Acta Informatica Pragensia 2024, 13(2), 213-233 | DOI: 10.18267/j.aip.2452265
Deep Neural Network-Based Model for Breast Cancer Lesion Diagnosis in Mammography Images
- 1 Laboratoire de Recherche en Informatique, Badji Mokhtar Annaba University, Annaba, Algeria
- 2 Département d'informatique, Université Toulouse III – Paul Sabatier, Toulouse, France
Deep learning has made identifying breast cancer lesions in mammography images an easy task in modern medicine, which has helped improve the diagnosis efficiency, sensitivity and accuracy by precisely identifying breast cancer from mammography images, contributing to timely detection and maintaining consistent performance. This paper presents the steps and strategies to develop a deep learning (DL) model to detect lesions in mammography images, based on U-Net architecture for precise segmentation, which has been developed for biomedical image segmentation, and incorporating ResNet34 as its encoder to extract features. Next, we employ the FastAI library, which simplifies and accelerates the model training tasks. For the data, studies and available resources lead us to INbreast, which is built with full-field digital mammograms contrary to other digitized mammograms. We obtained a high accuracy of 98% on the INbreast database, which is very challenging compared to state-of-the-art results.
Keywords: Deep learning; Mammography; Lesion detection; U-Net; ResNet34.
Received: February 15, 2024; Revised: June 26, 2024; Accepted: June 29, 2024; Prepublished online: July 22, 2024; Published: August 4, 2024 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Abedalla, A., Abdullah, M., Al-Ayyoub, M., & Benkhelifa, E. (2020). 2ST-UNet: 2-Stage Training Model using U-Net for Pneumothorax Segmentation in Chest X-Rays. In 2020 International Joint Conference on Neural Networks (IJCNN). IEEE. https://doi.org/10.1109/ijcnn48605.2020.9207268
Go to original source...
- Akhund, J., Memon, S., Qamber, J., Rashid, I., Elhaj, A., & Alshammari, A. (2023). Ultrasound vs. Mammography in Evaluating Suspicious Breast Lesions. Biological & Clinical Sciences Research Journal, 2023(1), 288. https://doi.org/10.54112/bcsrj.v2023i1.288
Go to original source...
- Al-Antari, M. A., Al-Masni, M. A., Choi, M., Han, S., & Kim, T. (2018). A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. International Journal of Medical Informatics, 117, 44-54. https://doi.org/10.1016/j.ijmedinf.2018.06.003
Go to original source...
- Al-Masni, M. A., Al-Antari, M. A., Park, J., Gi, G., Kim, T., Rivera, P., Valarezo, E., Choi, M., Han, S., & Kim, T. (2018). Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Computer Methods and Programs in Biomedicine, 157, 85-94. https://doi.org/10.1016/j.cmpb.2018.01.017
Go to original source...
- Bal-Ghaoui, M., Alaoui, M. H. E. Y., Jilbab, A., & Bourouhou, A. (2023). U-Net transfer learning backbones for lesions segmentation in breast ultrasound images. International Journal of Electrical and Computer Engineering, 13(5), 5747-5754. https://doi.org/10.11591/ijece.v13i5.pp5747-5754
Go to original source...
- Biyyala, V. (2023). Lung Image Segmentation: Custom U-Net with ResNet Encoder Architecture. Preprint on ResearchGate. https://doi.org/10.13140/RG.2.2.20038.04162
Go to original source...
- Ciresan, D., Giusti, A., Gambardella, L., & Schmidhuber, J. (2012). Deep neural networks segment neuronal membranes in electron microscopy images. In Advances in Neural Information Processing Systems 25 (NIPS 2012), (pp. 1-9). NISP.
Go to original source...
- De Moor, T., Rodriguez-Ruiz, A., Mérida, A. G., Mann, R., & Teuwen, J. (2018). Automated soft tissue lesion detection and segmentation in digital mammography using a u-net deep learning network. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1802.06865
Go to original source...
- Dhungel, N., Carneiro, G., & Bradley, A. P. (2017). Fully automated classification of mammograms using deep residual neural networks. In 14th International Symposium on Biomedical Imaging (ISBI 2017), (pp. 310-314). IEEE. https://doi.org/10.1109/isbi.2017.7950526
Go to original source...
- Dominguez, A. R., Puga, H., Rodriguez, M. O., & Gasca, I. G. (2020). CAD of Breast Cancer: A Decade-Long Review of Techniques for Mammography Analysis. Research in Computing Science 149(5), 115-124.
- Escorcia-Gutierrez, J., Mansour, R. F., Beleno, K., Jimenez-Cabas, J., Perez, M., Madera, N., & Velasquez, K. (2022). Automated Deep learning empowered breast cancer diagnosis using biomedical mammogram images. Computers, Materials & Continua, 71(3), 4221-4235. https://doi.org/10.32604/cmc.2022.022322
Go to original source...
- Fajrianti, E. D., Pratama, A. A., Nasyir, J. A., Rasyid, A., Winarno, I., & Sukaridhoto, S. (2022). High-Performance Computing on Agriculture: Analysis of corn leaf disease. International Journal on Informatics Visualization, 6(2), 411-417. https://doi.org/10.30630/joiv.6.2.793
Go to original source...
- Hadad, O., Bakalo, R., Ben-Ari, R., Hashoul, S., & Amit, G. (2017). Classification of breast lesions using cross-modal deep learning. In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), (pp. 109-112). IEEE. https://doi.org/10.1109/isbi.2017.7950480
Go to original source...
