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Abstract

Background: Osteoporosis is a condition characterized by bones that are porous and brittle, increasing
the risk of fractures. It is often asymptomatic until substantial harm develops, making it crucial to treat
at the onset of the disorder.

Objective: This study aims to develop a practical, in-depth and adaptable framework utilizing
constructed clinical and demographic datasets for the early detection of osteoporosis.

Methods: We design a cascade convolutional neural network with adaptive weight fusion and fine-tune
it with a real-coded genetic algorithm. An anonymized clinical and demographic record publicly
available bone mineral density dataset was used. Missing data identification, normalization and
encoding of categorical variables were key diagnostic steps. The training subset consisted of 70% of the
dataset, while the remaining 30% was used for testing.

Results: The predictive capability of the proposed model is demonstrated by utilizing two datasets.
Dataset 1 is used for training and testing, achieving a classification accuracy of 99.5%, precision of
98.7%, recall of 99.0% and AUC-ROC of 0.99. Dataset 2 is used to test the model generalizability,
achieving a classification accuracy of 97.0%.

Conclusion: The model integrates well into primary care settings, as it relies on structured clinical data
rather than imaging. Its low costs relative to value and high scalability make it suitable for
population-level screening and treatment of osteoporosis. The limitation of the research is that we
utilize only a clinical dataset to train the model without image analysis.

Index Terms

Osteoporosis; Deep learning; Medical imaging; Automated diagnosis; Bone density; X-ray; CNN;
Early detection.

1 INTRODUCTION

Osteoporosis is a largely prevalent and long-lasting ailment coupled with low bone
mineral density (BMD), significantly increasing the chances of fracture. Until a fracture
occurs, osteoporosis causes no symptoms, earning it the nickname "the silent disease",
which is more common in the hip, spine or wrist region. Keeping in view the senior
population of the world, there is an increasing demand for early detection and diagnosis
of osteoporosis for effective reduction of disability and costs of care related to the
management of hip fractures. Osteoporosis is a chronic, progressive bone disorder that
affects a significant number of individuals.
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In the United States alone, it affects 10.2 million people (Wright et al., 2014), while globally, 56.2 million people are
affected by this condition. Fragility fractures can significantly affect one's independence and overall quality of life
due to weakened bones. When osteoporosis is identified in its early stages, it can be treated effectively to minimize
the risk of future fractures and health complications (Johnell et al., 2006). Nevertheless, before the emergence of
symptomatic fractures, osteoporosis often goes unnoticed, leading to a lack of diagnosis and treatment. Osteoporotic
vertebral fracture (OVF) is a common fracture usually associated with osteoporosis. OVF is quite common among
older adults, with a prevalence rate of 40% by the age of 80 (Cooper et al., 1993). However, it is still quite common
for incidental OVFs to be underreported. According to one study, a whopping 84% of OVFs were not documented
on computed tomography (CT) scans (Carberry et al., 2013). Because they are too busy paying attention to the sagittal
images, radiologists often miss incidental OVFs during standard CT scans. Underreporting of these results occurs
for several reasons, including that patients are usually unaware of the clinical significance of asymptomatic OVFs
and that there are no apparent symptoms (Miiller et al., 2008; Amani et al., 2024; Belali et al., 2025; Sarhan et al., 2024;
Liu et al., 2024).

Dual-energy X-ray absorption (DXA) and quantitative CT are widely recognized as the most reliable methods for
diagnosing osteoporosis by assessing BMD. At least half of all women and 20% of all men will have a fracture in
their lifetime. The most common method for diagnosing osteoporosis is to take DXA measurements of BMD in the
lumbar spine and proximal femur. To help avoid osteoporotic fractures in women aged 65 and older, the United
States Task Force for Preventive Services recommends screening for osteoporosis using BMD. Fragility fractures
caused by osteoporosis have a significant impact on both mortality and morbidity, especially among the growing
number of older individuals. This places a substantial burden on global health and the economy. Therefore,
preventing fragility fractures is a crucial aspect of healthcare for older adults.

Despite significant advancements in pharmacological interventions, the risk of fragility fractures remains a concern.
Osteoporosis is characterized by weakened bone structure and low bone mass, resulting in fragile bones and an
increased susceptibility to fractures in the wrist, hip and spine (Chen et al., 2024). Osteoporosis is a significant issue
in Indian female healthcare, especially for those who are 50 and older. It is commonly associated with
postmenopausal women and affects bone metabolism, which could contribute to a higher likelihood of breaking
bones. Osteoporosis can affect the bones of the spine, resulting in a hunched or stooped posture. Calcium and
vitamin D intake have been shown to reduce the fracture rate (Oh et al., 2024).

Artificial intelligence (Al) can potentially revolutionize medicine (Ha et al., 2024). Al technology works well with
medical researchers, physicians and nurses, enhancing their abilities and performance. In the medical field, Al is
designed to improve human physicians' abilities rather than replace them.

Al has become a prominent topic in the context of the Fourth Industrial Revolution. The AI methods for diagnosing
patients with fractures, which can increase the risk of osteoporosis, surpass the traditional approach of radiologists
examining the reports. Machine learning (ML) is a branch of artificial intelligence that enhances healthcare by
making it more intelligent and efficient. It has applications in various areas, such as diagnostic imaging, treatment
optimization, genetic tests and electrodiagnosis, contributing to advancements in medical research. The primary
focus of ML involves classification and prediction. Its application is crucial in medicine, aiding in the diagnosis and
treatment of patients.

ML prediction has been developed to assess the T-score of the lumbar spine and categorize vertebrae as healthy or
osteoporotic. This is done by analysing the Hounsfield units (HU) of lumbar CT scans (Houssein et al., 2024).
Osteoporosis frequently remains asymptomatic until a fracture reveals its presence, partly because standard
diagnostic protocols do not effectively incorporate non-imaging clinical indicators. Most existing deep learning
frameworks focus exclusively on high-resolution radiographs, assets that are not consistently available in primary
care clinics or national screening initiatives.

In response to this gap, we introduce a multi-stage convolutional neural network that employs a real-coded genetic
algorithm (RCGA) for hyperparameter optimization and integrates a dynamic weight fusion technique. In contrast
to previous models, our approach uses only demographic and BMD measurements, completely bypassing the need
for imaging. This design permits seamless implementation in large-scale, non-radiographic screening campaigns.
The RCGA-driven optimization achieves fine-tuned parameter selection and the adaptive fusion enriches feature
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representation across the depth of the network, yielding a solution that is both computationally efficient and robust
across diverse population cohorts.

The contribution of this work is as follows:

e Development of a cascaded CNN architecture with adaptive weight fusion to prioritize relevant features
across layers.

e Application of a RCGA for efficient hyperparameter optimization.

e Empirical validation using a real-world BMD dataset, achieving 99.5% accuracy and outperforming both
traditional and recent deep learning models.

