benchmarks, affirming its suitability for complex multiclass classification tasks.  

H3: Larger sample sizes with high feature counts enhance AutoML framework performance for predictive analytics tasks, while 

low categorical proportions and shape ratios help maintain stable performance.  

Beyond individual framework designs, research shows that larger sample sizes with high feature counts 

enhance AutoML framework performance by enabling more robust generalization and reducing overfitting 
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risks. Gijsbers et al. (2023) demonstrate that those datasets provide richer patterns, allowing models to 

capture data distributions more effectively, particularly benefiting scalable frameworks like Auto-Sklearn 

and H2O. Increased feature count helps models learn generalizable patterns, improving prediction accuracy 

and stability across test sets, a critical advantage for frameworks relying on automated feature selection and 

model tuning (Elshawi et al., 2019). With ample data, frameworks like TPOT and AutoGluon also mitigate 

performance fluctuations caused by smaller datasets’ sensitivity to random splits, as highlighted by Balaji & 

Allen (2018). Although larger sample sizes require more computational power, frameworks efficiently 

balance this demand with enhanced accuracy on typical hardware, according to Truong et al. (2019). 

Balanced categorical proportions and shape ratios, while not enhancing performance, support stability by 

preventing overfitting and ensuring efficient computational use (Ge, 2020; Tuggener et al., 2019). 

H4: Dataset complexities - high class imbalance, and missing values - reduce AutoML framework performance for predictive 

analytics tasks.  

A range of studies indicate that dataset complexities, particularly high class imbalance, and missing values, 

generally degrade the performance of AutoML frameworks. Frameworks with such class imbalance often 

skew predictions towards the majority class, undermining accuracy for minority classes, as documented by 

Tuggener et al. (2019) and Eldeeb et al. (2023). Additionally, missing values add further complexity, as 

imputation processes can consume resources and introduce biases, affecting model accuracy, as noted by He 

et al. (2021) and Zöller & Huber (2021). These dataset complexities collectively strain AutoML frameworks 

and are particularly limiting under standard hardware constraints. 

1.3 Performance of AutoML frameworks for predictive analytics 
Predictive analytics involves the application of statistical models and ML algorithms to historical data to make 

informed predictions about future events (Grover et al., 2018). In this context, Automated Machine Learning 

(AutoML) has enhanced predictive analytics by automating complex tasks such as feature engineering, algorithm 

selection, and hyperparameter tuning, thereby reducing the need for extensive manual effort and domain expertise 

(Khan et al., 2023). However, challenges persist, particularly concerning the interpretability of analytics models 

generated by AutoML systems. While these automated processes can produce highly accurate models, 

understanding the rationale behind their future predictions can be difficult, posing challenges in regulated industries 

where explainability is crucial (Coors et al., 2021). To address these issues, ideas such as intagrating explainable AI 

(XAI) techniques, such as SHAP (SHapley Additive exPlanations) values or LIME (Local Interpretable Model-

agnostic Explanations), into AutoML frameworks for specifically predictive analytics is essential to enhance model 

transparency and foster trust among stakeholders (Velmurugan et al., 2020; Salih et al., 2023). An additional 

challenge is that predictive analytics datasets often contain high dimensionality, intricate feature interactions, and 

noisy or imbalanced data, all of which negatively influence machine learning algorithms’ capacity to extract accurate 

insights (Lee et al., 2022). 

Empirical studies have demonstrated that AutoML frameworks can achieve predictive performance comparable to, 

and sometimes surpassing, manually crafted models (Eldeeb et al., 2023; Ferreira et al., 2021). For instance, Conrad 

et al. (2022) benchmarked four AutoML frameworks on twelve small-sample datasets from specifically the materials 

science, finding that AutoML not only matched manual modeling in accuracy but also highlighted issues such as 

robustness to small data. Despite these advancements, challenges such as handling complex data, ensuring model 

interpretability, and managing the risk of overfitting remain (Ray et al., 2021). Addressing these issues is crucial for 

the broader adoption and effectiveness of AutoML in predictive analytics. 

2 METHODOLOGY 
The research employs a quantitative approach and adopts an experimental research design (Bell, 2009) to 

systematically manipulate data characteristics and analyze their influence on the AutoML framework performance. 

2.1 AutoML framework selection 
The selection of AutoML frameworks in this study was based on a criteria-driven approach designed to balance 

research rigor with practical feasibility. Given the prohibitive cost and time requirements of evaluating all available 
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frameworks, a representative subset was chosen to capture a range of optimization approaches without 

overwhelming resources (Gijsbers et al., 2023). The focus was placed on open-source frameworks to maintain 

transparency and accessibility for both academic and industry applications (Kavanagh, 2004). The selected 

frameworks - Auto-Keras, Auto-Sklearn, H2O AutoML, and TPOT - were also chosen for their variety in 

optimization methods, including Bayesian, and random search, which allow for a comprehensive evaluation without 

redundancy. Importantly, the selection includes frameworks developed by both academia and industry. Further, 

usability and robust documentation were prioritized to support broad accessibility and applicability in business 

contexts, ensuring that these frameworks empower users with minimal coding and configuration requirements 

while enhancing machine learning model accessibility (Balaji & Allen, 2018). 

