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 Abstract  
Background: Osteoporosis is a condition characterized by bones that are porous and brittle, increasing 
the risk of fractures. It is often asymptomatic until substantial harm develops, making it crucial to treat 
at the onset of the disorder. 
Objective: This study aims to develop a practical, in-depth and adaptable framework utilizing 
constructed clinical and demographic datasets for the early detection of osteoporosis. 
Methods: We design a cascade convolutional neural network with adaptive weight fusion and fine-tune 
it with a real-coded genetic algorithm. An anonymized clinical and demographic record publicly 
available bone mineral density dataset was used. Missing data identification, normalization and 
encoding of categorical variables were key diagnostic steps. The training subset consisted of 70% of the 
dataset, while the remaining 30% was used for testing. 
Results: The predictive capability of the proposed model is demonstrated by utilizing two datasets. 
Dataset 1 is used for training and testing, achieving a classification accuracy of 99.5%, precision of 
98.7%, recall of 99.0% and AUC-ROC of 0.99. Dataset 2 is used to test the model generalizability, 
achieving a classification accuracy of 97.0%. 
Conclusion: The model integrates well into primary care settings, as it relies on structured clinical data 
rather than imaging. Its low costs relative to value and high scalability make it suitable for  
population-level screening and treatment of osteoporosis. The limitation of the research is that we 
utilize only a clinical dataset to train the model without image analysis.  

 Index Terms 
Osteoporosis; Deep learning; Medical imaging; Automated diagnosis; Bone density; X-ray; CNN; 
Early detection. 

 

1 INTRODUCTION 
Osteoporosis is a largely prevalent and long-lasting ailment coupled with low bone 

mineral density (BMD), significantly increasing the chances of fracture. Until a fracture 

occurs, osteoporosis causes no symptoms, earning it the nickname "the silent disease", 

which is more common in the hip, spine or wrist region. Keeping in view the senior 

population of the world, there is an increasing demand for early detection and diagnosis 

of osteoporosis for effective reduction of disability and costs of care related to the 

management of hip fractures. Osteoporosis is a chronic, progressive bone disorder that 

affects a significant number of individuals.   
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In the United States alone, it affects 10.2 million people (Wright et al., 2014), while globally, 56.2 million people are 

affected by this condition. Fragility fractures can significantly affect one's independence and overall quality of life 

due to weakened bones. When osteoporosis is identified in its early stages, it can be treated effectively to minimize 

the risk of future fractures and health complications (Johnell et al., 2006). Nevertheless, before the emergence of 

symptomatic fractures, osteoporosis often goes unnoticed, leading to a lack of diagnosis and treatment. Osteoporotic 

vertebral fracture (OVF) is a common fracture usually associated with osteoporosis. OVF is quite common among 

older adults, with a prevalence rate of 40% by the age of 80 (Cooper et al., 1993). However, it is still quite common 

for incidental OVFs to be underreported. According to one study, a whopping 84% of OVFs were not documented 

on computed tomography (CT) scans (Carberry et al., 2013). Because they are too busy paying attention to the sagittal 

images, radiologists often miss incidental OVFs during standard CT scans. Underreporting of these results occurs 

for several reasons, including that patients are usually unaware of the clinical significance of asymptomatic OVFs 

and that there are no apparent symptoms (Müller et al., 2008; Amani et al., 2024; Belali et al., 2025; Sarhan et al., 2024; 

Liu et al., 2024). 

Dual-energy X-ray absorption (DXA) and quantitative CT are widely recognized as the most reliable methods for 

diagnosing osteoporosis by assessing BMD. At least half of all women and 20% of all men will have a fracture in 

their lifetime. The most common method for diagnosing osteoporosis is to take DXA measurements of BMD in the 

lumbar spine and proximal femur. To help avoid osteoporotic fractures in women aged 65 and older, the United 

States Task Force for Preventive Services recommends screening for osteoporosis using BMD. Fragility fractures 

caused by osteoporosis have a significant impact on both mortality and morbidity, especially among the growing 

number of older individuals. This places a substantial burden on global health and the economy. Therefore, 

preventing fragility fractures is a crucial aspect of healthcare for older adults.  

Despite significant advancements in pharmacological interventions, the risk of fragility fractures remains a concern. 

Osteoporosis is characterized by weakened bone structure and low bone mass, resulting in fragile bones and an 

increased susceptibility to fractures in the wrist, hip and spine (Chen et al., 2024). Osteoporosis is a significant issue 

in Indian female healthcare, especially for those who are 50 and older. It is commonly associated with 

postmenopausal women and affects bone metabolism, which could contribute to a higher likelihood of breaking 

bones. Osteoporosis can affect the bones of the spine, resulting in a hunched or stooped posture. Calcium and 

vitamin D intake have been shown to reduce the fracture rate (Oh et al., 2024).  

Artificial intelligence (AI) can potentially revolutionize medicine (Ha et al., 2024). AI technology works well with 

medical researchers, physicians and nurses, enhancing their abilities and performance. In the medical field, AI is 

designed to improve human physicians' abilities rather than replace them.  

AI has become a prominent topic in the context of the Fourth Industrial Revolution. The AI methods for diagnosing 

patients with fractures, which can increase the risk of osteoporosis, surpass the traditional approach of radiologists 

examining the reports. Machine learning (ML) is a branch of artificial intelligence that enhances healthcare by 

making it more intelligent and efficient. It has applications in various areas, such as diagnostic imaging, treatment 

optimization, genetic tests and electrodiagnosis, contributing to advancements in medical research. The primary 

focus of ML involves classification and prediction. Its application is crucial in medicine, aiding in the diagnosis and 

treatment of patients.  

ML prediction has been developed to assess the T-score of the lumbar spine and categorize vertebrae as healthy or 

osteoporotic. This is done by analysing the Hounsfield units (HU) of lumbar CT scans (Houssein et al., 2024). 

Osteoporosis frequently remains asymptomatic until a fracture reveals its presence, partly because standard 

diagnostic protocols do not effectively incorporate non-imaging clinical indicators. Most existing deep learning 

frameworks focus exclusively on high-resolution radiographs, assets that are not consistently available in primary 

care clinics or national screening initiatives. 

In response to this gap, we introduce a multi-stage convolutional neural network that employs a real-coded genetic 

algorithm (RCGA) for hyperparameter optimization and integrates a dynamic weight fusion technique. In contrast 

to previous models, our approach uses only demographic and BMD measurements, completely bypassing the need 

for imaging. This design permits seamless implementation in large-scale, non-radiographic screening campaigns. 

The RCGA-driven optimization achieves fine-tuned parameter selection and the adaptive fusion enriches feature 
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representation across the depth of the network, yielding a solution that is both computationally efficient and robust 

across diverse population cohorts. 

The contribution of this work is as follows: 

• Development of a cascaded CNN architecture with adaptive weight fusion to prioritize relevant features 

across layers. 

• Application of a RCGA for efficient hyperparameter optimization. 

• Empirical validation using a real-world BMD dataset, achieving 99.5% accuracy and outperforming both 

traditional and recent deep learning models. 

• A non-imaging-based, scalable diagnostic framework suitable for mass osteoporosis screening. 