¢ A non-imaging-based, scalable diagnostic framework suitable for mass osteoporosis screening.

The proposed model is validated using publicly available datasets, and the experimental results stress its
improvement over conventional methods. Applying methods based on deep learning approaches for automatic
detection of osteoporotic diseases is promising and, in turn, may change the course of early diagnosis and
prophylaxis.

2 RELATED WORKS

A deep learning meta-model (Amani et al., 2024) was proposed through a systematic review and meta-analysis to
evaluate the accuracy of osteoporosis prediction. Preprocessing includes quality assessment, dataset selection and
heterogeneity testing. Deep learning models such as CNNs were assessed across various datasets, ensemble
networks were applied to X-ray and CT scans, uniting the evidence from various studies, enhancing generalizability.
An advantage is its extensive scope over multiple populations, where variability in dataset quality and a lack of
standardization in imaging protocols are a problem. The CNN model (Belali et al., 2025) processes X-ray images to
predict osteoporosis-related fractures with high precision. Preprocessing steps include normalization, denoising and
contrast enhancement, which influences convolutional layers to extract deep spatial features of bone degradation. It
has a major advantage in enhancing detection accuracy with low manual intervention. However, it struggles with
low-quality images and lacks interpretability in decision pathways where computational costs remain high due to
image resolution.

The CNN model based on DenseNet-121 (Sarhan et al., 2024) was utilized for diagnosing knee osteoporosis using
deep image features. Images were preprocessed using image resizing, grayscale conversion and augmentation,
which improved model robustness and the deep network efficiently captured structural degradation patterns in
knee joints. Its advantage lies in higher feature reuse and decreased vanishing gradient issues and it has challenges
in limited dataset diversity and sensitivity to noise. A comparative model utilizes CNN, long short-term memory
and GRU (Liu et al., 2024) to classify osteoporosis risk levels, utilizing healthcare analytics to preprocess model data
through normalization and imputation of missing values, combined with clinical and radiographic data. The main
advantage is that the flexible combination of multimodal health records with limited longitudinal data affects
temporal model performance, where CNN faces overfitting due to limited training datasets.

The deep learning algorithm based on ResNet-50 (Chen et al., 2024) classifies osteoporosis and detects T-scores from
hip radiographs by using preprocessing techniques such as bone segmentation, histogram equalization and artifact
removal. The residual network captures fine-grained features relevant to bone density assessment, which has major
automated scoring and low reliance on DEXA scans. This may face challenges of dataset dependency and
minimized generalization over different demographic groups. A deep learning framework based on U-Net
architecture (Oh et al., 2024) processes quantitative CT data for opportunistic screening which incorporates 3D voxel
normalization and bone mask extraction. The primary application is in routine CT scans, where it minimizes
screening costs, although concerns over radiation exposure and CT image variability limit the system.

The convolutional neural network of Ha et al. (2024) combines abdominal CT images with clinical variables for multi-
class osteoporosis stage classification. Preprocessing steps involve intensity normalization and feature
standardization of variables such as age and BML. Its strength lies in integrating anatomical and clinical insights, but
it has challenges in model generalizability across imaging devices and datasets with high class imbalance, which
also affect minority stage prediction performance. The CNN of Houssein et al. (2024) reaffirms the use of CT images
and demographic inputs for multi-stage classification, including anatomical extraction and combination of patient-
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specific data. With consistent performance metrics, the architecture confirms its reliability in diverse clinical settings
where it lacks large-scale longitudinal data for temporal analysis.

Woud et al. (2025) combined fuzzy logic preprocessing with a pre-trained deep CNN to improve osteoporosis
detection on the images that underwent fuzzy-based edge improvement and denoising before deep classification.
Transfer learning on models such as VGG16 facilitated training and enhanced generalization. Limitations involve
longer preprocessing time and sensitivity to fuzzy parameter tuning where the hybrid design enhances accuracy but
adds complexity. The broad-learning system (BLS) framework (Zhang et al., 2024) applied a feature-based
architecture for opportunistic osteoporosis screening from lumbar spine X-rays. Preprocessing involved ROI
extraction, histogram normalization and texture feature engineering. The BLS model efficiently connects feature
nodes in a flat network without deep layers, which limits its power in representing hierarchical structures, resulting
in reduced performance on complex patterns that also require manual feature extraction.

Recent research has underscored the promise of optimization-driven methods in the realm of medical diagnosis.
Kunjali and Malarvizhi et al. (2024) harnessed sparrow search optimization to fine-tune the support vector machine
for early identification of osteoporosis, resulting in marked gains in diagnostic precision. Building on this, Sivasakthi
et al. (2025) introduced a hybrid Elman recurrent neural network, its architecture shaped by bacterial colony
optimization and tabu search, to advance osteoporosis classification. Ashwini et al. (2025) catalogued numerous bio-
inspired optimization strategies interwoven with deep learning for disease detection, illustrating the breadth of the
field. Collectively, these studies affirm the use of nature-inspired algorithms in enhancing diagnostic models,
providing strong justification for the integration of real-coded genetic algorithms in our proposed framework.

A comparative model evaluates vision transformers (ViTs) and CNNs (Sarmadi et al., 2024) for osteoporosis
detection using X-ray images, which includes patch generation and traditional resizing for CNNs. The transformer
model benefits from long-range attention and global feature capture, which also needs significant computational
resources and has been less effective in small datasets. Halesh and Sathish (2024) integrated deep learning with tuna
jellyfish optimization for estimating femur bone volume and classifying osteoporosis. Preprocessing enabled bone
edge prediction and extraction of geometric features. However, this metaheuristic approach increases training
complexity and performance depends heavily on initial conditions.

The hybrid system of Tong et al. (2024) used radiomics and deep CNNs for automatic osteoporosis screening from
low-dose chest CT scans. Preprocessing included radiomic feature extraction, voxel normalization and slice
selection. CNNs enhanced pattern recognition while radiomics improved interpretability with inconsistent CT
parameters over machines and potential overfitting. The CNN-based system of Samala et al. (2024) targeted
osteoporosis-related fragility analysis through detailed bone image classification by performing denoising,
morphological operations and bounding box detection. The network was structured to predict micro-architectural
deformities in bone scans that improve early detection by reducing future fracture risk and increasing image
complexity. Kale et al. (2024) applied a CNN optimized using a chronological-hybrid technique for femur
segmentation and osteoporosis classification. Preprocessing included edge detection, time-sequenced data mapping
and intensity normalization, which is helpful in temporal analysis of bone health. However, the model is
computationally demanding and sensitive to patient positioning during X-ray acquisition. Table 1 shows an
overview of existing techniques.

Table 1. Overview of existing models.

