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 Abstract  
Background: Many real-world tabular datasets are heterogeneous, with distinct regions of the feature 
space exhibiting different feature–label relationships. Conventional global classifiers often miss these 
local patterns, reducing both predictive accuracy and interpretability.  
Objective: This study aims to design a modular classification framework that combines local 
specialization with global consistency to enhance predictive performance and interpretability in 
heterogeneous tabular data. 
Methods: The author proposes Cluster-guided local feature selection with top-2 voting and fallback 
(CGLFS+), which integrates unsupervised clustering, cluster-specific feature selection and lightweight 
local models. Final predictions combine top-2 local decisions with a global fallback classifier for 
robustness. The framework was evaluated on five diverse benchmark datasets using repeated stratified  
cross-validation. 
Results: CGLFS+ achieved consistent gains in accuracy and macro F1 over strong baselines, with 
statistically significant improvements and competitive inference times. 
Conclusion: CGLFS+ successfully balances local adaptation and global consistency, providing  
a scalable and interpretable approach well suited to heterogeneous domains such as healthcare, 
chemistry and finance.  

 Index Terms 
Local models; Feature selection; Clustering; Modular classification; Tabular data interpretable 
machine learning. 

 

1 INTRODUCTION 
In many real-world classification problems, relying on a single global model often 

fails to capture the inherent heterogeneity and complex structure of the data. 

Datasets derived from diverse sources, such as clinical diagnostics, consumer 

behaviour or industrial monitoring, frequently exhibit subpopulation-specific 

distributions, localized feature relevance and non-uniform decision boundaries. 

Despite this, most standard machine learning pipelines are designed under the 

global assumption: a single classifier trained over the entire input space, using a 

fixed set of features and shared decision rules.  

Recent research into interpretable machine learning and modular architectures has 

begun to question this monolithic paradigm. Several studies have investigated local 

learning strategies such as mixture-of-experts (MoE) (Yuksel et al., 2012), 

hierarchical models (Ismail et al., 2022) or instance-based approaches (Kim et al., 

2015).  
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While these models improve adaptability, they often suffer from rigid architecture constraints, limited 

interpretability or overlook the locality of feature relevance. In particular, feature selection – a critical step for both 

performance and transparency – is frequently applied globally, failing to account for regional differences in 

predictive structure (Hancer et al., 2020). 

In this paper, we propose an enhanced modular classification framework named cluster-guided local feature 

selection with top-2 voting and fallback (CGLFS+). The core idea of CGLFS+ is to exploit structural heterogeneity 

in tabular data by combining three complementary mechanisms: localized feature relevance, hybrid inference and 

modular model specialization. 

Firstly, the dataset is partitioned into coherent subregions via unsupervised clustering, without supervision labels. 

For each cluster, we perform local feature selection using mutual information to identify the most predictive features 

within that cluster. To improve robustness and coverage, we also apply global feature selection and inject the top-k 

globally informative features into every cluster-specific subset. This local-global feature fusion balances specificity 

and generalization, enhancing the expressive power of each submodel while preserving interpretability. 

Secondly, within each cluster, the method automatically selects the most suitable classifier from a small pool (e.g., 

logistic regression, decision tree or SVM), using internal cross-validation. This ensures that model complexity is 

aligned with the local data distribution, avoiding overfitting or underfitting across diverse subpopulations. 

Thirdly and critically, the inference process in CGLFS+ is not based on hard assignment. Instead, we introduce a top-

2 voting with fallback strategy: at test time, each instance is evaluated by the two nearest cluster-specific models 

(based on distance to cluster centroids) and a consensus prediction is attempted. In the case of disagreement, a global 

fallback model is consulted to resolve the ambiguity. This layered inference mechanism increases robustness in noisy 

or borderline regions and yields more stable predictions, as confirmed by our empirical evaluation. This work 

introduces a modular classification framework, CGLFS+, with the following key contributions: 

• We propose a hybrid classification strategy that combines unsupervised clustering, cluster-specific feature 

selection and adaptive model assignment to address data heterogeneity. 

• We introduce a local-global feature fusion mechanism, allowing each local model to benefit from both 

globally and locally informative variables, thereby enhancing generalization and interpretability. 

• We design a robust inference procedure based on top-2 cluster voting with fallback to a global model, 

improving predictive reliability in ambiguous regions. 

• We conduct an extensive empirical evaluation on five diverse tabular datasets, demonstrating that CGLFS+ 

consistently outperforms standard global classifiers, with validated statistical significance and competitive 

inference time. 

The rest of this paper is organized as follows. Section 2 provides an overview of existing research related to local 

models, feature selection and interpretable clustering techniques. Section 3 details the proposed methodology. 

Section 4 describes the experimental setup and presents the evaluation protocol. The findings and their implications, 

along with limitations, are discussed in Section 5. Finally, Section 6 summarizes the contributions and outlines 

potential directions for future research. 

2 RELATED WORK 

Many conventional supervised learning algorithms operate under the assumption of a uniform mapping from input 

features to target labels. However, real-world tabular datasets often violate this assumption due to underlying 

heterogeneity: different subpopulations may exhibit distinct patterns, different relevant variables and decision 

boundaries. This limitation has motivated a variety of approaches that introduce local adaptability into the 

modelling pipeline. 

2.1 Local models and mixture-of-experts 
The mixture-of-experts (MoE) framework (Yuksel et al., 2012) is a foundational technique for modelling 

heterogeneity by partitioning the input space and assigning a specialized predictor (expert) to each region, guided 

by a gating mechanism. While effective in complex settings, traditional MoEs often rely on non-transparent gating 

functions and act as black-box ensembles, limiting their interpretability. Recent advances such as interpretable MoEs 
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(Ismail et al., 2022) and relational MoEs (Oyamada and Nakadai, 2017) aim to improve transparency by enforcing 

sparse or structured gating, but typically do not support local feature selection. 

Early efforts to integrate feature selection within local models include the work of Peralta and Soto (Peralta and Soto, 

2014), who explored region-wise variable selection in MoE-style regression. However, their approach used a fixed 

model class across regions and did not address classification tasks or modular inference. 

2.2 Feature selection and interpretability 
Feature selection is a cornerstone of interpretable machine learning, with mutual information, chi-squared tests and 

wrapper-based methods widely used to improve generalization and reduce redundancy (Kheradpisheh et al., 2014). 

However, most of these techniques are applied globally, failing to account for the possibility that feature relevance 

may vary across the data space. 