The proposed model is validated using publicly available datasets, and the experimental results stress its 

improvement over conventional methods. Applying methods based on deep learning approaches for automatic 

detection of osteoporotic diseases is promising and, in turn, may change the course of early diagnosis and 

prophylaxis.  

2 RELATED WORKS 
A deep learning meta-model (Amani et al., 2024) was proposed through a systematic review and meta-analysis to 

evaluate the accuracy of osteoporosis prediction. Preprocessing includes quality assessment, dataset selection and 

heterogeneity testing. Deep learning models such as CNNs were assessed across various datasets, ensemble 

networks were applied to X-ray and CT scans, uniting the evidence from various studies, enhancing generalizability. 

An advantage is its extensive scope over multiple populations, where variability in dataset quality and a lack of 

standardization in imaging protocols are a problem. The CNN model (Belali et al., 2025) processes X-ray images to 

predict osteoporosis-related fractures with high precision. Preprocessing steps include normalization, denoising and 

contrast enhancement, which influences convolutional layers to extract deep spatial features of bone degradation. It 

has a major advantage in enhancing detection accuracy with low manual intervention. However, it struggles with 

low-quality images and lacks interpretability in decision pathways where computational costs remain high due to 

image resolution.  

The CNN model based on DenseNet-121 (Sarhan et al., 2024) was utilized for diagnosing knee osteoporosis using 

deep image features. Images were preprocessed using image resizing, grayscale conversion and augmentation, 

which improved model robustness and the deep network efficiently captured structural degradation patterns in 

knee joints. Its advantage lies in higher feature reuse and decreased vanishing gradient issues and it has challenges 

in limited dataset diversity and sensitivity to noise. A comparative model utilizes CNN, long short-term memory 

and GRU (Liu et al., 2024) to classify osteoporosis risk levels, utilizing healthcare analytics to preprocess model data 

through normalization and imputation of missing values, combined with clinical and radiographic data. The main 

advantage is that the flexible combination of multimodal health records with limited longitudinal data affects 

temporal model performance, where CNN faces overfitting due to limited training datasets. 

The deep learning algorithm based on ResNet-50 (Chen et al., 2024) classifies osteoporosis and detects T-scores from 

hip radiographs by using preprocessing techniques such as bone segmentation, histogram equalization and artifact 

removal. The residual network captures fine-grained features relevant to bone density assessment, which has major 

automated scoring and low reliance on DEXA scans. This may face challenges of dataset dependency and 

minimized generalization over different demographic groups. A deep learning framework based on U-Net 

architecture (Oh et al., 2024) processes quantitative CT data for opportunistic screening which incorporates 3D voxel 

normalization and bone mask extraction. The primary application is in routine CT scans, where it minimizes 

screening costs, although concerns over radiation exposure and CT image variability limit the system.   

The convolutional neural network of Ha et al. (2024) combines abdominal CT images with clinical variables for multi-

class osteoporosis stage classification. Preprocessing steps involve intensity normalization and feature 

standardization of variables such as age and BMI. Its strength lies in integrating anatomical and clinical insights, but 

it has challenges in model generalizability across imaging devices and datasets with high class imbalance, which 

also affect minority stage prediction performance. The CNN of Houssein et al. (2024) reaffirms the use of CT images 

and demographic inputs for multi-stage classification, including anatomical extraction and combination of patient-
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specific data. With consistent performance metrics, the architecture confirms its reliability in diverse clinical settings 

where it lacks large-scale longitudinal data for temporal analysis.  

Woud et al. (2025) combined fuzzy logic preprocessing with a pre-trained deep CNN to improve osteoporosis 

detection on the images that underwent fuzzy-based edge improvement and denoising before deep classification. 

Transfer learning on models such as VGG16 facilitated training and enhanced generalization. Limitations involve 

longer preprocessing time and sensitivity to fuzzy parameter tuning where the hybrid design enhances accuracy but 

adds complexity. The broad-learning system (BLS) framework (Zhang et al., 2024) applied a feature-based 

architecture for opportunistic osteoporosis screening from lumbar spine X-rays. Preprocessing involved ROI 

extraction, histogram normalization and texture feature engineering. The BLS model efficiently connects feature 

nodes in a flat network without deep layers, which limits its power in representing hierarchical structures, resulting 

in reduced performance on complex patterns that also require manual feature extraction. 

Recent research has underscored the promise of optimization-driven methods in the realm of medical diagnosis. 

Kunjali and Malarvizhi et al. (2024) harnessed sparrow search optimization to fine-tune the support vector machine 

for early identification of osteoporosis, resulting in marked gains in diagnostic precision. Building on this, Sivasakthi 

et al. (2025) introduced a hybrid Elman recurrent neural network, its architecture shaped by bacterial colony 

optimization and tabu search, to advance osteoporosis classification. Ashwini et al. (2025) catalogued numerous bio-

inspired optimization strategies interwoven with deep learning for disease detection, illustrating the breadth of the 

field. Collectively, these studies affirm the use of nature-inspired algorithms in enhancing diagnostic models, 

providing strong justification for the integration of real-coded genetic algorithms in our proposed framework. 

A comparative model evaluates vision transformers (ViTs) and CNNs (Sarmadi et al., 2024) for osteoporosis 

detection using X-ray images, which includes patch generation and traditional resizing for CNNs. The transformer 

model benefits from long-range attention and global feature capture, which also needs significant computational 

resources and has been less effective in small datasets. Halesh and Sathish (2024) integrated deep learning with tuna 

jellyfish optimization for estimating femur bone volume and classifying osteoporosis. Preprocessing enabled bone 

edge prediction and extraction of geometric features. However, this metaheuristic approach increases training 

complexity and performance depends heavily on initial conditions.  

The hybrid system of Tong et al. (2024) used radiomics and deep CNNs for automatic osteoporosis screening from 

low-dose chest CT scans. Preprocessing included radiomic feature extraction, voxel normalization and slice 

selection. CNNs enhanced pattern recognition while radiomics improved interpretability with inconsistent CT 

parameters over machines and potential overfitting. The CNN-based system of Samala et al. (2024) targeted 

osteoporosis-related fragility analysis through detailed bone image classification by performing denoising, 

morphological operations and bounding box detection. The network was structured to predict micro-architectural 

deformities in bone scans that improve early detection by reducing future fracture risk and increasing image 

complexity. Kale et al. (2024) applied a CNN optimized using a chronological-hybrid technique for femur 

segmentation and osteoporosis classification. Preprocessing included edge detection, time-sequenced data mapping 

and intensity normalization, which is helpful in temporal analysis of bone health. However, the model is 

computationally demanding and sensitive to patient positioning during X-ray acquisition. Table 1 shows an 

overview of existing techniques.  

Table 1. Overview of existing models. 

Author Dataset Method Limitation Advantages 

D’Souza et al. (2024) X-ray images Optimized CNN + 

XGBoost 

Complexity in 

combining hybrid 

models 

Enhanced classification accuracy 

Amani et al. (2024) Multiple public 

datasets 

Deep learning meta-

model 

Dataset heterogeneity Evidence-based evaluation with 

pooled sensitivity/specificity 

Belali et al. (2025) X-ray images Deep CNN Sensitive to poor image 

quality 

High fracture detection accuracy 

Samala et al. (2024) 

 

X-ray data CNN Lacks external 

validation 

Early detection of bone fragility 

using deep features 
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While deep learning models show strong potential for osteoporosis detection, several common challenges remain. 