Author Dataset Method Limitation Advantages
D’Souza et al. (2024) X-ray images Optimized CNN + Complexity in Enhanced classification accuracy
XGBoost combining hybrid

models

Amani et al. (2024) Multiple public Deep learning meta- Dataset heterogeneity Evidence-based evaluation with

datasets model pooled sensitivity/specificity

Belali et al. (2025) X-ray images Deep CNN Sensitive to poor image | High fracture detection accuracy
quality

Samala et al. (2024) X-ray data CNN Lacks external Early detection of bone fragility
validation using deep features
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Author

Dataset

Method

Limitation

Advantages

Dhanagopal et al. (2024)

CT, dual X-ray, X-ray

Channel-boosted CNN
+ transfer learning

Requires modality-
specific tuning

Versatile across multiple
imaging modalities

Sampath et al. (2024)

CT images

Various CNN

No single model
optimized for all
patients

Early diagnosis and performance
benchmarking

Sarmadi et al. (2024)

X-ray images

Vision transformer +
CNN

Requires large data and
memory

Outperforms CNNs on large,
diverse datasets

fuzzy logic

Kale et al. (2024) Femur bone X-ray CNN + chronological- Sensitive to input Accurate segmentation and
hybrid optimization variation, high classification of femur structure
computational load
Woud et al. (2025) X-ray datasets Pretrained CNN + Requires parameter Enhanced detection under poor

tuning in fuzzy
preprocessing

image quality

Ho et al. (2025)

Hand radiographs

HarDNet-based CNN

Limited to hand bones

Fast and efficient inference of

BMD with minimal computation

While deep learning models show strong potential for osteoporosis detection, several common challenges remain.
Most studies rely on small or similar datasets, limiting their ability to generalize over populations. Image quality
issues, class imbalance and lack of standardized preprocessing may affect accuracy. Although some models use
clinical data or optimization methods, few have been tested on diverse imaging types or validated externally. High
computational demands and limited interpretability also hinder real-world use. Additionally, most research lacks
longitudinal analysis for tracking bone changes over time, emphasizing the need for more robust and scalable
solutions.

3 METHODS AND MATERIALS

To overcome the above research gap, our cascaded CNN model assigns adaptive fusion weights to features from
different layers. It identifies which features mostly contribute to the classification and suppresses noisy features.
Spatial features are dynamically integrated in the model based on relevance. It utilizes a cascaded CNN and
incorporates an adaptive weight fusion strategy implemented by a RCGA. This strategy helps improve
generalizability. This section will discuss the dataset, provide an overview of the proposed model structure, explain
the hyperparameter tuning process and outline the evaluation metrics used. Hierarchical CNNs are known for their
capability to capture low-level to high-level features via progressive layers. This allows medical image models to
efficiently extract discriminative spatial features from anatomical structures (Huo et al., 2024).

Cascaded CNN
Dataset — .
= =] > =
=1 | |
Y SEARESEAR daoti b
Preprocessing "~ = O | Adaptive Weight
Fusion
= k= >l 3
cl alE =1 )
SEANMSE =
o] @ Osteoporosis
[ .
i Detection

RCGA-Based 1
Hyperparameter [«
Optimization ‘

Figure 1. Overview of proposed osteoporosis detection framework.
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The system, as shown in Figure 1, begins with clinical BMD and demographic data, undergoes preprocessing and is
processed through a cascaded CNN. The model is optimized using a RCGA and enhanced by adaptive weight fusion
before final classification.

3.1 Data collection

We utilize two datasets for model performance evaluation. The details are shown below.

3.1.1 Dataset 1 for training and testing

The dataset! used in this study (Sharma, 2021) was sourced from Kaggle and contains anonymized patient records,
including demographic variables and BMD values. Although this specific dataset has limited exposure in clinical
trials, similarly structured BMD clinical data are widely used by recent research for osteoporosis detection (Alden &
Ata, 2024; Iliou et al., 2024). Our dataset includes patient demographic information, bone density measurements and
a history of fractures. This dataset was anonymized from publicly available medical records to protect patient
privacy. The dataset contains key features, as shown in Table 2.

Table 2. Key features from bone mineral density (BMD) dataset.

Feature Description Data type
Patient ID Unique identifier for each patient Categorical (numeric)
Age Age of the patient at the time of BMD measurement Continuous (numeric)
Sex Gender of the patient (male/female) Categorical (text)
Fracture history | Indicates whether the patient has a history of fractures Categorical (text)
Weight (kg) Weight of the patient in kilograms Continuous (numeric)
Height (cm) Height of the patient in centimetres Continuous (numeric)
Medication Type of medication the patient is taking (e.g., anticonvulsant) Categorical (text)
Waiting time Time the patient waited (in days) for the BMD scan/consultation Continuous (numeric)
BMD (g/cm?) Bone mineral density measurement (key indicator for osteoporosis) Continuous (numeric)

Standardized dual-energy X-ray absorptiometry scanning, currently the gold standard for assessing BMD, was
utilized to obtain the data. They are instrumental as BMD is low in the hip and spine regions, most affected by
osteoporosis. In this work, BMD values are the most important features for distinguishing osteoporosis cases, which
is why they are included in the diagnosis information. The provided dataset exhibits relatively high variability
within a patient population, which will aid in building an efficient deep-learning model for early detection of
osteoporosis.

The graph in Figure 2 shows the average BMD of different age groups, excluding missing data. The highest BMD is
reported in the age brackets of 30—40 and 40-50 years with an average of 0.85 g/cm?, consistent with population-
based studies that show that peak bone mass is typically achieved by early adulthood (Chan et al., 2004). As for the
age cohorts of 50-60 and 60-70, the graph is slightly declining with averages of 0.81g/cm? and 0.83 g/cm? respectively,
telling us about a little more bone mass reduction that usually starts around the middle age, which is more noticeable
in the female postmenopausal population. Larger and more pronounced changes occur in the age categories of 70-
80 and 80-90, where the average BMD drops to 0.71 g/cm? and 0.67 g/cm?, respectively, which demonstrates the
increased fragility of the skeletal system in the osteoporotic elderly population and the high incidence of bone
fractures. The <30 and 90+ age groups are not captured in the chart, likely because there was no information available
on those age brackets or very few samples to analyse. This decreasing trend in BMD across ages confirms the need
for screening and advanced intervention against osteoporosis, especially among the elderly population, to avoid
pathological fractures and other sequelae.

1 See, https://www.kaggle.com/datasets/amarsharma768/bmd-data.
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Average bone mineral density (BMD) across age groups (excluding missing data)
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Figure 2. Average bone mineral density (BMD) in different age groups.

Before the model was developed, the data were prepared by filling in missing data, standardizing BMD scores and
segmenting the patients into age groups to determine which group was most affected by low bone density. Other
training enhancement methods were also employed to increase diversity in the dataset and enhance the model
performance. The dataset was labelled based on osteoporosis diagnosis (osteoporotic versus non-osteoporotic) using
a BMD threshold of 0.8 g/cm?. The final class distribution consisted of 312 non-osteoporotic samples (62.4%) and 188
osteoporotic samples (37.6%), reflecting a moderate class imbalance. To address this, we used stratified sampling
when splitting the dataset (70/15/15) to maintain class proportions across training, validation and test sets.