Several authors have proposed instance- or class-specific feature selection frameworks (Ma and Lu, 2024; Shi et al., 

2025), but these often require prior knowledge or lack modularity. Kheradpisheh et al. (2014) proposed expert-based 

models with different feature subsets, though their work lacked a clear integration of clustering or adaptive classifier 

selection. 

2.3 Clustering-aware learning and interpretability 
Several studies have explored combining unsupervised clustering with downstream supervised tasks. Law et al. 

(2004) introduced joint clustering and feature selection via Gaussian mixtures, though with limited classifier 

flexibility. Hu et al. (2024) provided a recent survey on interpretable clustering, highlighting the disconnect between 

unsupervised partitioning and predictive modelling. 

Other approaches such as Alangari et al. (2023) and Yeganejou and Dick (2019) have proposed probabilistic or fuzzy 

models with enhanced transparency. However, these are often tied to specific architectures (e.g., GMMs, neural 

networks), reducing modularity and applicability to lightweight pipelines. 

2.4 Positioning of our contribution 
CGLFS+ integrates four key capabilities – clustering-based partitioning, local feature selection, adaptive model 

assignment and robust inference via top-2 voting with fallback – into a unified, end-to-end framework. While prior 

studies have proposed components of this approach, to our knowledge, CGLFS+ is the first to combine all four 

elements in a lightweight, interpretable and effective pipeline for tabular classification. Table 1 summarizes how 

CGLFS+ differentiates itself from existing approaches across core research dimensions. 

Table 1. Positioning of CGLFS+ relative to existing paradigms in heterogeneous tabular learning. 

Research axis Existing approaches Contributions of CGLFS+ 

Modelling 

granularity 
– Global models: GBDT, TabNet, FT-transformer 

(Grinsztajn et al., 2022; McElfresh et al., 2023) 

– Local models: clusterwise regression, local linear 

forests (Kuang and Ooi, 2024; Freidberg et al., 2020) 

– Prior local models fix the architecture across clusters 

– Global models lack flexibility in heterogeneous 

settings 

– CGLFS+: modular cluster-based architecture with per-

cluster model selection 

Clustering 

integration 
– k-means, HDBSCAN (MacQueen, 1967; McInnes et al., 

2017) 

– Used mainly for preprocessing or exploratory analysis 

– Clustering used as active routing layer for prediction 

– CGLFS+: unsupervised clustering informs both model 

assignment and feature selection 

Feature selection 

strategy 
– Global MI-based ranking (Peng et al., 2005; Ross, 2014) 

– Class-/context-aware filtering (Ma an Lu, 2024; 

Aguilar-Ruiz, 2024) 

– CGLFS+: cluster-specific MI filtering with local-global 

feature fusion (GFF) 

– Sparse yet informative representations tailored to 

each subregion 
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Research axis Existing approaches Contributions of CGLFS+ 

Model selection – One global model selected via cross-validation (Kohavi, 

1995) 

– CGLFS+: lightweight adaptive selection per cluster 

among interpretable learners (LR, DT, SVM) 

Inference routing 

strategy 
– Learned gates in MoEs (Lepikhin et al., 2020; Fedus et 

al., 2022) 

– Sparse attention or top-k routing (Kai et al., 2025) 

– CGLFS+: transparent routing via top-2 cluster 

proximity + global fallback 

– Enhances stability near cluster boundaries 

 

Recent developments have further emphasized the benefits of combining clustering and modular classification for 

heterogeneous tabular data. For example, the cluster-based SMOTE boosting ensemble (CSBBoost) utilized cluster 

structures to improve robustness in imbalanced classification tasks (Salehi and Khedmati, 2024). Similarly, the 

cluster-based ensemble learning (CBEL) framework for congenital heart disease prediction demonstrated that pre-

clustering can enhance both interpretability and adaptability (Kaur and Ahmad, 2024). More recently, the enhanced 

three-stage cluster-then-classify method (ETSCCM) integrated feature grouping and local modelling to improve 

predictive reliability in materials data (Yilmaz Eroglu and Guleryuz, 2025). These works share the same underlying 

philosophy as CGLFS+, highlighting the growing relevance of modular, interpretable and cluster-aware learning 

paradigms in modern tabular data analysis. 

3 PROPOSED METHOD 

We propose CGLFS+ (cluster-guided local feature selection with top-2 voting and fallback), a modular framework 

for classification in heterogeneous tabular data. Instead of relying on a single global model, CGLFS+ partitions the 

input space into interpretable subregions and trains specialized, lightweight classifiers tailored to each. 

The method builds on the premise that relationships between features and target labels can vary across the data 

space. To exploit this structure, CGLFS+ performs: 

• Unsupervised clustering to identify locally coherent groups in the data, with the number of clusters K 

selected automatically (e.g., via silhouette analysis), independently of the number of classes. 

• Feature selection at both global and local levels to identify shared and region-specific predictive signals. 

• Hybrid inference via top-2 voting among the nearest clusters, with a fallback to a global model when 

disagreement occurs. 

Each cluster is assigned a compact classifier trained on a fused set of global and cluster-specific features, enhancing 

both interpretability and local adaptation. At inference, predictions from the two nearest cluster models are 

compared: if they agree, their output is returned; otherwise, a global fallback model resolves the tie, ensuring 

robustness near boundaries and in ambiguous regions. 

3.1 Overview of CGLFS+ pipeline 
Let D = {(xi,yi)}N

i=1 be the dataset, where xi ∈ Rd are feature vectors and yi ∈ {1,...,C} are class labels. The dataset is clustered 

into K partitions using an unsupervised method applied to the input matrix X = [x1,...,xN]⊤. 

CGLFS+ proceeds in four main steps: 

• Step 1: Clustering the data. We first cluster the training data into K groups (e.g., via k-means). These clusters 

define regions in the input space where separate models will be trained. The number of clusters K is tuned 

using internal clustering metrics such as silhouette score. 

• Step 2: Selecting features locally and globally. To ensure that models remain interpretable and efficient, we select 

features in two stages: 

o Global feature selection: A supervised criterion (e.g., mutual information) is used on the full dataset 

to select a fixed number of globally relevant features (F global). 
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o Local feature selection: The same criterion is applied within each cluster to identify features that are 

locally informative (Fk
local). 

The final feature set for cluster k is the union of the global and local selections: Fk = Fglobal ∪ Fk
local. 

• Step 3: Training local models. For each cluster, we train a lightweight classifier (e.g., logistic regression, decision 

tree or SVM) using only the features in Fk. Model selection is done via three-fold cross-validation within the 

cluster to choose the best-performing algorithm from a predefined pool. If a cluster contains samples from 

only one class, we store a constant predictor for that class instead of training a model. 