Auto-Keras (Version 1.1.0) (Jin et al., 2023) leverages scikit-learn (Pedregosa et al., 2011), an open-source ML library 

for statistical modeling, TensorFlow (Abadi et al., 2016), a framework for ML model development and deployment, 

and Keras (Chollet et al., 2015), a user-friendly interface for TensorFlow to automate the exploration of deep neural 

network architectures. Utilizing Bayesian optimization and hyperparameter tuning, Auto-Keras searches through 

various layer combinations and design features to identify the most effective deep neural network architectures for 

specific tasks (Jin et al., 2023). 

Auto-Sklearn (Version 0.15.0) uses meta-learning to speed up the slow initialization phase in Bayesian optimization 

across a broad hyperparameter scope. By retaining optimization knowledge from multiple tasks and pre-training on 

over 100 OpenML datasets, Auto-Sklearn records optimal models and dataset characteristics. These records help 

assess new datasets’ proximity in meta-feature space, influencing the initial benchmarks for Bayesian optimization 

(Feurer et al., 2015). Auto-sklearn also applies weights to different models and utilizes ensemble selection during 

testing to increase efficiency. By harnessing the abilities of base learners, ensembles improve model performance 

(Dong et al., 2020). 

H2O (Version 3.44.0.2) employs a three-phase optimization process to enhance classification performance (LeDell & 

Poirier, 2020). It begins with a fixed grid search to establish strong baseline models, followed by a random search 

within predefined models for expanded exploration, and concludes with a stacked ensemble approach, which 

combines top-performing models to enhance predictive accuracy across dataset variations (Schmitt, 2023). H2O 

supports automated preprocessing, including missing value imputation and categorical encoding, reducing the need 

for manual intervention (H2O.ai, 2023). Its broad model search space, covering deep neural networks, gradient 

boosting machines, random forests, and generalized linear models, ensures robust adaptability to different dataset 

structures (Truong et al., 2019). 

TPOT (Version 0.12.1) employs genetic programming to evolve scikit-learn pipelines through iterative generations. 

It starts with a random population of pipelines, which evolves over generations based on performance against a 

specified loss function. The top-performing pipelines are selected for further evolution. During this process, TPOT 

explores a vast search space, experimenting with various preprocessing steps, feature selection methods, and ML 

models to identify the most effective pipelines for the designated task (Olson et al., 2016). 

2.2 Dataset selection and collection 
Secondary and external predictive analytics datasets in tabular format were chosen from prior AutoML (Gijsbers et 

al., 2019; Balaji & Allen, 2018; Truong et al., 2019; Eldeeb et al., 2023; Zöller & Huber, 2021) and ML benchmark 

studies, for example OpenML100 (Bischl et al., 2017) and OpenML-CC18 (Bischl et al., 2019).  

Table 1. List of selected datasets. 

ID Class. Type Name Classes Sample Size Features 

29 Binary credit-approval 2 690 16 

31 Binary credit-g 2 1000 21 

44 Binary spambase 2 4601 58 

1461 Binary bank-marketing 2 45211 17 

https://doi.org/10.18267/j.aip.288
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ID Class. Type Name Classes Sample Size Features 

1462 Binary banknote-authentification 2 1372 5 

1504 Binary steel-plates-fault 2 1941 34 

1590 Binary adult 2 48842 15 

4135 Binary Amazon-employee-access 2 32769 10 

4534 Binary PhishingWebsites 2 11055 31 

6332 Binary cylinder-bands 2 540 40 

23381 Binary dresses-sales 2 500 13 

23517 Binary Numerai28.6 2 96320 22 

40701 Binary churn 2 5000 21 

40978 Binary Internet-Advertisements 2 3279 1559 

40981 Binary Australian 2 690 15 

6 Multiclass letter 26 20000 1 

54 Multiclass vehicle 4 846 1 

1468 Multiclass cnae-9 9 1080 1 

40668 Multiclass connect-4 3 67557 43 

40670 Multiclass dna 3 3186 181 

40975 Multiclass car 4 1728 7 

40984 Multiclass segment 7 2310 1 

 