3.1.2 Dataset 2 for testing proposed model using unseen femoral neck BMD dataset

For testing the model efficiency in predicting osteoporosis, we used the femoral neck BMD dataset? (Kale et al., 2025).
To our knowledge, this dataset has not been used or benchmarked in any research work. However, a similar dataset
was explored by Al-Husaini (2025). We chose 350 data points for testing by balancing the BMD threshold. The
columns from this dataset must align with those from the first (training BMD) dataset. We must deal with additional

or missing columns to ensure that both datasets contain the same set of features. The sample test data are shown in
Table 3.

Table 3. Sample dataset view of DEXA femoral neck BMD.

Sr.no. | Gender | Age | Height | Weight | BMD | T-score | Z-score | Area | BMC | BMI | Obesity group | BFP STD
1 F 41 159 50 0.36 -15 -0.7 392 | 469 | 19.78 2 27.76 | 1360

2 F 65 155 62 0.968 -0.5 1 3.35 346 | 25.81 3 40.52 | 1570

3 F 67 146 65 0.857 -1.3 0.3 346 | 4.03 | 30.49 4 46.60 | 1570

4 F 40 151 62 0.865 -1.2 -0.7 4.11 475 | 27.19 3 36.43 | 1570

5 F 50 158 79 0.829 -15 -1 394 | 475 | 31.65 4 44.07 | 1570
351 M 69 169 58 0.785 -2.2 -0.6 5.5 4.32 20.31 2 24.04 | 1570

2 See, https://doi.org/10.17632/kys6x6wykj.1.
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Sr.no. | Gender | Age | Height | Weight | BMD | T-score | Z-score | Area | BMC | BMI | Obesity group | BFP STD
352 M 46 158 72 0.686 -3 2.4 5.38 3.69 28.84 3 28.99 | 1795
353 M 48 168 67 0.721 2.7 -2.1 5.03 3.63 23.74 2 23.33 | 1570
354 M 69 165 69 0.8 2 -0.5 498 | 4.02 | 2534 3 30.08 | 1795
355 M 56 165 60 0.844 -1.7 -0.5 4.67 3.94 | 22.04 2 2313 | 1570

Both datasets need to encode sex and gender identically. The medication column must also receive equivalent
treatment in both datasets, whether it be one-hot or label encoding. The fracture column of the first dataset also
needs to be encoded and used in the same manner in the second dataset (e.g., no fracture = 0, fracture = 1). The
fracture column is the target column or the prediction column of the testing data. We include two columns for
fracture and medication based on the threshold value of BMD.

Numerical features (e.g., age, height, weight, BMD) must all be scaled using the same technique as during training,
such as the Standard Scaler, for each variable. We removed columns from the test dataset that were not used during
training (e.g., T-score, Z-score, BMC, obesity group, etc.), unless they were part of the model. Finally, we ensured
that the test set contains the same features, ordered identically, as the training set and that it includes the same
number of features as the training set. After preprocessing the data, the results are shown in Table 4; our predictions
are fracture or non-fracture for the test data.

Table 4. Sample dataset view after preprocessing.

Sr.no. | Gender | Age | Height | Weight | BMD
1 F 41 159 50 0.36
2 F 65 155 62 0.968
3 F 67 146 65 0.857
4 F 40 151 62 0.865
5 F 50 158 79 0.829
351 M 69 169 58 0.785
352 M 46 158 72 0.686
353 M 48 168 67 0.721
354 M 69 165 69 0.8
355 M 56 165 60 0.844

3.2 Data preprocessing

Preprocessing is essential in preparing the BMD dataset before feeding it to the deep learning model. In this paper,
several preprocessing techniques were employed to modify and refine the dataset structure to a more suitable one
for the model training and testing. The steps include filling in the missing data, normalization, feature engineering
and converting categorical variables. This section outlines all the preprocessing steps undertaken during the study
and their corresponding equations.

Incomplete data can lead to model inaccuracies; therefore, this aspect must be addressed before proceeding with
model training. In this dataset, missing BMD values were handled by either deleting the corresponding rows or
replacing the values with the average BMD for the mean age.

Let X; ; represent the value of the jt feature for the i" patient. If a value is missing for a given feature, we replace it
with the mean of the non-missing values of that feature for the corresponding age group.

1

Xij =+

k=1Kij if X;, ismissing (1)

Normalization is performed to ensure that features with different ranges are comparable. For example, BMD values,
age, weight and height have other units and magnitudes. Normalization transforms the data into a standard range,
typically between 0 and 1, using the following min-max scaling formula:
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X, Xi'j—mil’l (Xj) (2)

L= max(xj)—min (xj)

where X'; ; is the normalized value of the feature j for the patient i and min(X,) and max(X;) are the minimum and
maximum values of the feature j across all patients. In addition to normalization, standardization is sometimes
used to transform features with a zero mean and unit variance. The standardized value X"; ; is given by:
X.' _# .

X”i,j - %}.1 (3)
where y; is the mean of the jt" feature and o; is its standard deviation. This transformation is beneficial when the
distribution of the feature values deviates significantly from normality. Categorical variables, such as "sex" and
"medication", must be converted into numerical form. For binary categories such as "sex", a simple encoding method
is used:

_ 1 if male,
Xij _{ 2 if female. (4)

For non-binary categorical variables, such as "medication”, one-hot encoding is applied. If there are m categories for
a feature, each category is represented as a binary vector of the length m, where each component is 0 except the
component corresponding to the observed category, which is 1.

To further improve the convergence of deep learning models, feature scaling is performed. The dataset is scaled to
have zero mean and unit variance using the following formula:

Xjj—mean X;

Xij = std (Xj) ®)

Where mean(X j) is the mean of the featurej and std(X;) is the standard deviation. Contrast enhancement using

local contrast stretching and dynamic histogram equalization has been shown to improve brightness preservation
in medical image enhancement tasks (Panse et al., 2021).

3.3 Classimbalance handling using SMOTE

The dataset contains only 169 pieces of patient information, which is insufficient for the model to learn the data. To
ensure that the data are sufficient, data balancing is verified as shown in Figure 3. Specific columns within the
datasets, such as the medications column, have non-numeric values (e.g., anticonvulsant). These categorical values
are not compatible with the SMOTE algorithm, which requires numerical values. As such, we convert the categorical
variables to numerical formats with methods such as one-hot encoding. After the data are suitably formatted, we
apply SMOTE again to generate synthetic samples. This balances the distribution of classes and promotes improved
generalization of the model.