• Step 4: Making predictions (hybrid inference). To predict the label of a new input x: 

(1) Compute distances from x to all cluster centroids and identify the two nearest clusters. 

(2) Query the local classifiers from both clusters using their respective feature subsets. 

(3) If both classifiers agree on the prediction, return that class. 

(4) Otherwise, defer to the global fallback model trained on the full dataset. 

This approach improves reliability near cluster boundaries and when local models disagree. 

The complete procedure is summarized in Algorithm 1. 

Algorithm 1. CGLFS+: Local-global feature fusion with top-2 voting and fallback. 

Require: Dataset D = {(xi,yi)}, number of clusters K, feature selector FS, #features mg (global), mℓ (local), candidate models H 

Ensure: Local models {hk}, feature sets {Fk}, fallback model hglobal 

1: Apply k-means clustering to obtain assignments {ci} for K clusters 

2: Select top-mg global features Fglobal using FS on entire dataset 

3: for each cluster k = 1,...,K do 

4: Extract local dataset Dk = {(xi,yi) | ci = k} 

5: if Dk contains only one class then 

6: Set hk as a constant classifier for that class 

7: Set Fk ← all features 

8: else 

9: Select top-mℓ local features Fklocal using FS on Dk 

10: Set Fk ← Fglobal ∪ Fklocal 

11: Train all models in H on Dk[Fk] using 3-fold CV  

12: Assign hk ← best-performing model 

13: end if 

14: end for 

15: Train a global model hglobal on full dataset with all features  

16: function Predict(x) 

17: Find top-2 nearest clusters {k1,k2} by centroid distance 

18: Predict y1 = hk1(x[Fk1]), y2 = hk2(x[Fk2]) 

19: if y1 = y2 then return y1 

20: elsereturn hglobal(x) 

21: end if 

22: end function 

 

 

4 EXPERIMENT METHODOLOGY DESCRIPTION 

4.1 Datasets 
To evaluate the performance of our CGLFS+ framework, we experimented with five well-known tabular datasets 

from a variety of domains, including biology, healthcare, chemistry, computer vision and mechanical systems. These 

datasets were selected for their diversity in terms of size, number of features, number of classes and class 

distributions. A summary of their key properties is provided in Table 2. 
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Acta Informatica Pragensia  Volume 15, 2026 

https://doi.org/10.18267/j.aip.295  162 https://aip.vse.cz 

• Iris1 (Dua and Graff, 2019): This classic dataset contains 150 samples of iris flowers, each described by four 

measurements of sepal and petal size. The goal is to classify the flowers into one of three species: Iris setosa, 

I. versicolor or I. virginica. 

• Breast cancer Wisconsin (diagnostic)2 (Dua and Graff, 2019): This medical dataset includes 569 samples 

from breast tumour biopsies. Each sample is characterized by 30 numerical features extracted from cell 

images and labelled as benign or malignant. 

• Red wine quality 3  (Cortez et al., 2009): Contains 1599 red wine samples from Portugal, with 11 

physicochemical features per sample. The target variable is a quality score from 3 to 8, making this a multi-

class and highly imbalanced problem, as most wines are rated 5 or 6.  

• Digits (Scikit-learn)4 (Scikit-learn developpers, 2025): A smaller, easier-to-use version of MNIST with 1797 

images of handwritten digits. Each image is 8 × 8 pixels and represented as a vector of 64 features. The task 

is to classify digits from 0 to 9. 

• Vehicle silhouettes5 (Dua and Graff, 2019): This dataset includes 846 examples of vehicle shapes described 

by 18 geometric features. The goal is to identify the type of vehicle: Opel, Saab, Bus or Van. 

Table 2. Summary of datasets used in the evaluation. 

Dataset Samples Features Classes Class balance 

Iris 150 4 3 Balanced 

Breast cancer (WDBC) 569 30 2 Slightly imbalanced (62% benign) 

Red wine quality 1599 11 6* Highly imbalanced (mostly 5–6) 

Digits 1797 64 10 Balanced 

Vehicle silhouettes 846 18 4 Moderately imbalanced 

*Note: Labels range from 3 to 8, giving six distinct classes. 

4.2 Evaluation metrics 
To evaluate both the predictive performance and practical efficiency of our framework, we report three key metrics: 

• Accuracy: The proportion of correctly classified examples in the test set. While widely used, it can be 

misleading when classes are imbalanced. 

• Macro F1-score: The average F1-score computed independently for each class, then averaged across all 

classes. This means that all classes are treated equally, regardless of their size, which makes it well-suited 

for imbalanced multi-class datasets. The F1-score itself balances precision and recall. 

• Inference time: The average time (in seconds) that the model takes to predict the full test set, averaged over 

several runs. It reflects how efficient and scalable the method is in practice. 

4.3 Baselines 
To assess the performance of our approach, we compare it against a set of standard global classifiers, all trained on 

the full feature space without clustering or local feature selection. These baselines represent common choices in 

tabular classification tasks: 

• Logistic regression (LR): A simple and interpretable linear model with L2 regularization. The 

regularization strength is selected via five-fold cross-validation using the liblinear solver. 

 

1 See, https://archive.ics.uci.edu/ml/datasets/iris  

2 See, https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)  

3 See, https://archive.ics.uci.edu/ml/datasets/Wine+Quality  

4 See, https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html  

5 See, https://archive.ics.uci.edu/ml/datasets/Statlog+(Vehicle+Silhouettes).  
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• Support vector machine (SVM): A non-linear classifier using an RBF kernel. The parameters γ and C are 

tuned through nested five-fold cross-validation on the training set. 

• K-nearest neighbours (KNN): A distance-based method with k = 3, uniform weighting and Euclidean 

distance. 

• Decision tree (DT): A rule-based classifier using Gini impurity, with a maximum depth of 10 unless 

specified otherwise. 

• Random forest (RF): An ensemble of 100 decision trees trained on bootstrapped samples with feature 

subsampling (max features set to sqrt). Default Scikit-learn settings are used unless tuning is applied. 

• Gradient boosting (GB): A boosted tree model with 100 estimators and a learning rate of 0.1, implemented 

via the gradient boosting classifier. Early stopping is performed using a 5% validation split. 

• Naive Bayes (NB): A generative classifier assuming Gaussian distributions for each feature. 

All models are evaluated on identical training splits, with hyperparameters optimized via five-fold cross-validation 

to ensure fairness. 