Most studies rely on small or similar datasets, limiting their ability to generalize over populations. Image quality 

issues, class imbalance and lack of standardized preprocessing may affect accuracy. Although some models use 

clinical data or optimization methods, few have been tested on diverse imaging types or validated externally. High 

computational demands and limited interpretability also hinder real-world use. Additionally, most research lacks 

longitudinal analysis for tracking bone changes over time, emphasizing the need for more robust and scalable 

solutions. 

3 METHODS AND MATERIALS 
To overcome the above research gap, our cascaded CNN model assigns adaptive fusion weights to features from 

different layers. It identifies which features mostly contribute to the classification and suppresses noisy features. 

Spatial features are dynamically integrated in the model based on relevance. It utilizes a cascaded CNN and 

incorporates an adaptive weight fusion strategy implemented by a RCGA. This strategy helps improve 

generalizability. This section will discuss the dataset, provide an overview of the proposed model structure, explain 

the hyperparameter tuning process and outline the evaluation metrics used. Hierarchical CNNs are known for their 

capability to capture low-level to high-level features via progressive layers. This allows medical image models to 

efficiently extract discriminative spatial features from anatomical structures (Huo et al., 2024). 

 

Figure 1. Overview of proposed osteoporosis detection framework. 

Author Dataset Method Limitation Advantages 

Dhanagopal et al. (2024) CT, dual X-ray, X-ray Channel-boosted CNN 

+ transfer learning 

Requires modality-

specific tuning 

Versatile across multiple 

imaging modalities 

Sampath et al. (2024)  CT images Various CNN No single model 

optimized for all 

patients 

Early diagnosis and performance 

benchmarking 

Sarmadi et al. (2024)  X-ray images Vision transformer + 

CNN 

Requires large data and 

memory 

Outperforms CNNs on large, 

diverse datasets 

Kale et al. (2024)  Femur bone X-ray CNN + chronological-

hybrid optimization 

Sensitive to input 

variation, high 

computational load 

Accurate segmentation and 

classification of femur structure 

Woud et al. (2025) X-ray datasets Pretrained CNN + 

fuzzy logic 

Requires parameter 

tuning in fuzzy 

preprocessing 

Enhanced detection under poor 

image quality 

Ho et al. (2025) Hand radiographs HarDNet-based CNN Limited to hand bones Fast and efficient inference of 

BMD with minimal computation 
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The system, as shown in Figure 1, begins with clinical BMD and demographic data, undergoes preprocessing and is 

processed through a cascaded CNN. The model is optimized using a RCGA and enhanced by adaptive weight fusion 

before final classification. 

3.1 Data collection  
We utilize two datasets for model performance evaluation. The details are shown below. 

3.1.1 Dataset 1 for training and testing 

The dataset1 used in this study (Sharma, 2021) was sourced from Kaggle and contains anonymized patient records, 

including demographic variables and BMD values. Although this specific dataset has limited exposure in clinical 

trials, similarly structured BMD clinical data are widely used by recent research for osteoporosis detection (Alden & 

Ata, 2024; Iliou et al., 2024). Our dataset includes patient demographic information, bone density measurements and 

a history of fractures. This dataset was anonymized from publicly available medical records to protect patient 

privacy. The dataset contains key features, as shown in Table 2.  

Table 2. Key features from bone mineral density (BMD) dataset. 

Feature Description Data type 

Patient ID Unique identifier for each patient Categorical (numeric) 

Age Age of the patient at the time of BMD measurement Continuous (numeric) 

Sex Gender of the patient (male/female) Categorical (text) 

Fracture history Indicates whether the patient has a history of fractures Categorical (text) 

Weight (kg) Weight of the patient in kilograms Continuous (numeric) 

Height (cm) Height of the patient in centimetres Continuous (numeric) 

Medication Type of medication the patient is taking (e.g., anticonvulsant) Categorical (text) 

Waiting time Time the patient waited (in days) for the BMD scan/consultation Continuous (numeric) 

BMD (g/cm²) Bone mineral density measurement (key indicator for osteoporosis) Continuous (numeric) 

 

Standardized dual-energy X-ray absorptiometry scanning, currently the gold standard for assessing BMD, was 

utilized to obtain the data. They are instrumental as BMD is low in the hip and spine regions, most affected by 

osteoporosis. In this work, BMD values are the most important features for distinguishing osteoporosis cases, which 

is why they are included in the diagnosis information. The provided dataset exhibits relatively high variability 

within a patient population, which will aid in building an efficient deep-learning model for early detection of 

osteoporosis. 

The graph in Figure 2 shows the average BMD of different age groups, excluding missing data. The highest BMD is 

reported in the age brackets of 30–40 and 40–50 years with an average of 0.85 g/cm², consistent with population-

based studies that show that peak bone mass is typically achieved by early adulthood (Chan et al., 2004). As for the 

age cohorts of 50-60 and 60-70, the graph is slightly declining with averages of 0.81g/cm² and 0.83 g/cm² respectively, 

telling us about a little more bone mass reduction that usually starts around the middle age, which is more noticeable 

in the female postmenopausal population. Larger and more pronounced changes occur in the age categories of 70-

80 and 80-90, where the average BMD drops to 0.71 g/cm² and 0.67 g/cm², respectively, which demonstrates the 

increased fragility of the skeletal system in the osteoporotic elderly population and the high incidence of bone 

fractures. The <30 and 90+ age groups are not captured in the chart, likely because there was no information available 

on those age brackets or very few samples to analyse. This decreasing trend in BMD across ages confirms the need 

for screening and advanced intervention against osteoporosis, especially among the elderly population, to avoid 

pathological fractures and other sequelae. 

 

1 See, https://www.kaggle.com/datasets/amarsharma768/bmd-data.  
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Figure 2. Average bone mineral density (BMD) in different age groups. 

Before the model was developed, the data were prepared by filling in missing data, standardizing BMD scores and 

segmenting the patients into age groups to determine which group was most affected by low bone density. Other 

training enhancement methods were also employed to increase diversity in the dataset and enhance the model 

performance. The dataset was labelled based on osteoporosis diagnosis (osteoporotic versus non-osteoporotic) using 

a BMD threshold of 0.8 g/cm². The final class distribution consisted of 312 non-osteoporotic samples (62.4%) and 188 

osteoporotic samples (37.6%), reflecting a moderate class imbalance. To address this, we used stratified sampling 

when splitting the dataset (70/15/15) to maintain class proportions across training, validation and test sets. 

3.1.2 Dataset 2 for testing proposed model using unseen femoral neck BMD dataset 

For testing the model efficiency in predicting osteoporosis, we used the femoral neck BMD dataset2 (Kale et al., 2025). 

To our knowledge, this dataset has not been used or benchmarked in any research work. However, a similar dataset 

was explored by Al-Husaini (2025). We chose 350 data points for testing by balancing the BMD threshold. The 

columns from this dataset must align with those from the first (training BMD) dataset. We must deal with additional 

or missing columns to ensure that both datasets contain the same set of features. The sample test data are shown in 

Table 3.  

Table 3. Sample dataset view of DEXA femoral neck BMD. 