Class Distribution of Osteoporosis Status Class Distribution after SMOTE
12
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Figure 3. Before and after SMOTE for increasing data samples.
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The primary dataset consisted of 169 samples and the BMD scores were standardized, age groups were determined
and missing data were filled in. The formation of age groups was chosen to assess which group was most affected
by low bone density. Several training augmentation techniques were employed to enhance the dataset diversity, a
crucial step in improving model performance. A BMD of 0.8 g/cm? was utilized to determine dataset labelling for
the diagnosis of osteoporosis (osteoporotic versus non-osteoporotic). At this point, SMOTE processing creates a
dataset consisting of 312 non-osteoporotic samples (62.4%) and 188 osteoporotic samples (37.6%) for class balancing.
An extremely imbalanced dataset was initially present, containing a considerably small proportion of osteoporotic
samples. To resolve this, we employed a stratified sampling approach for data splitting, which was done at a 70/15/15
ratio for training, validation and test sets, preserving class proportions at each split. The SMOTE technique enhanced
the model generalization capabilities for both classes by generating synthetic data.

Algorithm 1 shows the SMOTE process. The input SMOTE receives minority class instances as feature vectors. By
considering the nearest neighbour k=5, distance metrics using Euclidean distance are calculated. By selecting a
random number between the distance synthetic sample is created using

Xsynthetic =x+41 (xj - xi)/ A~U(0,1) (6)

Algorithm 1. SMOTE

Input

Dininority — minority class instances, k=5 (nearest neighbours), Nyesireq =number of synthetic samples

For all minority samples x;€Dinority
Find K value nearest neighbours of x; in the feature space
For each neighbour x;
Create Xsyntneric Using equation (6)
Add synthetic samples to dataset X
If Ngesirea =N,
End
End

4 PROPOSED MODEL ARCHITECTURE

The digital model developed in this study for osteoporosis diagnosis is based on cascaded CNN and adaptive weight
fusion. The specific architecture aims to retrieve features at multiple scales, in this case from X-ray or DXA images,
while enhancing the cross-layer feature fusion. The RCGA optimizes the network parameters for improved
efficiency. In this section, we will thoroughly discuss the components that comprise the entire architecture as
specified above.

We chose a cascaded CNN design because it systematically builds a hierarchy of multiscale features through
successive layers. In contrast to a flat single-block CNN, this arrangement gives a more refined and tailored analysis
of low, mid and high-level representations, which is crucial when identifying small but clinically significant
differences in bone structure and density. Each block increments its dilation rate as it processes, thereby gradually
enlarging its receptive field. This configuration gathers edge-level fine details alongside more global patterns;
accumulating these layers consecutively has consistently improved classification accuracy in medical imaging
studies (Huo et al., 2024).

The proposed model employs a cascading sequence of CNNs whereby several convolutional neural networks are
placed on top of one another to process more complex features at successive stages and across multiple scales. The
standard template of each CNN block encompasses, among other components, a convolutional layer and a stack of
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other sub-layers in the following order: batch normalization after the convolution layer, a ReLU layer and max
pooling. The architecture has been developed to capture broader, more profound structural stratification in bone
tissue and density, thereby facilitating recognition of even minute changes in the image.

The convolutional layers extract local patterns, such as edges or textures, using a set of learnable filters. The
convolution operation can be described mathematically as follows:

Given the input signal x(t) of a length T, wheret = 0,1,...,T — 1, kernel (filter) w(k) of a size K, where k =
0,1,..,K — 1, output y(t), the result of convolving x(t) with the kernel w(k). The convolution at the time step t is

given by:
y(®) =ZiZow(k) - x(t = k) )

where y(t) is the output at the position t, w(k) is the filter (kernel) value at the position k, x(t — k) is the input value
at the shifted position t — k. This operation is repeated for each time step t and the output is a series of values
representing the result of the convolution for the input signal.

——> Y “ Feature .
‘ Maps H Weight }—
32,3, 3),d_rate=1
Feature . . :
Maps ’—~‘ Weight > Fusion
Feature :
Maps }—v‘ Weight
128,(3, 3),d_rate=4

—‘ Dense —i Dense }——
Data

Figure 4. Cascaded convolutional neural network structure with adaptive weight fusion strategy.
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64,(3, 3),d_rate=2
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Figure 4 shows the cascaded CNN structure with the adaptive weight fusion strategy. Batch normalization is applied
after each convolution to stabilize the learning process and reduce the internal covariate shift. The transformation is

as follows:
6 _ X-p )
f=F vy +p (8)

where p and o2 are the mean and variance of the input batch, and y and f are learnable parameters. The rectified
linear unit (ReLU) is used as the activation function in each layer:

f(x) = max(0,x) )

The ReLU introduces non-linearity to the model, helping train deeper networks by mitigating the vanishing gradient
problem. Max pooling is applied to reduce the spatial dimensions of the feature maps while retaining the most
essential features. The pooling operation is defined as:

Yij = max(Xmn) (10)

where Y; ; is the output at the position (i, ) and X, , are the input values in the pooling window.
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The first convolutional block incorporates 32 filters of a kernel dimension 3x3, a dilation rate of one, and is the heart
of imaging simple shapes, such as edges and textures. The output in that block is forwarded to the second block,
which contains 64 filters of a kernel size 3 X 3 x 3 but having a dilation of 2. This won the tarp, enabling the network
to gain more much-shaped or outlined features. In the third block, 128 filters have been placed with a kernel size of
3 x 3 and a dilation of 4, enabling the network to concentrate on even higher-level and more significant elements,
such as the structural outline of the bones. Once the features have been retrieved from these three blocks, the model
utilizes an adaptive weight fusion strategy to combine the features. An additional step of the model addresses this
need by performing adaptive weight fusion, where the features extracted from all the blocks, which are assigned
learnable weights, are summed. The last layer of the network is used to fully utilize the essential features at different
levels of the network for enhanced accuracy. The resulting fused feature map is vectorized and, after passing through
64 dense neurons, is fed into a softmax classifier with two output neurons for binary classification. The proposed
structure supports the ability of the model to recognize local and global aspects of input images, thus achieving high-
performance osteoporosis image recognition.

What distinguishes our approach is the fusion of the cascaded CNN with adaptive weight assignment, where the
output from each block is multiplied by a learned importance score. This mechanism curates which features
influence the final output, dampening noise and eliminating redundancy without requiring fixed rules. Unlike
conventional architectures that fuse features by fixed concatenation or averaging, our sequence autonomously
prioritizes information as it flows through layers. We further enhance this framework by deploying a real-coded
genetic algorithm to tune hyperparameters, yielding a search trajectory that is both flexible and fitted to the data.
This generative, data-aware optimization leads to faster convergence and stronger generalization, features that
standard osteoporosis detection pipelines typically lack.

4.1 Adaptive weight fusion strategy

A notable feature of this model is the adaptive weight fusion strategy, which effectively combines different inherent
features obtained from various CNN blocks. The outputs of each block are weighted by learnable parameters that
can be altered with training. This mechanism enables the model to focus on blocks that are more important for the
classification and, thus, are weighted more.