4.4 Proposed method configuration (CGLFS+) 
This section details the configuration choices underlying the implementation of CGLFS+ (cluster-guided local feature 

selection with top-2 voting and fallback): 

• Clustering: The training set is partitioned into K clusters using k-means. The number of clusters is 

determined automatically based on the silhouette score, selecting the value of K that maximizes intra-cluster 

cohesion and inter-cluster separation. This allows the model to adapt to hidden substructures in the data, 

independently of the number of classes. The only exception is the digits dataset, where K is fixed at 10 to 

match the number of digit classes and avoid unstable clustering. 

• Local feature selection: Within each cluster, features are ranked by their mutual information (MI) with 

class labels. Rather than fixing the number of features, we retain those whose MI exceeds the cluster-specific 

average, allowing the feature set to adapt to the local structure (Peng et al., 2005). 

• Global feature fusion: Globally informative features (those with MI above the global average) are added 

to the local subset of each cluster. This balances local specialization with shared context and avoids arbitrary 

feature limits. The selection is based on information-theoretic criteria such as max-relevance (Peng et al., 

2005). 

• Candidate models: For each cluster, we perform model selection among three lightweight classifiers: 

o Logistic regression (LR): Linear, with L2 regularization and the liblinear solver. 

o Decision tree (DT): A shallow tree with a maximum depth of 3, offering concise decision rules. 

o SVM (RBF kernel): Non-linear, suitable for clusters with complex boundaries. 

• Model selection: Classifiers are evaluated using three-fold stratified cross-validation within each cluster. 

The model with the highest average accuracy is retrained on the full cluster data and retained. 

• Prediction: At test time, each instance is assigned to its two nearest clusters (via Euclidean distance). If both 

local models agree, the prediction is returned. Otherwise, a fallback prediction is provided by a global 

model. 

• Fallback model: We use a global random forest with 100 estimators trained on the full dataset and all 

features to resolve prediction conflicts. The fallback mechanism is activated only for a small fraction of 

samples located near ambiguous cluster boundaries, where the top-2 local models disagree. This selective 

use prevents overreliance on the global model while ensuring consistent decisions across heterogeneous 

subspaces. Random forests were chosen because they provide robust generalization and enable feature 

importance inspection, offering a practical balance between stability and interpretability. As a result, the 

fallback component reinforces prediction reliability without undermining the local transparency of the 

CGLFS+ architecture. 

All inputs are standardized (zero mean, unit variance). Evaluation is performed using five-fold cross-validation, 

repeated over five random splits. Inference time is reported as the average prediction time per test instance, 

excluding training. 
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Choice of candidate models. We select three candidate classifiers for local model selection: logistic regression (LR), 

decision tree (DT) and support vector machine with RBF kernel (SVM-RBF). This choice is motivated by the 

following factors: 

• Model diversity: The three models offer complementary inductive biases: linear (LR), rule-based (DT) and 

non-linear kernel-based (SVM), which allows adaptation to various local patterns (Domingos, 2012). 

• Interpretability: LR and DT are inherently transparent and well-suited for locally interpretable modelling, 

unlike ensemble or deep models (Molnar, 2020; Rudin, 2019). 

• Efficiency: All selected models are lightweight and fast to train, which is important when fitting multiple 

models independently in each cluster (Pedregosa et al., 2011). 

• Robustness to small data: Simpler models generalize better in low-data regimes, which often occur in small 

clusters (Hastie et al., 2009). 

• Proven effectiveness: LR, DT and SVM have shown competitive performance on tabular datasets in 

empirical studies, particularly when interpretability is a priority (Grinsztajn et al., 2022; Fernández-Delgado 

et al., 2014). 

We exclude the following model families for practical reasons: 

• Ensemble methods (e.g., random forest, GBDT): High accuracy but low interpretability and higher 

inference cost (Lundberg et al., 2020). 

• K-nearest neighbours (KNN): Sensitive to feature scaling and inefficient at inference time (Peterson, 2009). 

• Neural networks: Require large amounts of data and offer limited interpretability in small tabular clusters 

(Shwartz-Ziv and Armon, 2022). 

This configuration offers a balanced trade-off between model variety, transparency, efficiency and generalization 

capability. In summary, this model set offers a good balance of diversity, interpretability, efficiency and 

generalization, making it well-suited for adaptive classification in locally clustered tabular data. 

5 RESULTS AND DISCUSSION 

We evaluate the performance of the proposed method CGLFS+ on five diverse tabular datasets: iris, breast cancer, 

digits, red wine quality and vehicle (see subsection 4.1). All experiments are conducted using five-fold stratified 

cross-validation to ensure balanced and reliable results. For each dataset and model, we report the mean and 

standard deviation of the following metrics: accuracy, macro-averaged F1-score and inference time (in seconds). 

Detailed results are presented in Tables 3 to 7. For clarity, we report the following variants of our method: 

• CGLFS: base model without global feature fusion or top-2 voting + fallback; 

• CGLFS+GFF: CGLFS extended with global feature fusion only; 

• CGLFS+: full model with both enhancements.  

Table 3. Performance on iris dataset. 

Model Accuracy (%) F1-score (%) Time (s) 

Logistic regression 95.32 ± 1.52 95.32 ± 1.53 0.0138 

SVM (RBF) 95.35 ± 1.52 95.37 ± 1.53 0.0094 

KNN (k=3) 94.00 ± 2.46 94.01 ± 2.44 0.0117 

Random forest 94.67 ± 2.67 94.64 ± 2.68 0.2157 

Gradient boosting 95.33 ± 2.40 95.31 ± 2.41 0.3612 

Decision tree 95.36 ± 2.41 95.31 ± 2.43 0.0031 

Naive Bayes 94.67 ± 1.00 94.65 ± 1.01 0.0031 

CGLFS (ours) 96.14 ± 1.15 95.91 ± 1.21 0.2412 

CGLFS+GFF (ours) 96.91 ± 1.75 96.01 ± 1.13 0.2612 

CGLFS+ (ours) 97.03 ± 1.13 96.82 ± 1.16 0.3127 
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Table 4. Performance on breast cancer dataset. 