Sr. no. Gender Age Height Weight BMD T-score Z-score Area BMC BMI Obesity group BFP STD 

1 F 41 159 50 0.36 -1.5 -0.7 3.92 4.69 19.78 2 27.76 1360 

2 F 65 155 62 0.968 -0.5 1 3.35 3.46 25.81 3 40.52 1570 

3 F 67 146 65 0.857 -1.3 0.3 3.46 4.03 30.49 4 46.60 1570 

4 F 40 151 62 0.865 -1.2 -0.7 4.11 4.75 27.19 3 36.43 1570 

5 F 50 158 79 0.829 -1.5 -1 3.94 4.75 31.65 4 44.07 1570 

351 M 69 169 58 0.785 -2.2 -0.6 5.5 4.32 20.31 2 24.04 1570 

 

2 See, https://doi.org/10.17632/kys6x6wykj.1.  
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Sr. no. Gender Age Height Weight BMD T-score Z-score Area BMC BMI Obesity group BFP STD 

352 M 46 158 72 0.686 -3 -2.4 5.38 3.69 28.84 3 28.99 1795 

353 M 48 168 67 0.721 -2.7 -2.1 5.03 3.63 23.74 2 23.33 1570 

354 M 69 165 69 0.8 -2 -0.5 4.98 4.02 25.34 3 30.08 1795 

355 M 56 165 60 0.844 -1.7 -0.5 4.67 3.94 22.04 2 23.13 1570 

 

Both datasets need to encode sex and gender identically. The medication column must also receive equivalent 

treatment in both datasets, whether it be one-hot or label encoding. The fracture column of the first dataset also 

needs to be encoded and used in the same manner in the second dataset (e.g., no fracture = 0, fracture = 1). The 

fracture column is the target column or the prediction column of the testing data. We include two columns for 

fracture and medication based on the threshold value of BMD.  

Numerical features (e.g., age, height, weight, BMD) must all be scaled using the same technique as during training, 

such as the Standard Scaler, for each variable. We removed columns from the test dataset that were not used during 

training (e.g., T-score, Z-score, BMC, obesity group, etc.), unless they were part of the model. Finally, we ensured 

that the test set contains the same features, ordered identically, as the training set and that it includes the same 

number of features as the training set. After preprocessing the data, the results are shown in Table 4; our predictions 

are fracture or non-fracture for the test data.  

Table 4. Sample dataset view after preprocessing. 

Sr. no. Gender Age Height Weight BMD 

1 F 41 159 50 0.36 

2 F 65 155 62 0.968 

3 F 67 146 65 0.857 

4 F 40 151 62 0.865 

5 F 50 158 79 0.829 

351 M 69 169 58 0.785 

352 M 46 158 72 0.686 

353 M 48 168 67 0.721 

354 M 69 165 69 0.8 

355 M 56 165 60 0.844 

3.2 Data preprocessing 
Preprocessing is essential in preparing the BMD dataset before feeding it to the deep learning model. In this paper, 

several preprocessing techniques were employed to modify and refine the dataset structure to a more suitable one 

for the model training and testing. The steps include filling in the missing data, normalization, feature engineering 

and converting categorical variables. This section outlines all the preprocessing steps undertaken during the study 

and their corresponding equations. 

Incomplete data can lead to model inaccuracies; therefore, this aspect must be addressed before proceeding with 

model training. In this dataset, missing BMD values were handled by either deleting the corresponding rows or 

replacing the values with the average BMD for the mean age. 

Let 𝑋𝑖,𝑗 represent the value of the 𝑗th feature for the 𝑖th patient. If a value is missing for a given feature, we replace it 

with the mean of the non-missing values of that feature for the corresponding age group.   

  𝑋𝑖,𝑗 =
1

𝑛 
∑ 𝐾𝑖.𝑗

𝑛
𝑘=1  𝑖𝑓 𝑋𝑖,𝑦  𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔      (1) 

Normalization is performed to ensure that features with different ranges are comparable. For example, BMD values, 

age, weight and height have other units and magnitudes. Normalization transforms the data into a standard range, 

typically between 0 and 1, using the following min-max scaling formula: 

https://aip.vse.cz/
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𝑋′𝑖,𝑗 =
𝑋𝑖,𝑗−min (𝑋𝑗)

𝑚𝑎𝑥(𝑥𝑗)−min (𝑥𝑗)
         (2) 

where 𝑋′𝑖,𝑗  is the normalized value of the feature 𝑗̇̇ for the patient 𝑖 and min(𝑋𝑗) and max( 𝑋𝑗) are the minimum and 

maximum values of the feature 𝑗̇ across all patients. In addition to normalization, standardization is sometimes 

used to transform features with a zero mean and unit variance. The standardized value 𝑋′′𝑖,𝑗 is given by: 

𝑋′′𝑖,𝑗 =
𝑋𝑖,𝑗−𝜇𝑗

𝜎𝑗
         (3) 

where 𝜇𝑗 is the mean of the 𝑗𝑡ℎ feature and 𝜎𝑗 is its standard deviation. This transformation is beneficial when the 

distribution of the feature values deviates significantly from normality. Categorical variables, such as "sex" and 

"medication", must be converted into numerical form. For binary categories such as "sex", a simple encoding method 

is used: 

𝑋𝑖,𝑗 = {
1     𝑖𝑓 𝑚𝑎𝑙𝑒,

     2      𝑖𝑓 𝑓𝑒𝑚𝑎𝑙𝑒.
       (4) 

For non-binary categorical variables, such as "medication", one-hot encoding is applied. If there are 𝑚 categories for 

a feature, each category is represented as a binary vector of the length 𝑚, where each component is 0 except the 

component corresponding to the observed category, which is 1.  

To further improve the convergence of deep learning models, feature scaling is performed. The dataset is scaled to 

have zero mean and unit variance using the following formula: 

𝑋𝑖,𝑗 =
𝑋𝑖,𝑗−𝑚𝑒𝑎𝑛 𝑋𝑗

𝑠𝑡𝑑 (𝑋𝑗)
        (5) 

Where 𝑚𝑒𝑎𝑛(𝑋𝑗) is the mean of the feature𝑗 and 𝑠𝑡𝑑(𝑋𝑗) is the standard deviation. Contrast enhancement using 

local contrast stretching and dynamic histogram equalization has been shown to improve brightness preservation 

in medical image enhancement tasks (Panse et al., 2021). 

3.3 Class imbalance handling using SMOTE 
The dataset contains only 169 pieces of patient information, which is insufficient for the model to learn the data. To 

ensure that the data are sufficient, data balancing is verified as shown in Figure 3. Specific columns within the 

datasets, such as the medications column, have non-numeric values (e.g., anticonvulsant). These categorical values 

are not compatible with the SMOTE algorithm, which requires numerical values. As such, we convert the categorical 

variables to numerical formats with methods such as one-hot encoding. After the data are suitably formatted, we 

apply SMOTE again to generate synthetic samples. This balances the distribution of classes and promotes improved 

generalization of the model. 

 

Figure 3. Before and after SMOTE for increasing data samples. 
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The primary dataset consisted of 169 samples and the BMD scores were standardized, age groups were determined 

and missing data were filled in. The formation of age groups was chosen to assess which group was most affected 

by low bone density. Several training augmentation techniques were employed to enhance the dataset diversity, a 

crucial step in improving model performance. A BMD of 0.8 g/cm² was utilized to determine dataset labelling for 

the diagnosis of osteoporosis (osteoporotic versus non-osteoporotic). At this point, SMOTE processing creates a 

dataset consisting of 312 non-osteoporotic samples (62.4%) and 188 osteoporotic samples (37.6%) for class balancing. 