The datasets included have 500 to 100,000 items, ensuring a balance between computational feasibility and real-

world scalability (Feldman et al., 2020). This range allows for the examination of AutoML performance across small-

to-moderate dataset sizes commonly encountered for predictive analytics tasks in business and industry settings 

while excluding extreme cases that may require specialized tuning (Bischl et al., 2021). The feature count range (5-

1,600) was chosen to reflect typical predictive analytics datasets in structured data environments, ensuring an 

evaluation of frameworks across varying degrees of feature complexity (Grinsztajn et al., 2022). Furthermore, the 

datasets have to be compatible with 10-fold cross-validation to allow for the research at hand, ensuring that results 

are robust and not overly dependent on a specific data split. Datasets that are part of larger datasets were excluded 

to maintain sample independence and prevent redundancy in training, which could artificially inflate performance 

metrics. Only datasets with comprehensive source and reference information were included to ensure 

reproducibility and verifiability, allowing future researchers to replicate and extend the findings. Each dataset 

requires multiple attributes for effective classification, preventing trivial classification tasks that could distort the 

evaluation of AutoML frameworks (Lampert et al., 2013). To ensure a realistic representation of predictive analytics 

challenges, datasets created by binarizing classification tasks were excluded, as they often oversimplify problems 

and do not reflect typical real-world predictive modeling scenarios. Similarly, datasets with over 5,000 features post 

one-hot encoding were excluded to mitigate overfitting risks and computational inefficiencies, which can 

disproportionately impact certain AutoML frameworks. Finally, datasets with extreme class imbalances, where the 

minority class constitutes less than 5% of the majority class, were removed to avoid biased performance evaluation 

and ensure models can effectively learn from both majority and minority classes.  

https://doi.org/10.18267/j.aip.288
https://aip.vse.cz/


Acta Informatica Pragensia  Volume 15, 2026 

https://doi.org/10.18267/j.aip.288  78 https://aip.vse.cz 

The data was accessed through the secondary sources OpenML (Vanschoren et al., 2014), the UC Irvine ML 

repository (Kelly et al., 2023), and Kaggle (Kaggle, 2023). Then, they were downloaded using the OpenML Python 

package (Feurer et al., 2021), which stores the datasets in CSV format, accompanied by descriptive text files. Table 1 

presents the lists of selected datasets for binary and multiclass classification. 

2.3 Data preprocessing 
The holdout method was applied to divide the data into training and test sets with an 80:20 ratio. Specifically, 80% 

of the data was designated for training to optimize model parameters, while the remaining 20% was reserved for 

evaluating the model’s generalization ability (Fels et al., 2023). This split strategy is widely recognized for preventing 

overfitting and ensuring that AutoML models perform reliably across different data distributions (Tan et al., 2021). 

A unique random seed was used for each split to maintain reproducibility. 

To ensure compatibility and effective data preparation for each AutoML framework, specific preprocessing 

requirements were addressed, particularly in handling missing values, encoding categorical data, and transforming 

data types (Bilal et al., 2022; Pfisterer et al., 2019).  

The AutoML frameworks demonstrated varied capacities for managing missing values during model training. H2O 

and Auto-Keras incorporate internal imputation methods for resolving missing data. H2O applies built-in 

imputation strategies, addressing missing values with techniques tailored to the model’s requirements (H2O.ai, 

2023). Auto-Keras uses strategies such as imputation or row exclusion before training (Jin et al., 2023). By contrast, 

TPOT and Auto-Sklearn rely on the underlying machine learning models chosen to handle missing data, meaning 

that if a selected model does not support missing data processing, TPOT and Auto-Sklearn require manual 

intervention for data completion (Olson et al., 2016; Feurer et al., 2015; Pio et al., 2023). In these cases, missing values 

were systematically analyzed, and imputation techniques were applied depending on the missingness pattern to 

maintain data integrity. 

Additionally, encoding categorical variables was necessary to ensure all input data conformed to framework 

requirements, as most AutoML frameworks support only numerical inputs. For TPOT, categorical features were 

converted to numerical values using one-hot encoding through Python’s pandas library function get_dummies(), 

which creates binary variables for each category (The pandas development team, 2020). Auto-Sklearn required 

transforming target data types from numerical to categorical using LabelEncoder from scikit-learn, allowing it to 

recognize categorical labels for classification (Pedregosa et al., 2011; Jolly, 2018). AutoML frameworks like H2O, 

which supports basic data type recognition, simplify preprocessing by automatically managing these 

transformations (H2O.ai, 2023). However, frameworks such as TPOT and Auto-Keras lack automated encoding 

support, making it necessary to manually encode categorical features into numerical formats for compatibility (Jin 

et al., 2023). 