Model Accuracy (%) F1-score (%) Time (s) 

Logistic regression 97.37 ± 0.66 97.14 ± 0.83 0.0138 

SVM (RBF) 97.54 ± 0.95 97.36 ± 1.09 0.0466 

KNN (k=3) 96.83 ± 0.54 96.55 ± 0.70 0.0197 

Random forest 95.61 ± 0.23 95.29 ± 0.35 0.3132 

Gradient boosting 95.26 ± 1.26 94.86 ± 1.49 0.6269 

Decision tree 91.04 ± 1.79 90.28 ± 2.17 0.0122 

Naive Bayes 92.97 ± 0.99 92.44 ± 1.08 0.0040 

CGLFS (ours) 98.07 ± 0.47 97.67 ± 0.21 0.5380 

CGLFS+GFF (ours) 98.15 ± 0.25 97.86 ± 0.75 0.5712 

CGLFS+ (ours) 98.71 ± 0.48 97.91 ± 1.21 0.6022 

Table 5. Performance on digits dataset. 

Model Accuracy (%) F1-score (%) Time (s) 

Logistic regression 97.11 ± 0.38 97.10 ± 0.37 0.1971 

SVM (RBF) 98.39 ± 0.60 98.39 ± 0.60 0.9353 

KNN (k=3) 97.50 ± 0.68 97.49 ± 0.69 0.0587 

Random forest 97.61 ± 0.38 97.60 ± 0.38 0.5751 

Gradient boosting 96.38 ± 0.50 96.39 ± 0.49 12.9223 

Decision tree 85.64 ± 1.49 85.64 ± 1.51 0.0583 

Naive Bayes 78.30 ± 1.80 78.02 ± 1.99 0.0161 

CGLFS (ours) 98.16 ± 0.67 98.12 ± 0.58 5.1730 

CGLFS+GFF (ours) 98.17 ± 0.53 98.12 ± 0.61 5.8512 

CGLFS+ (ours) 98.51 ± 1.07 98.41 ± 1.19 6.0005 

Table 6. Performance on wine quality dataset. 

Model Accuracy (%) F1-score (%) Time (s) 

Logistic regression 59.91 ± 1.37 28.43 ± 1.88 0.2680 

SVM (RBF) 62.54 ± 2.21 28.93 ± 1.54 1.1983 

KNN (k=3) 57.66 ± 2.63 31.08 ± 3.76 0.0587 

Random forest 69.92 ± 1.97 36.62 ± 3.88 0.5926 

Gradient boosting 65.48 ± 2.23 35.10 ± 3.12 3.2421 

Decision tree 61.85 ± 0.38 34.99 ± 1.93 0.0202 

Naive Bayes 54.91 ± 1.95 31.86 ± 3.32 0.0061 

CGLFS (ours) 71.03 ± 1.67 40.12 ± 1.98 1.8710 

CGLFS+GFF (ours) 71.47 ± 1.26 40.91 ± 1.78 1.9512 

CGLFS+ (ours) 72.14 ± 1.15 40.92 ± 1.21 2.1023 

Table 7. Performance on vehicle dataset. 

Model Accuracy (%) F1-score (%) Time (s) 

Logistic regression 78.73 ± 1.68 78.56 ± 1.78 0.1159 

SVM (RBF) 75.42 ± 2.29 74.82 ± 2.41 0.2725 

KNN (k=3) 71.40 ± 1.31 71.10 ± 1.47 0.0322 

Random forest 73.17 ± 2.38 72.67 ± 2.69 0.3984 

Gradient boosting 76.60 ± 1.89 76.52 ± 1.70 1.7268 
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Model Accuracy (%) F1-score (%) Time (s) 

Decision tree 69.51 ± 2.40 69.77 ± 2.31 0.0125 

Naive Bayes 45.86 ± 3.32 42.76 ± 3.01 0.0076 

CGLFS (ours) 78.91 ± 2.13 78.83 ± 2.98 0.7730 

CGLFS+GFF (ours) 80.37 ± 2.13 79.12 ± 2.98 0.8743 

CGLFS+ (ours) 82.14 ± 2.17 81.91 ± 2.31 0.9112 

5.1 Overall performance 
CGLFS+ consistently achieves the best or near-best performance across all five benchmark datasets. These results 

confirm the effectiveness of combining local modelling, adaptive feature selection and robust inference. 

• Iris: CGLFS+ reaches 97.03% accuracy and 96.82% macro F1-score, outperforming strong baselines such as 

SVM (95.35%) and gradient boosting (95.33%) as shown in Table 3. 

• Breast cancer: On this binary classification task with moderate class imbalance and nonlinear relationships, 

CGLFS+ achieves 98.71% accuracy and 97.91% F1-score (Table 4), reflecting its ability to adapt to clustered 

feature structures. 

• Digits: Despite overall strong performance from most models, CGLFS+ delivers the top results with 98.51% 

accuracy and 98.41% F1-score (Table 5). 

• Red wine quality: This multi-class, imbalanced dataset poses a greater challenge. CGLFS+ achieves 72.14% 

accuracy and 40.92% F1-score, significantly outperforming the next-best model (random forest at 69.92%) 

(Table 6). 

• Vehicle: For this balanced, four-class dataset with subtle class differences, CGLFS+ sets a new performance 

benchmark with 82.14% accuracy and 81.91% F1-score (Table 7). 

5.2 Ablation insights 
To better understand the contribution of each component, we compare three variants: 

• CGLFS: Base model without global feature fusion or top-2 voting + fallback; 

• CGLFS+GFF: Adds global feature fusion, enriching the feature space of each cluster with dataset-wide 

signals; 

• CGLFS+: Full model combining both GFF and top-2 voting with fallback. 

Global feature fusion provides consistent improvements, while top-2 voting with fallback helps resolve ambiguous 

predictions near cluster boundaries; particularly evident in the wine and vehicle datasets. 

5.3 Computational efficiency 
Despite being modular, CGLFS+ remains practical in terms of inference time. For instance, on the digits dataset, it 

completes predictions in 6.00 s, which is faster than gradient boosting (12.92 s) and comparable to other traditional 

models. This shows that the framework achieves a favourable balance between accuracy and scalability. 

While the modular design introduces a modest increase in training complexity compared to simple classifiers, this 

cost is offset by enhanced predictive stability and adaptability in heterogeneous datasets. Moreover, because each 

local model operates independently within its assigned cluster, the framework naturally supports parallel training, 

resulting in near-linear scalability with respect to data size. These characteristics make the trade-off between 

computational costs and predictive benefits favourable in most realistic tabular settings. 

5.4 Visual summary 
To complement the quantitative tables, Figures 1 to 3 provide a visual overview of average performance across all 

the datasets. 
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Figure 1. Accuracy comparison across datasets. 

 

Figure 2. F1-score comparison across datasets. 