An extremely imbalanced dataset was initially present, containing a considerably small proportion of osteoporotic 

samples. To resolve this, we employed a stratified sampling approach for data splitting, which was done at a 70/15/15 

ratio for training, validation and test sets, preserving class proportions at each split. The SMOTE technique enhanced 

the model generalization capabilities for both classes by generating synthetic data. 

Algorithm 1 shows the SMOTE process. The input SMOTE receives minority class instances as feature vectors. By 

considering the nearest neighbour k=5, distance metrics using Euclidean distance are calculated. By selecting a 

random number between the distance synthetic sample is created using  

𝑋𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 = 𝑥𝑖 + 𝜆 ( 𝑥𝑗 −  𝑥𝑖), 𝜆~ 𝓤(0,1)       (6) 

 

Algorithm 1. SMOTE 

Input 

𝐷𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦  – minority class instances, k=5 (nearest neighbours), 𝑁𝑑𝑒𝑠𝑖𝑟𝑒𝑑  = number of synthetic samples 

          For all minority samples 𝑥𝑖𝜖𝐷𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦    

                    Find K value nearest neighbours of 𝑥𝑖 in the feature space   

                    For each neighbour 𝑥𝑗  

                             Create 𝑋𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 using equation (6) 

                       Add synthetic samples to dataset X  

                       If 𝑁𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = N,  

                       End 

           End 

 

4 PROPOSED MODEL ARCHITECTURE  
The digital model developed in this study for osteoporosis diagnosis is based on cascaded CNN and adaptive weight 

fusion. The specific architecture aims to retrieve features at multiple scales, in this case from X-ray or DXA images, 

while enhancing the cross-layer feature fusion. The RCGA optimizes the network parameters for improved 

efficiency. In this section, we will thoroughly discuss the components that comprise the entire architecture as 

specified above. 

We chose a cascaded CNN design because it systematically builds a hierarchy of multiscale features through 

successive layers. In contrast to a flat single-block CNN, this arrangement gives a more refined and tailored analysis 

of low, mid and high-level representations, which is crucial when identifying small but clinically significant 

differences in bone structure and density. Each block increments its dilation rate as it processes, thereby gradually 

enlarging its receptive field. This configuration gathers edge-level fine details alongside more global patterns; 

accumulating these layers consecutively has consistently improved classification accuracy in medical imaging 

studies (Huo et al., 2024).   

The proposed model employs a cascading sequence of CNNs whereby several convolutional neural networks are 

placed on top of one another to process more complex features at successive stages and across multiple scales. The 

standard template of each CNN block encompasses, among other components, a convolutional layer and a stack of 
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other sub-layers in the following order: batch normalization after the convolution layer, a ReLU layer and max 

pooling. The architecture has been developed to capture broader, more profound structural stratification in bone 

tissue and density, thereby facilitating recognition of even minute changes in the image. 

The convolutional layers extract local patterns, such as edges or textures, using a set of learnable filters. The 

convolution operation can be described mathematically as follows: 

Given the input signal 𝑥(𝑡)  of a length 𝑇 , where 𝑡 =  0, 1, … , 𝑇 − 1 , kernel (filter) 𝑤(𝑘)  of a size 𝐾 , where 𝑘 =

 0, 1, … , 𝐾 − 1, output 𝑦(𝑡), the result of convolving 𝑥(𝑡) with the kernel 𝑤(𝑘). The convolution at the time step t is 

given by: 

𝑦(𝑡)  = ∑ 𝑤(𝑘)  ⋅  𝑥(𝑡 −  𝑘)𝐾−1
𝑘=0          (7) 

where 𝑦(𝑡) is the output at the position 𝑡, 𝑤(𝑘) is the filter (kernel) value at the position 𝑘, 𝑥(𝑡 − 𝑘) is the input value 

at the shifted position 𝑡 − 𝑘. This operation is repeated for each time step 𝑡 and the output is a series of values 

representing the result of the convolution for the input signal.  

 

Figure 4. Cascaded convolutional neural network structure with adaptive weight fusion strategy. 

Figure 4 shows the cascaded CNN structure with the adaptive weight fusion strategy. Batch normalization is applied 

after each convolution to stabilize the learning process and reduce the internal covariate shift. The transformation is 

as follows: 

𝑋̂ =
𝑋−𝜇

√𝜎2+𝜖
⋅ 𝛾 + 𝛽          (8) 

where 𝜇 and 𝜎2 are the mean and variance of the input batch, and 𝛾 and 𝛽 are learnable parameters. The rectified 

linear unit (ReLU) is used as the activation function in each layer: 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)          (9) 

The ReLU introduces non-linearity to the model, helping train deeper networks by mitigating the vanishing gradient 

problem. Max pooling is applied to reduce the spatial dimensions of the feature maps while retaining the most 

essential features. The pooling operation is defined as: 

𝑌𝑖,𝑗 = 𝑚𝑎𝑥(𝑋𝑚,𝑛)          (10) 

where 𝑌𝑖,𝑗 is the output at the position (𝑖, 𝑗) and 𝑋𝑚,𝑛 are the input values in the pooling window. 
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The first convolutional block incorporates 32 filters of a kernel dimension 3×3, a dilation rate of one, and is the heart 

of imaging simple shapes, such as edges and textures. The output in that block is forwarded to the second block, 

which contains 64 filters of a kernel size 3 × 3 × 3 but having a dilation of 2. This won the tarp, enabling the network 

to gain more much-shaped or outlined features. In the third block, 128 filters have been placed with a kernel size of 

3 × 3 and a dilation of 4, enabling the network to concentrate on even higher-level and more significant elements, 

such as the structural outline of the bones. Once the features have been retrieved from these three blocks, the model 

utilizes an adaptive weight fusion strategy to combine the features. An additional step of the model addresses this 

need by performing adaptive weight fusion, where the features extracted from all the blocks, which are assigned 

learnable weights, are summed. The last layer of the network is used to fully utilize the essential features at different 

levels of the network for enhanced accuracy. The resulting fused feature map is vectorized and, after passing through 

64 dense neurons, is fed into a softmax classifier with two output neurons for binary classification. The proposed 

structure supports the ability of the model to recognize local and global aspects of input images, thus achieving high-

performance osteoporosis image recognition. 

What distinguishes our approach is the fusion of the cascaded CNN with adaptive weight assignment, where the 

output from each block is multiplied by a learned importance score. This mechanism curates which features 

influence the final output, dampening noise and eliminating redundancy without requiring fixed rules. Unlike 

conventional architectures that fuse features by fixed concatenation or averaging, our sequence autonomously 

prioritizes information as it flows through layers. We further enhance this framework by deploying a real-coded 

genetic algorithm to tune hyperparameters, yielding a search trajectory that is both flexible and fitted to the data. 

This generative, data-aware optimization leads to faster convergence and stronger generalization, features that 

standard osteoporosis detection pipelines typically lack. 