Finally, data type identification and transformation play a crucial role in preprocessing since AutoML frameworks 

typically require numeric input data. H2O’s ability to automatically identify and convert basic data types facilitates 

a more streamlined workflow without extensive user intervention. In contrast, scikit-learn-based frameworks like 

TPOT and Auto-Sklearn demand that users manually specify data types for each column, requiring categorical data 

to be transformed into numerical formats prior to model training (Feurer et al., 2015; Olson et al., 2016). For these 

frameworks, data type conversion involved manually transforming categorical data into integer or binary formats 

to enable input acceptance. This added layer of preprocessing highlights the need for user intervention, particularly 

in TPOT and Auto-Sklearn, as they do not provide comprehensive preprocessing automation (Bilal et al., 2022; 

Pfisterer et al., 2019). 

2.4 Framework setup 
To maintain consistency and comparability, a standardized configuration for all AutoML frameworks was 

implemented. Default hyperparameter values and search spaces were used for each framework, ensuring that results 

were based on the frameworks’ out-of-the-box capabilities without extensive fine-tuning. A maximum runtime of 

15 minutes was defined for each framework to ensure computational efficiency while maintaining strong predictive 

performance. Empirical studies like Conrad et al. (2022) have shown that longer runtimes do not yield superior 

results. For Auto-Keras, which lacks a built-in runtime constraint, a custom Class TimeoutCallback was employed 

https://doi.org/10.18267/j.aip.288
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to enforce this time limit (Jin et al., 2023). A consistent random seed was also set across all frameworks to guarantee 

reproducibility and control over stochastic processes during model training (LeDell & Poirier, 2020).1 

Parallel processing was enabled for faster computations (Karras et al., 2023), and a 10-fold cross-validation 

resampling strategy was applied, wherein the dataset is split into 10 subsets, each iteratively used as a test set while 

the remaining subsets serve as training data. This strategy ensures that each data point is fully utilized, optimizing 

data usage and improving the robustness of error estimates (James et al., 2023). Notably, Auto-Keras required 

customization to handle parallel processing and cross-validation due to its limited support for these features (Jin et 

al., 2023). 

Additionally, the optimization metric was selected according to the classification task, with AUC (Area Under the 

Curve) designated for binary classification and accuracy and the weighted-average F1 score for multiclass 

classification (see Section 3.6). This metric choice establishes the objective function to guide the optimization 

algorithm in prioritizing the best-performing models and hyperparameter configurations. However, certain 

frameworks, such as H2O, lack support for commonly used metrics like accuracy in multiclass settings, which can 

introduce inconsistencies in optimization. Specifically, H2O defaults to the mean per-class error as its primary metric 

for multiclass classification tasks (H2O.ai, 2023). To maintain consistency across frameworks despite these variations, 

accuracy was set as the evaluation metric where feasible. Additionally, for data segments with high class imbalances, 

the weighted-average F1 score was applied as an evaluation metric to address the limitations of accuracy alone. 

Finally, all experiments were executed on a local machine equipped with an Intel 11th Gen CPU featuring 8 physical 

cores and 16 logical threads, 32 GB RAM, and running Windows 11 Pro 64-bit. The implementation environment 

utilized Python 3.11.4, ensuring compatibility with all selected AutoML frameworks and their dependencies. This 

setup provided a controlled and consistent technological infrastructure across all experiments, eliminating 

performance variations due to hardware or operating system differences and enabling reproducibility. 

2.5 Framework training 
Each AutoML framework uses its supported algorithms to optimize hyperparameters and identify the optimal 

model. This is then tested for generalization on the remaining 20% test data. The hyperparameter optimization 

methods include random search and build ensembles for H2O and Auto-Sklearn (H2O.ai, 2023, Feurer et al., 2015), 

neural architecture search for Auto-Keras (Jin et al., 2023), and genetic algorithms to evolve model traits for TPOT 

(Olson et al., 2016). If optimization metrics underperform, additional fine-tuning of parameters was conducted to 

improve the model's performance assessment. 

2.6 Framework Evaluation 
For binary classification tasks, the evaluation metric Area Under the Curve (AUC) of the Receiver Operator 

Characteristic (ROC) is used. In multiclass classification tasks, accuracy is the primary metric, except in scenarios 

with class imbalances. This is because high accuracy in multiclass scenarios can be misleading if it results from 

frequent class prediction rather than genuine model accuracy (Sun et al., 2009). Therefore, for evaluations 

considering class imbalances, the weighted-average F1 score is used, adjusting for class distribution, and providing 

a more balanced measure of model performance (Mathew et al., 2023). These metrics are widely recognized in 

academic research for their effectiveness in assessing binary and multiclass classification tasks by AutoML 

frameworks.  