 

 

Figure 3. Inference time comparison across datasets. 
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CGLFS+ consistently ranks at or near the top in accuracy and macro F1. The most notable gains appear on 

structurally complex datasets such as wine and vehicle. While inference time is slightly higher than simpler models, 

CGLFS+ remains significantly more efficient than ensemble-based baselines. 

The experimental results clearly demonstrate that CGLFS+ offers a robust and interpretable alternative to standard 

classifiers for heterogeneous tabular data. Its performance, modularity and scalability make it a compelling choice 

for real-world applications. 

5.5 Statistical significance testing 
To assess whether the observed performance differences among models are statistically significant, we conducted 

the Friedman test (Demšar, 2006) using accuracy values averaged over five-fold cross-validation on five benchmark 

datasets. 

The Friedman test returned a chi-squared statistic of χ2F = 48.21 with a corresponding p-value of 3.19×10−8, allowing 

us to reject the null hypothesis of equal model performance at the α = 0.05 level. This confirms that at least one model 

exhibits significantly different behaviour compared to the others. To further investigate the source of these 

differences, we applied the Nemenyi post-hoc test, which compares all pairs of models. The critical difference (CD) 

was calculated as CD = 2.05, based on k = 8 models and N = 5 datasets, using q0.05 = 3.314 from the studentized range 

distribution. The resulting average ranks for all models are presented in Table 8. 

Table 8. Average ranks across datasets (lower is better). 

Model Average rank 

CGLFS+ 1.00 

SVM (RBF) 3.00 

Logistic regression 4.20 

Random forest 4.30 

Gradient boosting 4.40 

KNN (k=3) 5.80 

Decision tree 5.80 

Naive Bayes 7.50 

 

The results of the Nemenyi test are visualized in Figure 4, which shows the average ranks and the critical difference 

interval. Models not connected by a horizontal line differ significantly at the p < 0.05 level. 

 

Figure 4. Critical difference (CD) diagram comparing CGLFS+ to baseline models. Lower ranks indicate better performance. 
Models not connected to CGLFS+ are significantly different. 
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As shown, CGLFS+ achieves the best average rank across all the datasets and is statistically superior to all other 

models except SVM (RBF), which lies just within the critical threshold. These findings validate the consistent 

advantage and robustness of our proposed framework. 

5.6 Qualitative evaluation of interpretability 
To complement the quantitative evaluation, a qualitative inspection of the locally selected features was performed 

for representative datasets. 

Table 9. Representative top 5 locally selected features across clusters. 

Dataset Cluster ID Top 5 selected features 

Breast cancer C1 texture_mean, symmetry_mean, compactness_mean, smoothness_mean, 

fractal dimension_mean 

Breast cancer C2 texture_mean, symmetry_mean, fractal dimension_mean, radius_mean, 

compactness_mean 

Red wine quality C1 alcohol, sulphates, fixed_acidity, chlorides, pH 

Red wine quality C2 density, residual sugarvolatile_acidity, sulphates, pH 

 

As shown in Table 9, the breast cancer dataset reveals consistent emphasis on texture_mean, symmetry_mean and 

compactness_mean, which are well-established diagnostic indicators in recent explainable AI models for breast 

cancer prediction (Kalangi et al., 2025). For the red wine quality dataset, clusters C1 and C2 respectively emphasize 

alcohol, volatile acidity, density and pH, aligning with recent findings that these physicochemical properties are 

major determinants of perceived wine quality (Luque Sendra et al., 2023). These results confirm that the local feature 

selection mechanism in CGLFS+ identifies domain-relevant and interpretable features, reinforcing both its 

explainability and practical validity. 

5.7 Discussion and limitations 
The performance of CGLFS+ across all the datasets demonstrates the benefits of combining local modelling with 

structured decision fusion. Unlike traditional global classifiers, CGLFS+ captures fine-grained patterns by tailoring 

feature selection and decision boundaries to each cluster. This localized specialization enables the model to adapt 

more effectively to heterogeneity in tabular data, contributing to its consistently top-ranked performance. 

Moreover, the design of CGLFS+ offers interpretability by exposing the structure of cluster-specific models. This can 

be useful in domains where understanding local decision logic is essential. However, our current evaluation remains 

focused on accuracy and efficiency, without formal analysis of interpretability or feature consistency across clusters. 

Although the datasets employed in this study are of moderate size, they span diverse domains, including biology, 

healthcare, chemistry, computer vision and mechanical systems, providing a broad basis for evaluating 

heterogeneous tabular structures. This diversity ensures fair comparison with existing benchmarks while 

maintaining controlled experimental conditions. Importantly, the modular architecture of CGLFS+ allows efficient 

parallelization and linear scalability with respect to data size, making the framework readily applicable to larger 

real-world datasets. 

In line with recent advances in cluster-based ensemble learning (Salehi and Khedmati, 2024; Kaur and Ahmad, 2024; 

Yilmaz Eroglu and Guleryuz, 2025), CGLFS+ adopts a modular approach that emphasizes localized feature selection 

and decision fusion. This design is consistent with trends observed in the literature from the period 2024–2025, 

further supporting the relevance of the framework for heterogeneous tabular domains. 

That said, there are a few important limitations to consider: 

• Dependency on clustering: The approach assumes that meaningful substructures exist in the data. If the 

clustering fails to reflect actual task relevant divisions, the overall model may degrade. 
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• Alternative clustering strategies: While CGLFS+ currently employs K-means for partitioning, alternative 

clustering algorithms could potentially enhance robustness when data exhibit complex or non-linear 

substructures. Density-based methods such as HDBSCAN can adaptively detect irregularly shaped clusters 

and handle noise, while spectral clustering and Gaussian mixture models (GMMs) may better capture 

overlapping or manifold-structured regions. However, these approaches often involve higher 

computational costs and additional hyperparameters, which could reduce the simplicity and reproducibility 

of the present framework. Exploring these alternatives and their impact on local model stability and 

interpretability represents an interesting direction for future research. 

• Added complexity: In simple or linearly separable datasets, the overhead introduced by clustering and local 

modelling may not be justified when compared to efficient global models. Nevertheless, these additional 

computational costs are most warranted in domains where feature–label relationships vary across 

subpopulations, such as healthcare diagnostics, chemistry-based toxicity prediction or credit scoring, where 

local specialization provides tangible benefits in both interpretability and predictive reliability. In contrast, 

for simple and homogeneous datasets, global classifiers may remain a more computationally efficient 

alternative. 