4.1 Adaptive weight fusion strategy 
A notable feature of this model is the adaptive weight fusion strategy, which effectively combines different inherent 

features obtained from various CNN blocks. The outputs of each block are weighted by learnable parameters that 

can be altered with training. This mechanism enables the model to focus on blocks that are more important for the 

classification and, thus, are weighted more. 

Let 𝐹1, 𝐹2, … , 𝐹𝑛  represent the feature maps from different layers in the cascaded CNN. The fused feature map 𝐹𝑓𝑢𝑠𝑒𝑑 

is computed as: 

𝐹𝑓𝑢𝑠𝑒𝑑  = ∑ 𝛼𝑖𝐹𝑖
𝑛
𝑖=1             (11) 

where 𝛼𝑖 is the adaptive weight for the 𝑖𝑡ℎ feature map. The weights 𝛼𝑖 are learnable parameters that are updated 

during backpropagation. 

Feature maps obtained after the feature fusion phase are then unrolled to transform them into flat columns and fed 

into some compacting fully connected layers. The purpose of these layers is to fuse the features obtained and provide 

an output. The features are encoded in a matrix form, constituting a one-dimensional vector in preparation for 

transmission into the last layers. The last fully connected layers apply structured linear functional operations to the 

features, followed by activation to yield classification scores for the problem.  

𝑌 = 𝑓(𝑊𝑋 + 𝑏)          (12) 

where 𝑊 is the weight matrix, 𝑋 is the input vector, 𝑏 is the bias and 𝑓 is the activation function (e.g., ReLU or 

softmax). For binary classification (osteoporosis versus non-osteoporosis), the softmax activation function is used in 

the output layer to compute the probability of each class: 

𝑃(𝑦 = 𝑘|𝑥) =
𝑒𝑧𝑘

∑  𝑒
𝑧𝑗 {𝐾}

{𝑗=1}

         (13) 

where 𝑧𝑘 is the output of the final layer for the class 𝑘 and 𝐾 is the number of classes (in this case, 2). 
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4.2 Hyperparameter optimization using real-coded genetic algorithm  
Hyperparameter tuning is one of the most important processes in enabling a deep learning model to perform well. 

To this end, we apply a RCGA, which has shown promising results in optimizing deep learning architectures and 

hyperparameters effectively (Lee et al., 2021). As the name suggests, the RCGA is a hybrid optimization technique 

in which candidates, in the form of hyperparameters, are also selected and optimized through several generations 

to improve the value of an objective function, typically the validation accuracy of the model. 

Given a set of hyperparameters 𝜃 = {𝜃1 , 𝜃2, … , 𝜃𝑛}, where n is the number of hyperparameters (e.g., learning rate, 

number of filters or dropout rate), the goal of the RCGA is to find the optimal values of 𝜃 that maximize the model 

performance. The optimization process can be defined as: 

𝜃∗ = 𝑎𝑟𝑔 max
𝜃

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝜃)         (14) 

Here, 𝜃∗ represents the optimal set of hyperparameters and the fitness function evaluates the performance of the 

model with hyperparameters 𝜃. Algorithm 2 shows hyperparameter optimization using the RCGA. 

 

Algorithm 2. Hyperparameter optimization using RCGA 

Input:  

    - Population size (𝑃) 

    - Number of generations (𝐺) 

    - Crossover probability (𝑝𝑐) 

    - Mutation probability (𝑝𝑚) 

    - Hyperparameter ranges for initialization 

Output: Optimal set of hyperparameters 𝜃∗ 

1. Initialize population: 

   - Create an initial population of a size 𝑃 with random hyperparameter vectors 𝜃𝑖 , 𝑖 =  1, . . . , 𝑃 

2. For generation = 1 to 𝐺: 

     a. Evaluate the fitness of each candidate 𝜃𝑖: 

        - Train CNN model using 𝜃𝑖 

        - Compute fitness (e.g., validation accuracy) 

     b. Selection: 

        - Select top-performing candidates (parents) based on fitness 

     c. Crossover: 

        - For each pair of selected parents, perform crossover with a probability 𝑝𝑐: 

          - Generate offspring by combining parents' hyperparameters 

    d. Mutation: 

         - For each offspring, mutate hyperparameters with a probability 𝑝𝑚: 

          - Randomly adjust hyperparameters using Gaussian noise 

     e. Evaluate the fitness of new offspring 

     f. Replacement: 

        - Replace worst-performing candidates in population with new offspring 
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     g. Check for convergence: 

        - If convergence criteria are met (e.g., no significant fitness improvement), terminate 

3. Return the best-performing hyperparameter set 𝜃∗ 

 

 

The RCGA extend the genetic algorithm framework by replacing binary encodings with floating-point 

representations. This switches the genetic representation from binary strings to real-valued numbers, enabling more 

precise adjustments to hyperparameters such as learning rates, dropout rates and filter sizes, which are naturally 

continuous quantities. RCGAs also differ from grid search, which evaluates every possible combination and can 

become prohibitively slow in high-dimensional spaces. By applying selection, recombination and mutation 

operations, the RCGA tends to iteratively concentrate the population around high-performing regions, achieving 

strong results with significantly fewer model evaluations, a key advantage in the resource-heavy context of deep 

learning. 

RCGAs further distinguish themselves from particle swarm optimization (PSO) by incorporating genetic low-level 

operations alongside swarm-based moves. Crossover and mutation maintain genetic diversity, reducing the risk of 

the search getting stuck in a suboptimal region. Experimental results in areas such as medical imaging and biosignal 

classification suggest that RCGAs can consistently improve validation performance across varying architectures and 

datasets (Ashwini et al., 2025). 

Although the current analysis is based solely on the RCGA, planned follow-up research will include a systematic 

ablation study that measures and compares its performance against PSO, grid search and Bayesian optimization. 

Such comparisons will quantify the relative advantages of the RCGA and clarify hyperparameter optimization 

design choices in future deep learning experiments. 

5 RESULTS AND DISCUSSION 
The structure of the two-level cascaded neural network model, comprising a module for fusing different CNNs and 

a module for adaptive weights, was validated through experiments conducted on the BMD dataset for osteoporosis 

classification (Dataset 2). An extensive hyperparameter optimization process was simulated for the model and 

several hyperparameter settings were trained and tested. The main performance metrics for the final model included 

accuracy, precision, recall (sensitivity), F1-score and area under the curve (AUC). Experiments were conducted on a 

Google Colab Pro+ instance, which provided a Tesla T4 GPU with 16 GB, a 2.20 GHz Intel Xeon CPU and 32 GB of 

RAM. The entire training process, including RCGA-guided hyperparameter search across several generations, lasted 

approximately 2.8 hours. This covered 100 epochs of the cascaded CNN alongside validation on the held-out test 

set. The compact training window illustrates the model efficiency and the effectiveness of the optimization 

workflow. 

The study analysed Dataset 1, which included 500 anonymized patient records, each featuring BMD measurements 

alongside pertinent clinical variables. The records were divided into training (350 records), validation (75 records) 

and testing (75 records) partitions using a 70-15-15 split, with stratified sampling applied to ensure that each partition 

reflected a consistent distribution of outcome classes.   