The evaluation dimensions of the research are bifurcated based on dataset classification into binary and multiclass 

types (Truong et al., 2019). It specifically focuses on the data segment dimension, examining how frameworks handle 

different data characteristics. The dataset criteria are sample size, feature count, shape ratio, categorical percentage, 

class ratio, and missing percentage, as detailed in Table 2. Sample size refers to the total number of items or entries 

within the dataset. Feature count reflects the number of dataset features, while shape ratio measures the sample size 

relative to feature count. Categorical percentage shows the proportion of categorical features, class ratio indicates 

 

1 Additionally, 60-minute runtimes and robustness tests were conducted to assess framework performance over time and under different time 

constraints. However, as the extended runtime limit didn't yield significant improvements or degradation, and robustness tests showed similar 

results, they were not included in this research paper. These results can be shared upon request. 
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the sample distribution across classes, and missing percentage evaluates the amount of missing data. These segments 

allow for precise assessment of each framework's capability to handle different predictive analytics dataset 

characteristics.  

The thresholds for sample size, categorical percentage, and missing percentage were adopted from Truong et al. 

(2019). The feature count threshold was adjusted to 50, aiming to encompass a broader range of samples in segments 

exceeding this threshold, thereby enhancing the dataset's representativeness. The class ratio threshold, used to gauge 

class imbalance, was set at 10% due to the absence of a well-defined cutoff in both Truong et al. (2019) and related 

ML performance evaluation literature (Buda et al., 2018), where standards vary significantly. Regarding the shape 

ratio, which assesses the suitability of feature distribution in predictive modeling, it was established at 50 based on 

guidance that a higher ratio predicts classifier performance more effectively (Buda et al., 2018). This adjustment 

ensures that the data structure optimally supports accurate model training and evaluation. 

Table 2. Data segments. 

Data Segment Threshold Below Threshold Above Threshold 

Sample Size 10,000 Less than 10,000 samples More than 10,000 samples 

Feature Count 50 Less than 50 features More than 50 features 

Shape Ratio 50 Less than 50 More than 50 

Categorical Percentage One third Less than one-third More than one-third 

Class Ratio 10% High imbalance (<10%) Low imbalance (>10%) 

Missing Percentage One third Less than one-third More than one-third 

3 RESULTS 
Figure 1 and 2 present the performance of the four evaluated AutoML frameworks across different data segments 

for binary and multiclass classification tasks. Regarding the visuals, each row represents a specific data segment 

characteristic, with the leftmost plot of each pair corresponding to datasets below the given threshold (e.g., low 

feature count) and the rightmost plot representing datasets above the threshold. The boxplots illustrate the 

distribution of model performance for each AutoML framework, with Auto-Keras, Auto-Sklearn, H2O, and TPOT 

shown along the x-axis. The line inside the box represents the median, while the interquartile range (IQR) is the 

difference between the first and third quartiles. Whiskers extend to data within 1.5 times the IQR, with outliers 

depicted by circles. Finally, the analysis of the data segment with missing percentage of values was omitted for 

multiclass classification, as all datasets evaluated contained no missing entries. 

3.1 Binary classification results 
Notably, heightened variability and a decline in performance were observed with increasing percentage of 

categorical features. This trend stemmed from variations in the categorical value encoding methods. Across smaller 

datasets (less than 10,000 samples), all frameworks demonstrated consistent performance, with H2O and TPOT 

achieving the highest AUC scores and lowest variability. As dataset size increased, Auto-Keras and Auto-Sklearn 

showed heightened variability and diminished predictive power.  

A decline in performance was observed for datasets with fewer than 50 features, potentially due to feature expansion 

during encoding. For instance, the "dresses-sales" dataset initially contained 13 features but expanded to 155 after 

encoding. This increase led to diminished performance across all AutoML frameworks. However, due to only 13% 

of datasets exceeding the 50-feature threshold, a comprehensive comparison of feature variability is limited.  

AutoML frameworks performed better and showed reduced variability when dataset size exceeded 50 times the 

feature count, likely due to improved predictive capabilities with higher shape ratios. Auto-Keras, H2O, and TPOT 

maintained consistent performance across shape ratios, while Auto-Sklearn exhibited increased variability. 

Class imbalance and high proportions of missing values challenged most frameworks, although the predominance 

of balanced datasets limited a comprehensive variability comparison. Specifically, in datasets with a high missing 
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percentage, Auto-Keras showed inferior performance, whereas other frameworks maintained relatively consistent 

performance levels. 

Concerning H1, the results support this hypothesis, with H2O demonstrating superior average performance and the 

highest AUC values, especially under diverse dataset conditions involving a high percentage of categorical values, 

large sample sizes (over 10,000), and high feature counts. This performance advantage likely stems from H2O’s 

unique technical design, which integrates stacked ensembles and random search for hyperparameter tuning (LeDell 

& Poirier, 2020; Schmitt, 2023). Therefore, H2O’s layered approach leverages the strengths of multiple model types 

providing robustness across diverse dataset characteristics (Truong et al., 2019; Gijsbers et al., 2023). Finally, H2O’s 

automated preprocessing, including missing value handling, supports stability across datasets where other 

frameworks might struggle.  