Let F;, F,, ..., F, represent the feature maps from different layers in the cascaded CNN. The fused feature map Ffy5eq
is computed as:

Ffused = Z?:l a;F; (11)

where q; is the adaptive weight for the i*" feature map. The weights a; are learnable parameters that are updated
during backpropagation.

Feature maps obtained after the feature fusion phase are then unrolled to transform them into flat columns and fed
into some compacting fully connected layers. The purpose of these layers is to fuse the features obtained and provide
an output. The features are encoded in a matrix form, constituting a one-dimensional vector in preparation for
transmission into the last layers. The last fully connected layers apply structured linear functional operations to the
features, followed by activation to yield classification scores for the problem.

Y = f(WX + b) (12)

where W is the weight matrix, X is the input vector, b is the bias and f is the activation function (e.g., ReLU or
softmax). For binary classification (osteoporosis versus non-osteoporosis), the softmax activation function is used in
the output layer to compute the probability of each class:

eZk

Py =klx) = g+

. (13)
L=y ¢’

where z, is the output of the final layer for the class k and K is the number of classes (in this case, 2).
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4.2 Hyperparameter optimization using real-coded genetic algorithm

Hyperparameter tuning is one of the most important processes in enabling a deep learning model to perform well.
To this end, we apply a RCGA, which has shown promising results in optimizing deep learning architectures and
hyperparameters effectively (Lee et al., 2021). As the name suggests, the RCGA is a hybrid optimization technique
in which candidates, in the form of hyperparameters, are also selected and optimized through several generations
to improve the value of an objective function, typically the validation accuracy of the model.

Given a set of hyperparameters 8 = {6, ,0,, ..., 0,}, where n is the number of hyperparameters (e.g., learning rate,
number of filters or dropout rate), the goal of the RCGA is to find the optimal values of 8 that maximize the model
performance. The optimization process can be defined as:

0" =arg max Fitness(6) (14)

Here, 6" represents the optimal set of hyperparameters and the fitness function evaluates the performance of the
model with hyperparameters 6. Algorithm 2 shows hyperparameter optimization using the RCGA.

Algorithm 2. Hyperparameter optimization using RCGA

Input:
- Population size (P)
- Number of generations (G)
- Crossover probability (p.)
- Mutation probability (p,,)
- Hyperparameter ranges for initialization
Output: Optimal set of hyperparameters 6*
1. Initialize population:
- Create an initial population of a size P with random hyperparameter vectors 6;,i = 1,...,P
2. For generation =1 to G:
a. Evaluate the fitness of each candidate 6;:
- Train CNN model using 6;
- Compute fitness (e.g., validation accuracy)
b. Selection:
- Select top-performing candidates (parents) based on fitness
c. Crossover:
- For each pair of selected parents, perform crossover with a probability p,:
- Generate offspring by combining parents' hyperparameters
d. Mutation:
- For each offspring, mutate hyperparameters with a probability p,,:
- Randomly adjust hyperparameters using Gaussian noise
e. Evaluate the fitness of new offspring
f. Replacement:

- Replace worst-performing candidates in population with new offspring
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g. Check for convergence:
- If convergence criteria are met (e.g., no significant fitness improvement), terminate

3. Return the best-performing hyperparameter set 6*

The RCGA extend the genetic algorithm framework by replacing binary encodings with floating-point
representations. This switches the genetic representation from binary strings to real-valued numbers, enabling more
precise adjustments to hyperparameters such as learning rates, dropout rates and filter sizes, which are naturally
continuous quantities. RCGAs also differ from grid search, which evaluates every possible combination and can
become prohibitively slow in high-dimensional spaces. By applying selection, recombination and mutation
operations, the RCGA tends to iteratively concentrate the population around high-performing regions, achieving
strong results with significantly fewer model evaluations, a key advantage in the resource-heavy context of deep
learning.

RCGAs further distinguish themselves from particle swarm optimization (PSO) by incorporating genetic low-level
operations alongside swarm-based moves. Crossover and mutation maintain genetic diversity, reducing the risk of
the search getting stuck in a suboptimal region. Experimental results in areas such as medical imaging and biosignal
classification suggest that RCGAs can consistently improve validation performance across varying architectures and
datasets (Ashwini et al., 2025).

Although the current analysis is based solely on the RCGA, planned follow-up research will include a systematic
ablation study that measures and compares its performance against PSO, grid search and Bayesian optimization.
Such comparisons will quantify the relative advantages of the RCGA and clarify hyperparameter optimization
design choices in future deep learning experiments.

5 RESULTS AND DISCUSSION

The structure of the two-level cascaded neural network model, comprising a module for fusing different CNNs and
a module for adaptive weights, was validated through experiments conducted on the BMD dataset for osteoporosis
classification (Dataset 2). An extensive hyperparameter optimization process was simulated for the model and
several hyperparameter settings were trained and tested. The main performance metrics for the final model included
accuracy, precision, recall (sensitivity), F1-score and area under the curve (AUC). Experiments were conducted on a
Google Colab Pro+ instance, which provided a Tesla T4 GPU with 16 GB, a 2.20 GHz Intel Xeon CPU and 32 GB of
RAM. The entire training process, including RCGA-guided hyperparameter search across several generations, lasted
approximately 2.8 hours. This covered 100 epochs of the cascaded CNN alongside validation on the held-out test
set. The compact training window illustrates the model efficiency and the effectiveness of the optimization
workflow.

The study analysed Dataset 1, which included 500 anonymized patient records, each featuring BMD measurements
alongside pertinent clinical variables. The records were divided into training (350 records), validation (75 records)
and testing (75 records) partitions using a 70-15-15 split, with stratified sampling applied to ensure that each partition
reflected a consistent distribution of outcome classes.

Adaptive weight fusion proposed a cascaded CNN, which helped achieve an excellent accuracy of 99.5% in the test
set for osteoporosis detection. This performance highlights both the efficiency of the system architecture and the
benefits derived from hyperparameter optimization using the RCGA. The results in Table 5 also show that the model
can efficiently identify osteoporotic cases while minimizing false positive cases. The obtained level of accuracy of
99.5% demonstrates that this particular type of convolutional neural network, which combines adaptive weight
fusion, is robust and accurate. Furthermore, it targets those patients with an osteoporosis recall rate of 99.0%,
reducing the risk of false negatives against the disease. Of all the optimistic class predictions, 98.7% were correct,
meaning only a few false positives were included. The achieved Fl-score of 98.8% indicates a perfect balance of
precision and recall, demonstrating the model reliability.
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Table 5. Result analysis of adaptive weight fusion with cascaded convolutional neural network.