6 CONCLUSION AND FUTURE WORK 
In this work, we proposed CGLFS+, a modular classification framework that integrates cluster-guided local 

modelling with global decision fusion. The method balances interpretability, flexibility and predictive power, and 

achieved strong performance across five diverse tabular datasets. It significantly outperformed widely used 

classifiers, as confirmed by statistical testing. 

By separating the learning process into interpretable local units and enhancing decision consistency through global 

fusion and fallback voting, CGLFS+ introduces a promising direction for modelling structured data. For future work, 

we plan to explore the following directions: 

• Adaptive clustering: Investigate automatic methods for choosing the number and granularity of clusters 

based on data complexity. 

• Interpretability validation: Design human-centred experiments to evaluate how local models and selected 

features are perceived and understood by domain experts. 

• Scalability and deployment: Extend the framework to handle large-scale datasets and real-time prediction 

scenarios, particularly in applications such as finance or medical decision support. 

Overall, CGLFS+ offers a practical and interpretable alternative to complex black-box classifiers, especially for 

structured data scenarios where both accuracy and understanding matter. 

ADDITIONAL INFORMATION AND DECLARATIONS 
Conflict of Interests: The author declares no conflict of interest. 

Author Contributions: The author confirms being the sole contributor of this work. 

Statement on the Use of Artificial Intelligence Tools: The author states that no generative artificial intelligence 

tools were used to create the textual or visual content of this article. Artificial intelligence-based language assistance 

was used only for limited linguistic revisions, such as grammar and spelling corrections of text written by the author. 

All concepts, methodologies, experiments, analyses, and interpretations presented in this article were developed 

solely by the author. 

Data Availability: The data that support the findings of this study are available from the corresponding author. 

REFERENCES 
Aguilar-Ruiz, J. S. (2024). Class-specific feature selection for classification explainability. arXiv:2411.01204.  

https://doi.org/10.48550/arXiv.2411.01204  

https://aip.vse.cz/
https://doi.org/10.48550/arXiv.2411.01204


Acta Informatica Pragensia  Volume 15, 2026 

https://doi.org/10.18267/j.aip.295  171 https://aip.vse.cz 

Alangari, N., Menai, M. E. B., Mathkour, H., & Almosallam, I. (2023). Intrinsically interpretable gaussian mixture model. Information, 14(3), 
164. https://doi.org/10.3390/info14030164  

Cai, W., Jiang, J., Wang, F., Tang, J., Kim, S., & Huang, J. (2025). A survey on mixture of experts in large language models. IEEE Transactions on 
Knowledge and Data Engineering, 37(7), 3896–3915. https://doi.org/10.1109/TKDE.2025.3554028  

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., & Reis, J. (2009). Modeling wine preferences by data mining from physicochemical properties. 
Decision support systems, 47(4), 547–553.  https://doi.org/10.1016/j.dss.2009.05.016  

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of machine learning research, 7, 1–30.  
Domingos, P. (2012). A few useful things to know about machine learning. Communications of the ACM, 55(10), 78–87. 

https://doi.org/10.1145/2347736.2347755  
Dua, D. & Graff, C. (2019). UCI machine learning repository. https://archive.ics.uci.edu/ml/index.php  
Fedus, W., Zoph, B., & Shazeer, N. (2022). Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. Journal 

of Machine Learning Research, 23, 1–39.  
Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification 

problems?. Journal of machine learning research, 15(1), 3133–3181.  
Friedberg, R., Tibshirani, J., Athey, S., & Wager, S. (2020). Local linear forests. Journal of Computational and Graphical Statistics, 30(2), 503–

517. https://doi.org/10.1080/10618600.2020.1831930  
Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep learning on typical tabular data?. In 36th 

Conference on Neural Information Processing Systems, (pp. 507–520). NIPS. 
Hancer, E., Xue, B., & Zhang, M. (2020). A survey on feature selection approaches for clustering. Artificial intelligence review, 53(6), 4519–

4545. https://doi.org/10.1007/s10462-019-09800-w  
Hastie, T., Tibshirani, R. & Friedman, J. (2009). The Element of Statistical Learning: Data Mining, Inference, and Prediction. Springer. 

https://doi.org/10.1007/978-0-387-84858-7  
Hu, L., Jiang, M., Dong, J., Liu, X., & He, Z. (2024). Interpretable clustering: A survey. arXiv:2409.00743. 

https://doi.org/10.48550/arXiv.2409.00743  
Ismail, A. A., Arik, S. Ö., Yoon, J., Taly, A., Feizi, S., & Pfister, T. (2022). Interpretable mixture of experts. arXiv:2206.02107. 

https://doi.org/10.48550/arXiv.2206.02107  
Kalangi, P. K., Rachuri, G., Saleem, D., Chandana, P., Goud, B. P., & Kumar, S. V. (2025). A Hybrid Approach to Accurate Breast Cancer 

Prediction Integrating: Explainable AI and Machine Learning. In 2025 5th International Conference on Intelligent Technologies (CONIT) 
(pp. 1–7). IEEE. https://doi.org/10.1109/CONIT65521.2025.11167733  

Kaur, I., & Ahmad, T. (2024). A cluster-based ensemble approach for congenital heart disease prediction. Computer Methods and Programs in 
Biomedicine, 243, 107922. https://doi.org/10.1016/j.cmpb.2023.107922  

Kheradpisheh, S. R., Sharifizadeh, F., Nowzari-Dalini, A., Ganjtabesh, M., & Ebrahimpour, R. (2014). Mixture of feature specified experts. 
Information Fusion, 20, 242–251. https://doi.org/10.1016/j.inffus.2014.02.006  

Kim, B., Shah, J. A., & Doshi-Velez, F. (2015). Mind the gap: A generative approach to interpretable feature selection and extraction. In 28th 
Conference on Neural Information Processing Systems, (pp. 1–9). NIPS. 

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the Fourteenth 
International Joint Conference on Artificial Intelligence (II), (pp. 1137–1145). IJCAI. 