The only exception to this trend occurred in datasets with low class imbalance, where H2O’s performance was 

similar to other frameworks, showing no marked advantage. To improve H2O’s performance specifically in 

scenarios with low class imbalance in binary classification tasks, a few technical adjustments could be considered. 

One approach is to incorporate adaptive resampling techniques, like SMOTE (Synthetic Minority Over-sampling 

Technique), during training to address low class imbalance more effectively, ensuring minority classes are better 

represented (Khan et al., 2023). Another potential improvement is to fine-tune the hyperparameters of individual 

models within the ensemble, focusing on models particularly sensitive to imbalance, such as decision trees, which 

may be adjusted to handle rare events more robustly (Eldeeb et al., 2023). Finally, leveraging a weighted ensemble 

approach that assigns greater weight to classifiers excelling with imbalanced data can optimize predictions for 

minority classes without compromising overall performance (Omar et al., 2023). 

3.2 Multiclass classification results 
In the multiclass classification tests, TPOT failed to produce results for the connect-4 dataset within the allocated 

time, while Auto-Sklearn exhibited below-average performance. To minimize bias, these outcomes were excluded 

from the figures. Additionally, H2O and Auto-Keras failed to complete 6% of experiments within the 15-minute 

limit, and these results were also disregarded. 

For datasets with high categorical feature percentages, H2O outperformed other frameworks, while datasets with 

low categorical percentages showed comparable results across frameworks, except for slightly lower accuracy in 

Auto-Keras. Performance across different sample sizes revealed no consistent trend: Auto-Keras performed similarly 

across smaller and larger datasets, though its variability increased with larger datasets. Auto-Sklearn performed 

better with sample sizes over 10,000 but completed only about half of these experiments. In contrast, H2O excelled 

with smaller datasets (under 10,000), suggesting it is better optimized for smaller data volumes in multiclass 

classification, while TPOT showed improved performance with larger sample sizes but also completed only half of 

these experiments. 

In the low feature count segment (fewer than 50 features), H2O and Auto-Sklearn demonstrated consistent results, 

while Auto-Keras and TPOT had slightly lower accuracy and higher variability. For datasets with more than 50 

features, Auto-Sklearn, H2O, and TPOT maintained high and stable accuracy, likely due to their robust handling of 

large feature spaces through ensemble methods and advanced optimization techniques (Gijsbers et al., 2023; Schmitt, 

2023; Truong et al., 2019). In contrast, Auto-Keras showed lower accuracy and greater variability, potentially due to 

its reliance on neural networks and Bayesian optimization, which may struggle with high-dimensional spaces 

lacking ensemble or meta-learning strategies (Jin et al., 2023; Zöller & Huber, 2021; He et al., 2021). 

Shape ratio did not significantly impact performance, as most frameworks produced similar results across both 

shape ratio segments. In analyzing class imbalance, Auto-Keras showed minimal variability, performing similarly 

across high and low imbalance levels. Auto-Sklearn and TPOT performed better with low class imbalance, likely 

benefiting from ensemble techniques that thrive with balanced classes (Gijsbers et al., 2023; Zöller & Huber, 2021). 

H2O’s stacked ensemble method provided stability with low imbalance but struggled under high imbalance, 

suggesting it could benefit from SMOTE or similar methods for enhanced handling of minority classes (Dablain et 

al., 2022), aligned with the insights for binary classification. 
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Figure 1. Binary classification results. 

The analysis of multiclass classification results provides mixed support for H2. Auto-Sklearn demonstrated strong 

overall performance but did not consistently outperform H2O and Auto-Keras, particularly in datasets with high 

categorical percentages and extensive feature counts. In high categorical percentage segments, Auto-Sklearn’s 

performance was comparable to H2O and Auto-Keras, counter to the hypothesis of Auto-Sklearn’s superiority (Balaji 

& Allen, 2018; Eldeeb et al., 2023). Additionally, in datasets with more than 50 features, Auto-Sklearn’s results closely 

aligned with H2O and TPOT, challenging its anticipated advantage in high feature count scenarios (Gijsbers et al., 

2023; Zöller & Huber, 2021). 

While Auto-Sklearn’s meta-learning and ensemble techniques aim to optimize performance across diverse 

multiclass tasks, H2O demonstrated equivalent or better results in several data segments, particularly with smaller 

datasets (under 10,000 samples) (Schmitt, 2023; Truong et al., 2019). These observations suggest that while Auto-

Sklearn’s architecture is effective, H2O’s ensemble-based design may offer it a competitive edge in handling 

multiclass tasks under various dataset conditions (LeDell & Poirier, 2020). 