Adaptive weight fusion proposed a cascaded CNN, which helped achieve an excellent accuracy of 99.5% in the test 

set for osteoporosis detection. This performance highlights both the efficiency of the system architecture and the 

benefits derived from hyperparameter optimization using the RCGA. The results in Table 5 also show that the model 

can efficiently identify osteoporotic cases while minimizing false positive cases. The obtained level of accuracy of 

99.5% demonstrates that this particular type of convolutional neural network, which combines adaptive weight 

fusion, is robust and accurate. Furthermore, it targets those patients with an osteoporosis recall rate of 99.0%, 

reducing the risk of false negatives against the disease. Of all the optimistic class predictions, 98.7% were correct, 

meaning only a few false positives were included. The achieved F1-score of 98.8% indicates a perfect balance of 

precision and recall, demonstrating the model reliability. 
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Table 5. Result analysis of adaptive weight fusion with cascaded convolutional neural network. 

Metric Score 

Accuracy 99.5% 

Precision 98.7% 

Recall (sensitivity) 99.0% 

F1-score 98.8% 

AUC-ROC 0.99 

 

The RCGA proved to be significant in optimizing the hyperparameters of the proposed cascaded CNN model, 

leading to better results in osteoporotic fracture detection. Additionally, the RCGA enhanced model accuracy and 

generalization capabilities by efficiently searching the hyperparameter space and adjusting parameters such as the 

learning rate, filter sizes, dropout rates and dilation rates. The hyperparameter optimization primarily focused on 

the values of the parameters that were crucial in enhancing the efficiency of the learning process, given the available 

data. These parameters were the optimization learning rate of 0.0005, the dropout rate of 0.4, the batch size of 64 and 

dilation rates of (2, 4, 8). This led to the model maintaining convergence speed without compromising performance, 

resulting in a test accuracy of 99.5%. A hyperparameter result analysis for the RCGA is provided in Table 6. 

Table 6. Hyperparameter result analysis for RCGA. 

Hyperparameter Value 

Learning rate 0.0005 

Batch size 64 

Number of epochs 100 

Optimizer Adam 

Dropout rate 0.4 

L2 regularization 0.001 

Filter sizes 3 

Number of filters 128 

Dilation rates (2, 4, 8) 

Activation function ReLU 

Pooling size 2 

Fusion weights initialization 1.0 

Weight initialization He normal 

Early stopping patience 10 

 

The RCGA as a hyperparameter optimization technique was vital in improving the performance level of the 

developed cascaded CNN architecture for identifying osteoporosis. The parameters, which include the learning rate, 

batch size, dropout rate, filter sizes and dilation rates of the RCGA, helped the model concentrate on both the 

generalization and the convergence rate. The practical learning rate of 0.0005 facilitated gradual and consistent 

convergence, while the adequate batch size of 64 effectively balanced computational performance and model 

accuracy. The dropout rate of 0.4 was also appropriate, as it helped eliminate overfitting by randomly dropping 40% 

of the units during training and enhanced the model accuracy to 99.5%. 
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Table 7 shows an ablation study of the proposed work. The research work starts with a baseline CNN model. While 

fine-tuning, the CNN performs reasonably well. We trained with a multi-headed CNN, a cascaded CNN and a 

cascaded CNN with a genetic algorithm. The cascaded CNN with the genetic algorithm shows good performance 

compared to the other CNN models.  

Table 7. Ablation results and comparisons. 

Model Accuracy Precision Recall (sensitivity) F1-score AUC-ROC 

CNN     78.2 76.5 76.1 75.9 79 

Multi-head CNN     82.5 82.3 82.5 82.6 84 

Residual-CNN     83.7 84.2 83.5 83.3 84 

Cascaded CNN     88.6 88.6 88.3 87.7 89 

Cascaded CNN + genetic algorithm      95.6 94.5 94.3 93.9 95 

Proposed cascaded CNN with RCGA 99.5% 98.7% 99.0% 98.8% 0.99 

 

The intricate structures of the model were optimally captured due to the use of 128 filters with a kernel size of 3 and 

dilation rates of (2, 4, 8), which provided different convolutional layers with expanded receptive fields, thus 

requiring no additional parameters. Such multi-scale feature extraction improved the ability of the model to 

differentiate fine details in the bone structures. Regularization techniques, such as L2 for the bias weight (0.001) and 

He normal weight initialization, eliminated further complications and optimized the model performance. There was 

an early stopping mechanism with a patience of 10 to prevent overfitting when there were no improvements in the 

training. In summary, with the aid of adequately set hyperparameters through the systematic RCGA, an effective 

and reproducible model was developed, which outperformed conventional methods and achieved a 99.5% detection 

rate for active osteopenia. This highlights the need to pay attention, particularly to hyperparameter optimization, 

while constructing deep learning models to solve medical problems. 

 

Figure 5. Accuracy graph for proposed model, cascaded CNN with RCGA. 

Figure 5 shows the training and validation accuracy plots for the developed cascaded CNN based on the RCGA over 

70 epochs. In the first phase of the training, i.e., epochs 0-10, both training and validation accuracies start rising at a 

relatively high rate, approximately 0.5, indicating that the model quickly captures the basic patterns in the data. 

Then, as the epochs move to the middle, generally referred to as epochs 10-40, training accuracy increases and 

approaches a plateau of about 0.95. In contrast, the validation accuracy is around 0.9, indicating that the model can 

improve further.  
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Figure 6. Loss graph for proposed model, cascaded CNN with RCGA. 

As much as we would like to end there, both curves levelled out in the last epochs (40-70) as the training accuracy 

approached 1.0, while the validation accuracy returned to approximately 0.95. The model has no further 

development, as its accuracy remains unchanged after this stage. Figure 5 presents the training and validation 

accuracy over epochs, revealing a steep upward trajectory during the first 10 to 15 epochs, followed by a steadier 

rise that levels off around the 40th epoch. Training accuracy approaches a perfect score of 1.0, while validation 

accuracy stabilizes around 0.95, indicating that the model is generalizing well and is not experiencing significant 

overfitting.   

The loss curves illustrated in Figure 6 show a pronounced drop in both training and validation loss during the initial 

epochs, with the training loss levelling off at approximately 0.2 and the validation loss at approximately 0.3 by epoch 

70. The training and validation curves remain close to one another, suggesting that the learning process is solid and 

that dropout and L2 regularization are effectively mitigating overfitting. The fact that the losses do not begin to 

separate supports the conclusion that the model generalizes well to unseen data. 

Concerning Figure 6, the training of the cascaded CNN model with RCGA optimization can be further assessed 

using the losses for both the model and the validation set over the 70 epochs. The two curves have high initial loss 

values, mostly around 1.5, which indicates that the model initially predicts a fair number of inaccuracies. As the 

training continues, the training and validation loss values decrease, which can be attributed to a reduction in error 

due to improvement and minimization of errors using the backpropagation method. In the early epochs(the initial 

0 to 10 epochs), both sets of data rapidly decline in loss values. In fact, this rapid reduction is especially true 

concerning the loss values relative to the training data rather than to the validation data; in other words, the training 

loss is much lower than the validation loss. This means that the model can accurately capture the basic structures in 

the data. During the middle phase of the training process, which spans epochs 10 to 40, the decrease in loss begins 

to slow down as more refined adjustments are made to the model parameters and more sophisticated features are 

learned from the data. At epoch 40, both curves exhibit a general decrease, which, in all likelihood, indicates that the 

model is making progress. However, a wobble has been reached whereby progression is made less rapidly. During 

the training period, which spans epochs 40 to 70, both curves converge; the training loss tends towards 0.2, while 

the validation loss is approximately 0.3. 