Kuang, Y. C., & Ooi, M. (2024). Performance Characterization of Clusterwise Linear Regression Algorithms. Wiley Interdisciplinary Reviews: 
Computational Statistics, 16(5), e70004. https://doi.org/10.1002/wics.70004  

Law, M. H., Figueiredo, M. A., & Jain, A. K. (2004). Simultaneous feature selection and clustering using mixture models. IEEE transactions on 
pattern analysis and machine intelligence, 26(9), 1154–1166.  https://doi.org/10.1109/TPAMI.2004.71  

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y., ... & Chen, Z. (2020). Gshard: Scaling giant models with conditional computation 
and automatic sharding. arXiv:2006.16668. https://doi.org/10.48550/arXiv.2006.16668  

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., ... & Lee, S. I. (2020). From local explanations to global 
understanding with explainable AI for trees. Nature machine intelligence, 2(1), 56–67. https://doi.org/10.1038/s42256-019-0138-9  

Luque, A., Mazzoleni, M., Zamora-Polo, F., Ferramosca, A., Lama, J. R., & Previdi, F. (2023). Determining the importance of physicochemical 
properties in the perceived quality of wines. IEEE Access, 11, 115430–115449. https://doi.org/10.1109/access.2023.3325676  

Ma, X. A., & Lu, K. (2024). Class-specific feature selection using neighborhood mutual information with relevance-redundancy weight. 
Knowledge-Based Systems, 300, 112212.  https://doi.org/10.1016/j.knosys.2024.112212  

MacQueen, J. (1965). Some methods for classification and analysis of multivariate observations [C]. In Proc. of Berkeley Symposium on 
Mathematical Statistics & Probability, (pp. 281–297). University of California Press. 

McElfresh, D., Khandagale, S., Valverde, J., Prasad C, V., Ramakrishnan, G., Goldblum, M., & White, C. (2023). When do neural nets 
outperform boosted trees on tabular data?. In Proceedings of the 37th International Conference on Neural Information Processing 
System, (pp. 76336–76369). NIPS. 

McInnes, L., Healy, J., & Astels, S. (2017). hdbscan: Hierarchical density based clustering. The Journal of Open Source Software, 2(11), 205. 
https://doi.org/10.21105/joss.00205  

Molnar, C. (2020). Interpretable machine learning. https://christophm.github.io/interpretable-ml-book/  
Oyamada, M., & Nakadai, S. (2017). Relational mixture of experts: Explainable demographics prediction with behavioral data. In 2017 IEEE 

International Conference on Data Mining (ICDM) (pp. 357–366). IEEE. https://doi.org/10.1109/ICDM.2017.45  

https://aip.vse.cz/
https://doi.org/10.3390/info14030164
https://doi.org/10.1109/TKDE.2025.3554028
https://doi.org/10.1016/j.dss.2009.05.016
https://doi.org/10.1145/2347736.2347755
https://archive.ics.uci.edu/ml/index.php
https://doi.org/10.1080/10618600.2020.1831930
https://doi.org/10.1007/s10462-019-09800-w
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.48550/arXiv.2409.00743
https://doi.org/10.48550/arXiv.2206.02107
https://doi.org/10.1109/CONIT65521.2025.11167733
https://doi.org/10.1016/j.cmpb.2023.107922
https://doi.org/10.1016/j.inffus.2014.02.006
https://doi.org/10.1002/wics.70004
https://doi.org/10.1109/TPAMI.2004.71
https://doi.org/10.48550/arXiv.2006.16668
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1109/access.2023.3325676
https://doi.org/10.1016/j.knosys.2024.112212
https://doi.org/10.21105/joss.00205
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1109/ICDM.2017.45


Acta Informatica Pragensia  Volume 15, 2026 

https://doi.org/10.18267/j.aip.295  172 https://aip.vse.cz 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in 
Python. Journal of machine learning research, 12, 2825–2830.  

Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-
redundancy. IEEE Transactions on pattern analysis and machine intelligence, 27(8), 1226–1238. 
https://doi.org/10.1109/TPAMI.2005.159  

Peralta, B., & Soto, A. (2014). Embedded local feature selection within mixture of experts. Information Sciences, 269, 176–187.   
https://doi.org/10.1016/j.ins.2014.01.008  

Peterson, L. E. (2009). K-nearest neighbor. Scholarpedia, 4(2), 1883. https://doi.org/10.4249/scholarpedia.1883  
Ross, B. C. (2014). Mutual information between discrete and continuous data sets. PloS one, 9(2), e87357. 

https://doi.org/10.1371/journal.pone.0087357  
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature 

machine intelligence, 1(5), 206–215. https://doi.org/10.1038/s42256-019-0048-x  
Salehi, A. R., & Khedmati, M. (2024). A cluster-based SMOTE both-sampling (CSBBoost) ensemble algorithm for classifying imbalanced data. 

Scientific Reports, 14(1), 5152.  https://doi.org/10.1038/s41598-024-55598-1  
Scikit-learn developers. (2025). Digits dataset — scikit-learn documentation. https://scikit-

learn.org/stable/modules/generated/sklearn.datasets.load_digits.html  
Shi, Y., Zeng, H., Gong, X., Cai, L., Xiang, W., Lin, Q., Zheng, H., & Zhu, J. (2025). Consensus Guided Multi-View Unsupervised Feature 

Selection with Hybrid Regularization. Applied Sciences, 15(12), 6884. https://doi.org/10.3390/app15126884  
Shwartz-Ziv, R., & Armon, A. (2022). Tabular data: Deep learning is not all you need. Information Fusion, 81, 84–90. 

https://doi.org/10.1016/j.inffus.2021.11.011  
Yeganejou, M., & Dick, S. (2019). Improved deep fuzzy clustering for accurate and interpretable classifiers. In 2019 IEEE international 

conference on fuzzy systems (FUZZ-IEEE) (pp. 1–7). IEEE. https://doi.org/10.1109/FUZZ-IEEE.2019.8858809  
Yilmaz Eroglu, D., & Guleryuz, E. (2025). Enhanced Three-Stage Cluster-Then-Classify Method (ETSCCM). Metals, 15(3), 318. 

https://doi.org/10.3390/met15030318  
Yuksel, S. E., Wilson, J. N., & Gader, P. D. (2012). Twenty years of mixture of experts. IEEE transactions on neural networks and learning 

systems, 23(8), 1177–1193. https://doi.org/10.1109/TNNLS.2012.2200299  
 

Acta Informatica Pragensia is published by the Prague University of Economics and Business, Czech Republic │ eISSN: 1805-4951 

 

https://aip.vse.cz/
https://doi.org/10.1109/TPAMI.2005.159
https://doi.org/10.1016/j.ins.2014.01.008
https://doi.org/10.4249/scholarpedia.1883
https://doi.org/10.1371/journal.pone.0087357
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s41598-024-55598-1
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html
https://doi.org/10.3390/app15126884
https://doi.org/10.1016/j.inffus.2021.11.011
https://doi.org/10.1109/FUZZ-IEEE.2019.8858809
https://doi.org/10.3390/met15030318
https://doi.org/10.1109/TNNLS.2012.2200299