To enhance Auto-Sklearn’s competitiveness in multiclass classification, particularly with high categorical 

percentages and feature counts, refining its meta-learning component to focus on configurations suitable for complex 

categorical structures could improve search efficiency (Feurer et al., 2021). Integrating more advanced feature 

selection mechanisms would help manage high-dimensional categorical data, supporting stability (Feurer et al., 

2015). Additionally, adopting a more diverse ensemble strategy could improve performance in complex multiclass 

scenarios by aligning Auto-Sklearn’s capabilities with H2O’s robust ensemble techniques (LeDell & Poirier, 2020). 
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Figure 2. Multiclass classification results. 

3.3 Cross-classification effects of dataset characteristics 
Following the binary and multiclass classification results, this section addresses the cross-classification effects of 

dataset characteristics in predictive analytics, focusing on hypotheses H3 and H4.  

H3 is partially supported as higher feature counts and low categorical proportions enhanced performance, while 

effects of sample size and shape ratio were mixed, as detailed below. Higher feature counts led to improved 

performance and reduced variability across most frameworks, particularly H2O, Auto-Sklearn, and TPOT, likely 

due to their ensemble and feature selection mechanisms (Gijsbers et al., 2023; Truong et al., 2019). AutoKeras, 

however, showed consistent results across low and high feature counts, possibly due to its reliance on neural 

network structures, which could benefit from enhanced feature selection (Feurer et al., 2015). Regarding sample size, 

the results were inconsistent. Binary classification showed better performance with smaller datasets, contrary to 

expectations, with only H2O maintaining stability across sizes, likely due to its adaptive search and ensemble 

strategies (LeDell & Poirier, 2020). In multiclass classification, Auto-Sklearn and TPOT performed better with larger 

sample sizes, while H2O and AutoKeras showed higher accuracy with smaller samples, indicating possible 

scalability constraints for larger multiclass data (Schmitt, 2023; Balaji & Allen, 2018). For categorical proportions, low 

proportions (<33%) supported stable performance across frameworks, except AutoKeras, which showed similar 

results regardless of categorical density, suggesting a need for enhanced categorical handling (Jin et al., 2023). Shape 

ratio influenced performance in binary classification, with high shape ratios (>50) leading to more stable outcomes, 

except for Auto-Sklearn, which showed increased variability - likely due to its meta-learning approach’s sensitivity 

to class distribution variations (Feurer et al., 2021; Eldeeb et al., 2023). 

H4 is also partially supported. High class imbalance generally reduced AutoML performance, but certain 

frameworks demonstrated unexpected stability or improvement, and missing values clearly degraded accuracy. In 

multiclass classification, high class imbalance reduced accuracy across frameworks, aligning with prior studies that 

identify imbalanced classes as challenging due to bias toward majority classes (Tuggener et al., 2019; Eldeeb et al., 

2023). However, binary classification results diverged: frameworks achieved high AUC scores with low imbalance 

but showed substantial variability, indicating unstable performance under minimal class imbalance. Interestingly, 

H2O and TPOT demonstrated more consistent performance with high imbalance in binary classification, likely due 

to their ensemble approaches which can better aggregate diverse predictions (LeDell & Poirier, 2020; Truong et al., 

2019). Auto-Sklearn performed better with low imbalance, leveraging meta-learning to optimize configurations for 

balanced data, whereas Auto-Keras showed higher but less stable scores with high imbalance (Feurer et al., 2015). 

For binary classification, datasets with more than one-third missing values consistently showed degraded 

performance across AutoML frameworks, reinforcing the importance of preprocessing to minimize missing data. 

This outcome suggests that practitioners should prioritize data quality and completeness to maximize AutoML 

effectiveness, as frameworks are particularly sensitive to large portions of missing data across classification types. 

This analysis was limited to binary classification, as multiclass classification datasets contained no missing entries. 
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4 DISCUSSION 
The research provides an up-to-date evaluation of AutoML framework performance, focusing on binary and 

multiclass classification tasks within predictive analytics. In addition to determining which framework excels across 

various data characteristics, the study addresses the technical limitations contributing to each framework’s 

performance variability and identifies targeted improvements. The findings reveal that H2O outperformed other 

frameworks in both classification tasks, especially in datasets with high categorical proportions and feature counts, 

with comparable performance only in cases of low class imbalance. To further enhance H2O’s accuracy in these 

imbalanced conditions, adaptive resampling techniques like SMOTE could be integrated. Especially for multiclass 

classification, TPOT and Auto-Keras lagged behind in achieving optimal performance for small sample size datasets, 

and a shape ratio of less than 50 segments. Additionally, specific limitations in binary classification, such as high 

performance variability of Auto-Sklearn and Auto-Keras with large sample sizes and low feature count datasets, 

highlight areas for framework enhancement. The technical analyses suggest that adaptive feature selection, 

optimized handling of categorical variables, and ensemble configurations could improve the consistency and 

efficiency of these frameworks. 