Table 8. Comparison with baseline models. 

Model Accuracy Precision Recall (sensitivity) F1-score AUC-ROC 

Proposed cascaded CNN with RCGA 99.5% 98.7% 99.0% 98.8% 0.99 

Support vector machine (SVM) 88.5% 87.2% 86.0% 86.6% 0.88 

Random forest (RF) 85.8% 85.0% 84.5% 84.7% 0.87 

K-nearest neighbours (KNN) 83.6% 82.5% 81.0% 81.7% 0.84 

Logistic regression (LR) 80.2% 78.8% 79.5% 79.1% 0.82 

Naive Bayes (NB) 78.0% 76.5% 77.2% 76.8% 0.80 
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Evaluating the cascaded CNN with the RCGA and five other baseline models, including SVM, RF, KNN, LR and 

NB, against the proposed model indicates that the proposed model is the best in all the evaluation metrics, as shown 

in Table 8. The deep learning model, CNN with RCGA, achieves an astounding 99.5% accuracy compared to 88.5% 

for the best-performing baseline model (SVM).  

The outputs from the additional evaluation on Dataset 2 are presented in Table 9. Figure 7 explains the confusion 

matrix, illustrating the performance of the proposed model on the dataset during testing. 

Table 9. Test performance results of femoral dataset in proposed model. 

Model Accuracy Precision 
Recall 

(sensitivity) 
F1-score 

AUC-

ROC 

Proposed cascaded CNN with RCGA 97% 97% 96% 96.6% 0.97 

 

Figure 7. Confusion matrix of Dataset 2 in testing. 

 

Figure 8. RoC curves of proposed model in Dataset 2 testing performance. 

Table 10. Result comparison with literature survey. 

Model Input type Accuracy 

Proposed cascaded CNN with RCGA Tabular (BMD, demographics) 99.5% 

Boruta-XGBoost (Zhang et al., 2025) Tabular BMD-NHANES 90.03% 

LASSO-logistic regression (LR) (Zhang et al., 2025) Tabular BMD-NHANES 74.8% 

Logistic regression (Al-Husaini et al., 2025) Femoral neck BMD 85% 
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The various models for classifying osteoporosis and their respective accuracies are benchmarked in Table 10. 

Performance results are captured for each classification approach. The proposed cascaded CNN with the RCGA 

achieved a maximum accuracy of 99.5%; the combination of deep learning with hyperparameter tuning effectively 

learns complex associations within the relational tabular BMD and demographic data. The accuracy of Boruta-

XGBoost (90.03%) demonstrates the successful application of feature selection to optimize prediction precision; 

however, it still falls short of that achieved by the deep learning model. The accuracy of the LASSO-logistic 

regression model of 74.8% highlights a significant limitation of linear models and their application in the 

complexities of osteoporosis detection. A moderate accuracy of 85% was attained with logistic regression on femoral 

neck BMD data, thereby providing a more practical yet less comprehensive approach. Inevitably, it was 

overshadowed by ensemble and deep learning techniques. In addition to the contexts in which simpler models, such 

as logistic regression, possess utility and efficiency, the cascaded CNN with the RCGA remains the most accurate, 

demonstrating the sophistication of contemporary deep learning models for complex medical classification. 

Among other baselines, the proposed model performs exceptionally well in essential measures such as precision and 

recall, surpassing all the baselines at 98.7% and 99.0%, respectively. This means that when positive cases are 

reported, very few false positives are generated. An F1-score of 98.8% is a good score, indicating that the model has 

performed well across all stages and can even identify actual cases while remaining free of false-positives. 

Additionally, the presented work demonstrated an AUC-ROC of the model design at 0.99, indicating the qualitative 

ability of the cascaded CNN with the RCGA in accurately differentiating between osteoporotic and non-osteoporotic 

patients, contrasted with the baseline models and suggesting a diminishing return as the baseline models with the 

best AUC-ROC for SVM at 0.88 and the lowest naive Bayes at 0.80 are introduced. 

The stated accuracy of 99.5% results from a combination of architectural choices and training techniques, all designed 

to minimize overfitting. Datasets were divided via stratified random sampling, ensuring clean splits with no overlap 

between training, validation and test sets. This strict separation effectively eliminated data leakage. To curb 

overfitting, we employed dropout at a rate of 40%, an L2 penalty of 0.001 and early stopping after 10 epochs with no 

validation improvement. Loss curves for training and validation, shown in Figure 8, tracked closely, reinforcing the 

notion of consistent generalization. 

Additionally, adaptive weight fusion directed attention to the most informative features, while a genetic algorithm 

for configuration of hyperparameters (RCGA) guided the search for a sweet spot between complexity and predictive 

power. We recognize that variability in medical imaging is often mentioned. However, employing curated 

structured clinical data instead of raw imaging may have bolstered the model performance. We plan to test the 

model on external and cross-institutional datasets to assess its generalizability and robustness further. 

6 CONCLUSION AND FUTURE WORK 
The proposed approach of constructing a cascaded CNN using adaptive weight fusion and the RCGA for 

hyperparameters has proven to be successful and robust enough for osteoporosis detection. The model achieved an 

accuracy rate of 99.5%, precision of 98.7% and recall of 99.0%, with an AUC-ROC of 0.99, surpassing the performance 

of other ML models. While the cascaded CNN configuration utilizes both low-detail and high-detail components of 

the medical photograph by adopting the appropriate weight fusion technique, this technique also enhances the 

relevance of the features used by the model derived from heterogeneous network layers. Additionally, it is worth 

noting that the RCGA supports hyperparameter optimization, which enables the achievement of good results on the 

training dataset and generalizes the model to new datasets. Given the structured nature of the input data, traditional 

visual explanation tools such as Grad-CAM or saliency maps are not directly applicable. However, the model 

provides interpretability through its adaptive weight fusion mechanism, which assigns importance to different 

feature hierarchies during learning. 

Furthermore, we analysed feature-level contributions (e.g., BMD, age or fracture history), which can provide insights 

into the drivers of prediction. For improved transparency, future work will incorporate SHAP or LIME-based 

analysis to give the clinicians individual-level explanations for each diagnostic prediction. These additions will 

support better trust and adoption in real-world healthcare settings. While the proposed work shows promising 

results, we have a few limitations on the BMD dataset. In this research, we utilized two datasets which are not widely 

used, and previously there were no benchmark studies on them. In future research, it is essential to validate the 
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proposed model using other datasets such as NHANES, enable comparison with existing studies and improve the 

clinical reliability.  

The findings demonstrate that the proposed model is precise and reliable, making it suitable for clinical practice in 

osteoporosis diagnosis. With its capacity to discern hidden complexities within medical images and its robust ability 

to generalize, it can enhance the correct identification of such diseases by clinical doctors in time to avert the risk of 

developing osteoporosis-related fractures. Based on the model performance, it can support automated assessment 

of medical images. Although the suggested model yields current and relevant results, some gaps remain for further 

development and investigation. Future research directions may include extending the capabilities of the model to 

perform multi-class tasks, such as identifying cancerous bones beyond osteoporosis. It is also believed that the 

current work can be enhanced by incorporating additional patient data, such as clinical and demographic 

information, in conjunction with imaging data. 
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