Metric Score
Accuracy 99.5%
Precision 98.7%

Recall (sensitivity) 99.0%

F1-score 98.8%

AUC-ROC 0.99

The RCGA proved to be significant in optimizing the hyperparameters of the proposed cascaded CNN model,
leading to better results in osteoporotic fracture detection. Additionally, the RCGA enhanced model accuracy and
generalization capabilities by efficiently searching the hyperparameter space and adjusting parameters such as the
learning rate, filter sizes, dropout rates and dilation rates. The hyperparameter optimization primarily focused on
the values of the parameters that were crucial in enhancing the efficiency of the learning process, given the available
data. These parameters were the optimization learning rate of 0.0005, the dropout rate of 0.4, the batch size of 64 and
dilation rates of (2, 4, 8). This led to the model maintaining convergence speed without compromising performance,
resulting in a test accuracy of 99.5%. A hyperparameter result analysis for the RCGA is provided in Table 6.

Table 6. Hyperparameter result analysis for RCGA.

Hyperparameter Value
Learning rate 0.0005
Batch size 64
Number of epochs 100
Optimizer Adam
Dropout rate 0.4
L2 regularization 0.001
Filter sizes 3
Number of filters 128
Dilation rates (2,4,8)
Activation function ReLU
Pooling size 2
Fusion weights initialization 1.0
Weight initialization He normal
Early stopping patience 10

The RCGA as a hyperparameter optimization technique was vital in improving the performance level of the
developed cascaded CNN architecture for identifying osteoporosis. The parameters, which include the learning rate,
batch size, dropout rate, filter sizes and dilation rates of the RCGA, helped the model concentrate on both the
generalization and the convergence rate. The practical learning rate of 0.0005 facilitated gradual and consistent
convergence, while the adequate batch size of 64 effectively balanced computational performance and model
accuracy. The dropout rate of 0.4 was also appropriate, as it helped eliminate overfitting by randomly dropping 40%
of the units during training and enhanced the model accuracy to 99.5%.
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Table 7 shows an ablation study of the proposed work. The research work starts with a baseline CNN model. While
fine-tuning, the CNN performs reasonably well. We trained with a multi-headed CNN, a cascaded CNN and a
cascaded CNN with a genetic algorithm. The cascaded CNN with the genetic algorithm shows good performance
compared to the other CNN models.

Table 7. Ablation results and comparisons.

Model Accuracy Precision Recall (sensitivity) | Fl-score AUC-ROC
CNN 78.2 76.5 76.1 75.9 79
Multi-head CNN 82.5 82.3 825 82.6 84
Residual-CNN 83.7 84.2 83.5 83.3 84
Cascaded CNN 88.6 88.6 88.3 87.7 89
Cascaded CNN + genetic algorithm 95.6 94.5 94.3 93.9 95
Proposed cascaded CNN with RCGA 99.5% 98.7% 99.0% 98.8% 0.99

The intricate structures of the model were optimally captured due to the use of 128 filters with a kernel size of 3 and
dilation rates of (2, 4, 8), which provided different convolutional layers with expanded receptive fields, thus
requiring no additional parameters. Such multi-scale feature extraction improved the ability of the model to
differentiate fine details in the bone structures. Regularization techniques, such as L2 for the bias weight (0.001) and
He normal weight initialization, eliminated further complications and optimized the model performance. There was
an early stopping mechanism with a patience of 10 to prevent overfitting when there were no improvements in the
training. In summary, with the aid of adequately set hyperparameters through the systematic RCGA, an effective
and reproducible model was developed, which outperformed conventional methods and achieved a 99.5% detection
rate for active osteopenia. This highlights the need to pay attention, particularly to hyperparameter optimization,
while constructing deep learning models to solve medical problems.

0 10 20 30 40 50 60 70
Epoch

Figure 5. Accuracy graph for proposed model, cascaded CNN with RCGA.

Figure 5 shows the training and validation accuracy plots for the developed cascaded CNN based on the RCGA over
70 epochs. In the first phase of the training, i.e., epochs 0-10, both training and validation accuracies start rising at a
relatively high rate, approximately 0.5, indicating that the model quickly captures the basic patterns in the data.
Then, as the epochs move to the middle, generally referred to as epochs 10-40, training accuracy increases and
approaches a plateau of about 0.95. In contrast, the validation accuracy is around 0.9, indicating that the model can
improve further.
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Figure 6. Loss graph for proposed model, cascaded CNN with RCGA.

As much as we would like to end there, both curves levelled out in the last epochs (40-70) as the training accuracy
approached 1.0, while the validation accuracy returned to approximately 0.95. The model has no further
development, as its accuracy remains unchanged after this stage. Figure 5 presents the training and validation
accuracy over epochs, revealing a steep upward trajectory during the first 10 to 15 epochs, followed by a steadier
rise that levels off around the 40t epoch. Training accuracy approaches a perfect score of 1.0, while validation
accuracy stabilizes around 0.95, indicating that the model is generalizing well and is not experiencing significant
overfitting.

The loss curves illustrated in Figure 6 show a pronounced drop in both training and validation loss during the initial
epochs, with the training loss levelling off at approximately 0.2 and the validation loss at approximately 0.3 by epoch
70. The training and validation curves remain close to one another, suggesting that the learning process is solid and
that dropout and L2 regularization are effectively mitigating overfitting. The fact that the losses do not begin to
separate supports the conclusion that the model generalizes well to unseen data.

Concerning Figure 6, the training of the cascaded CNN model with RCGA optimization can be further assessed
using the losses for both the model and the validation set over the 70 epochs. The two curves have high initial loss
values, mostly around 1.5, which indicates that the model initially predicts a fair number of inaccuracies. As the
training continues, the training and validation loss values decrease, which can be attributed to a reduction in error
due to improvement and minimization of errors using the backpropagation method. In the early epochs(the initial
0 to 10 epochs), both sets of data rapidly decline in loss values. In fact, this rapid reduction is especially true
concerning the loss values relative to the training data rather than to the validation data; in other words, the training
loss is much lower than the validation loss. This means that the model can accurately capture the basic structures in
the data. During the middle phase of the training process, which spans epochs 10 to 40, the decrease in loss begins
to slow down as more refined adjustments are made to the model parameters and more sophisticated features are
learned from the data. At epoch 40, both curves exhibit a general decrease, which, in all likelihood, indicates that the
model is making progress. However, a wobble has been reached whereby progression is made less rapidly. During
the training period, which spans epochs 40 to 70, both curves converge; the training loss tends towards 0.2, while
the validation loss is approximately 0.3.

Table 8. Comparison with baseline models.

Model Accuracy Precision Recall (sensitivity) | F1l-score AUC-ROC
Proposed cascaded CNN with RCGA 99.5% 98.7% 99.0% 98.8% 0.99
Support vector machine (SVM) 88.5% 87.2% 86.0% 86.6% 0.88
Random forest (RF) 85.8% 85.0% 84.5% 84.7% 0.87
K-nearest neighbours (KNN) 83.6% 82.5% 81.0% 81.7% 0.84
Logistic regression (LR) 80.2% 78.8% 79.5% 79.1% 0.82
Naive Bayes (NB) 78.0% 76.5% 77.2% 76.8% 0.80

https://doi.org/10.18267/j.aip.294 151 https://aip.vse.cz


https://aip.vse.cz/

Acta Informatica Pragensia

Table 9. Test performance results of femoral dataset in proposed model.