The study contributes to the existing discussion on AutoML framework performance. It provides an up-to-date 

evaluation across binary and multiclass classification tasks and extends it into the field of predictive analytics. It 

demonstrates that no single AutoML framework outperforms others across all data segments. While H2O exhibited 

higher average performance for both classification types, the research reveals nuanced performance variations based 

on specific dataset attributes. This builds upon benchmark studies by Gijsbers et al. (2019), Truong et al. (2019), and 

Eldleeb et al. (2023). Furthermore, consistent with the findings of Gijsbers et al. (2019) and Truong et al. (2019), the 

study identifies weaknesses in AutoML frameworks when handling imbalanced datasets and with high categorical 

percentages, while also proposing targeted technical improvements, such as adaptive resampling, to address these 

limitations. Additionally, by building upon the research of Gijsbers et al. (2019) and Zöller & Huber (2021), this study 

uncovers further technical nuances in the performance of H2O and Auto-Keras in multiclass classification tasks, 

such as Auto-Keras’s improved accuracy when handling datasets with a higher proportion of categorical features. 

The observed divergence in performance between H2O and Auto-Keras in multiclass classification tasks contrasts 

with previous findings by Eldleeb et al. (2019), Zöller & Huber (2021), and Conrad et al. (2022), highlighting how 

framework performance evolves with changes in model configurations and technological advancements. Finally, by 

exploring areas for technical enhancement within frameworks, such as improving H2O’s handling of low class 

imbalance through resampling techniques, the study emphasizes the need for ongoing development in AutoML 

frameworks to meet diverse data challenges. Understanding these factors’ impact on AutoML frameworks is vital 

for guiding future research on machine learning automation.  

The research underscores several managerial implications. Firstly, it highlights AutoML’s ability to increase access 

to machine learning tools across varying levels of expertise. However, while these frameworks reduce the technical 

barriers to ML adoption, their reliance on black-box optimization and automated decision-making raises concerns 

about interpretability, model bias, and the potential for misapplication by non-expert users (Barbudo et al., 2023, 

Eldeeb et al., 2023; Schmitt, 2023). Organizations should carefully consider the trade-offs between automation and 

the need for human oversight. Additionally, the research insights into AutoML framework performance under 

varying data complexities aid practitioners in selecting suitable frameworks for different applications (Halvari et al., 

2020). This study also underscores the limitations of current AutoML systems in handling complex datasets, 

emphasizing the ongoing necessity of human expertise in data preprocessing (Barbudo et al., 2023). Finally, for 

AutoML framework developers, the technical evaluation and improvement suggestions - such as incorporating 

adaptive resampling techniques - provide actionable strategies for enhancing framework reliability in challenging 

data scenarios, like low class imbalance or high categorical proportions. 

This study has certain limitations that influence the generalizability of its findings. The focus solely on supervised 

classification tasks with tabular data limits broader applicability, prompting future studies to explore AutoML 

frameworks efficacy in unsupervised, self-supervised or reinforcement learning, and unstructured data scenarios 

within predictive analytics. Additionally, the manual selection of datasets could introduce sampling biases, 

emphasizing the need for a more diverse dataset selection process (Barbudo et al., 2023). The incomplete analysis of 

certain datasets for multiclass classification, such as the connect-4 dataset, resulted in a smaller sample size, limiting 

the robustness of the research findings. 
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Regarding future research, scholars could test the recommendations presented in this study to improve AutoML 

framework performance across various data segments. Additionally, the questions could be addressed on how the 

data preprocessing capabilities can be enhanced to improve AutoML framework performance (Bilal et al., 2022) and 

how hybrid approaches that integrate AutoML with domain-driven feature engineering and model selection to 

balance automation with interpretability can be established. Finally, exploring deep reinforcement learning in 

predictive analytics present promising research directions in business analytics (Bertsimas & Kallus, 2019). 

5 CONCLUSION 
This study examined the performance of four AutoML frameworks across diverse datasets for predictive analytics 

tasks, highlighting that no single framework consistently outperforms others. Future research should explore ways 

to enhance AutoML’s adaptability and assess its role in scaling machine learning applications. While AutoML can 

help bridge the supply-demand gap for ML expertise, it is not without challenges. The black-box nature of many 

frameworks poses interpretability concerns, particularly in regulated industries where transparency is critical. To 

ensure effective deployment, organizations should complement AutoML adoption with workforce upskilling and 

robust oversight to mitigate potential risks. 
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