Volume 15, 2026

Evaluating the cascaded CNN with the RCGA and five other baseline models, including SVM, RF, KNN, LR and
NB, against the proposed model indicates that the proposed model is the best in all the evaluation metrics, as shown
in Table 8. The deep learning model, CNN with RCGA, achieves an astounding 99.5% accuracy compared to 88.5%
for the best-performing baseline model (SVM).

The outputs from the additional evaluation on Dataset 2 are presented in Table 9. Figure 7 explains the confusion
matrix, illustrating the performance of the proposed model on the dataset during testing.

Recall AUC-
Model Accuracy Precision el F1-score ue
(sensitivity) ROC
Proposed cascaded CNN with RCGA 97% 97% 96% 96.6% 0.97
]
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Figure 7. Confusion matrix of Dataset 2 in testing.
ROC Curve
1.0 A o
I,”
0.8 - //
€ /I’
T 0.6 1 e
-4 ’f
g e
S 0.4 e
= P
I””
0.2 1 -
,/I Model AUC = 0.97
0.0+ ——- Mean
0.0 0.2 0.4 0.6 0.8 10
False Positive Rate
Figure 8. RoC curves of proposed model in Dataset 2 testing performance.
Table 10. Result comparison with literature survey.
Model Input type Accuracy
Proposed cascaded CNN with RCGA Tabular (BMD, demographics) 99.5%
Boruta-XGBoost (Zhang et al., 2025) Tabular BMD-NHANES 90.03%
LASSO-logistic regression (LR) (Zhang et al., 2025) Tabular BMD-NHANES 74.8%
Logistic regression (Al-Husaini et al., 2025) Femoral neck BMD 85%
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The various models for classifying osteoporosis and their respective accuracies are benchmarked in Table 10.
Performance results are captured for each classification approach. The proposed cascaded CNN with the RCGA
achieved a maximum accuracy of 99.5%; the combination of deep learning with hyperparameter tuning effectively
learns complex associations within the relational tabular BMD and demographic data. The accuracy of Boruta-
XGBoost (90.03%) demonstrates the successful application of feature selection to optimize prediction precision;
however, it still falls short of that achieved by the deep learning model. The accuracy of the LASSO-logistic
regression model of 74.8% highlights a significant limitation of linear models and their application in the
complexities of osteoporosis detection. A moderate accuracy of 85% was attained with logistic regression on femoral
neck BMD data, thereby providing a more practical yet less comprehensive approach. Inevitably, it was
overshadowed by ensemble and deep learning techniques. In addition to the contexts in which simpler models, such
as logistic regression, possess utility and efficiency, the cascaded CNN with the RCGA remains the most accurate,
demonstrating the sophistication of contemporary deep learning models for complex medical classification.

Among other baselines, the proposed model performs exceptionally well in essential measures such as precision and
recall, surpassing all the baselines at 98.7% and 99.0%, respectively. This means that when positive cases are
reported, very few false positives are generated. An F1-score of 98.8% is a good score, indicating that the model has
performed well across all stages and can even identify actual cases while remaining free of false-positives.
Additionally, the presented work demonstrated an AUC-ROC of the model design at 0.99, indicating the qualitative
ability of the cascaded CNN with the RCGA in accurately differentiating between osteoporotic and non-osteoporotic
patients, contrasted with the baseline models and suggesting a diminishing return as the baseline models with the
best AUC-ROC for SVM at 0.88 and the lowest naive Bayes at 0.80 are introduced.

The stated accuracy of 99.5% results from a combination of architectural choices and training techniques, all designed
to minimize overfitting. Datasets were divided via stratified random sampling, ensuring clean splits with no overlap
between training, validation and test sets. This strict separation effectively eliminated data leakage. To curb
overfitting, we employed dropout at a rate of 40%, an L2 penalty of 0.001 and early stopping after 10 epochs with no
validation improvement. Loss curves for training and validation, shown in Figure 8, tracked closely, reinforcing the
notion of consistent generalization.

Additionally, adaptive weight fusion directed attention to the most informative features, while a genetic algorithm
for configuration of hyperparameters (RCGA) guided the search for a sweet spot between complexity and predictive
power. We recognize that variability in medical imaging is often mentioned. However, employing curated
structured clinical data instead of raw imaging may have bolstered the model performance. We plan to test the
model on external and cross-institutional datasets to assess its generalizability and robustness further.

6 CONCLUSION AND FUTURE WORK

The proposed approach of constructing a cascaded CNN using adaptive weight fusion and the RCGA for
hyperparameters has proven to be successful and robust enough for osteoporosis detection. The model achieved an
accuracy rate of 99.5%, precision of 98.7% and recall of 99.0%, with an AUC-ROC of 0.99, surpassing the performance
of other ML models. While the cascaded CNN configuration utilizes both low-detail and high-detail components of
the medical photograph by adopting the appropriate weight fusion technique, this technique also enhances the
relevance of the features used by the model derived from heterogeneous network layers. Additionally, it is worth
noting that the RCGA supports hyperparameter optimization, which enables the achievement of good results on the
training dataset and generalizes the model to new datasets. Given the structured nature of the input data, traditional
visual explanation tools such as Grad-CAM or saliency maps are not directly applicable. However, the model
provides interpretability through its adaptive weight fusion mechanism, which assigns importance to different
feature hierarchies during learning.

Furthermore, we analysed feature-level contributions (e.g., BMD, age or fracture history), which can provide insights
into the drivers of prediction. For improved transparency, future work will incorporate SHAP or LIME-based
analysis to give the clinicians individual-level explanations for each diagnostic prediction. These additions will
support better trust and adoption in real-world healthcare settings. While the proposed work shows promising
results, we have a few limitations on the BMD dataset. In this research, we utilized two datasets which are not widely
used, and previously there were no benchmark studies on them. In future research, it is essential to validate the
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proposed model using other datasets such as NHANES, enable comparison with existing studies and improve the
clinical reliability.

The findings demonstrate that the proposed model is precise and reliable, making it suitable for clinical practice in
osteoporosis diagnosis. With its capacity to discern hidden complexities within medical images and its robust ability
to generalize, it can enhance the correct identification of such diseases by clinical doctors in time to avert the risk of
developing osteoporosis-related fractures. Based on the model performance, it can support automated assessment
of medical images. Although the suggested model yields current and relevant results, some gaps remain for further
development and investigation. Future research directions may include extending the capabilities of the model to
perform multi-class tasks, such as identifying cancerous bones beyond osteoporosis. It is also believed that the
current work can be enhanced by incorporating additional patient data, such as clinical and demographic
information, in conjunction with imaging data.
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