- He, K., & Sun, J. (2015). Convolutional neural networks at constrained time cost. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5353-5360). IEEE. https://doi.org/10.1109/cvpr.2015.7299173
Go to original source...
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 770-778). IEEE. https://doi.org/10.1109/cvpr.2016.90
Go to original source...
- Hubens, N., Mancas, M., Gosselin, B., Preda, M., & Zaharia, T. (2022). FasterAI: a lightweight library for neural networks compression. Electronics, 11(22), 3789. https://doi.org/10.3390/electronics11223789
Go to original source...
- Iacoviello, L., Bonaccio, M., De Gaetano, G., & Donati, M. B. (2021). Epidemiology of breast cancer, a paradigm of the "common soil" hypothesis. Seminars in Cancer Biology, 72, 4-10. https://doi.org/10.1016/j.semcancer.2020.02.010
Go to original source...
- Jiang, X., Hu, Z., Wang, S., & Zhang, Y. (2023). Deep Learning for Medical Image-Based Cancer diagnosis. Cancers, 15(14), 3608. https://doi.org/10.3390/cancers15143608
Go to original source...
- Kooi, T., Litjens, G., Van Ginneken, B., Gubern-Mérida, A., Sánchez, C. I., Mann, R., Heeten, A. D., & Karssemeijer, N. (2017). Large scale deep learning for computer aided detection of mammographic lesions. Medical Image Analysis, 35, 303-312. https://doi.org/10.1016/j.media.2016.07.007
Go to original source...
- Liu, H., Chen, Y., Zhang, Y., Wang, L., Luo, R., Wu, H., Wu, C., Zhang, H., Tan, W., Yin, H., & Wang, D. (2021). A deep learning model integrating mammography and clinical factors facilitates the malignancy prediction of BI-RADS 4 microcalcifications in breast cancer screening. European Radiology, 31(8), 5902-5912. https://doi.org/10.1007/s00330-020-07659-y
Go to original source...
- Lotter, W., Sorensen, G., & Cox, D. (2017). A multi-scale CNN and curriculum learning strategy for mammogram classification. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (pp. 169-177). Springer. https://doi.org/10.1007/978-3-319-67558-9_20
Go to original source...
- Moreira, I. C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M. J., & Cardoso, J. S. (2012). INbreast. Academic Radiology, 19(2), 236-248. https://doi.org/10.1016/j.acra.2011.09.014
Go to original source...
- Moshina, N., Bjørnson, E., Holen, Å., Larsen, M., Hansestad, B., Tøsdal, L., & Hofvind, S. (2022). Standardised or individualised X-ray tube angle for mediolateral oblique projection in digital mammography? Radiography, 28(3), 772-778. https://doi.org/10.1016/j.radi.2022.03.002
Go to original source...
- Piva, I. C., Gonçalves, G., de Melo, J. D. A. C., & Huhn, A. (2023). The implementation of clinical quality control in mammography exams: Challenges for professionals and managers. Seven Editora. https://doi.org/10.56238/devopinterscie-279
Go to original source...
- Platania, R., Shams, S., Yang, S., Zhang, J., Lee, K., & Park, S. J. (2017). Automated Breast Cancer Diagnosis Using Deep Learning and Region of Interest Detection (BC-DROID). In Proceedings of the 8th ACM international conference on bioinformatic (pp. 536-543). ACM. https://doi.org/10.1145/3107411.3107484
Go to original source...
- Ribli, D., Horváth, A., Unger, Z., Pollner, P., & Csabai, I. (2018). Detecting and classifying lesions in mammograms with Deep Learning. Scientific Reports, 8(1), 4165. https://doi.org/10.1038/s41598-018-22437-z
Go to original source...
- Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015 (pp. 234-241). Springer. https://doi.org/10.1007/978-3-319-24574-4_28
Go to original source...
- Salcedo, E., Jaber, M., & Carrión, J. R. (2022). A novel road maintenance prioritisation system based on computer vision and crowdsourced reporting. Journal of Sensor and Actuator Networks, 11(1), 15. https://doi.org/10.3390/jsan11010015
Go to original source...
- Schaudt, D., Von Schwerin, R., Hafner, A., Riedel, P., Späte, C., Reichert, M., Hinteregger, A., Beer, M., & Kloth, C. (2023). Leveraging human expert image annotations to improve pneumonia differentiation through human knowledge distillation. Scientific Reports, 13(1), 9203. https://doi.org/10.1038/s41598-023-36148-7
Go to original source...
- Shen, L., Margolies, L. R., Rothstein, J. H., Fluder, E., McBride, R., & Sieh, W. (2019). Deep learning to improve breast cancer detection on screening mammography. Scientific Reports, 9(1), 12495. https://doi.org/10.1038/s41598-019-48995-4
Go to original source...
- Silalahi, A. R. J. (2021). Breast cancer lesion detection and classification in mammograms using deep neural. In IOP Conference Series: Materials Science and Engineering (Volume 1115). IOP Publishing. https://doi.org/10.1088/1757-899X/1115/1/012018
Go to original source...
- Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. In International Conference on Learning Representations 2015. ICLR. https://doi.org/10.48550/arXiv.1409.1556
Go to original source...
- Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015). Highway networks. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1505.00387
Go to original source...
- Tsai, K., Chou, M., Li, H., Liu, S., Hsu, J., Yeh, W., Hung, C., Yeh, C., & Hwang, S. (2022). A High-Performance Deep Neural Network Model for BI-RADS classification of screening mammography. Sensors, 22(3), 1160. https://doi.org/10.3390/s22031160
Go to original source...
- Yojana, K., & Rani, L. T. (2023). OCT layer segmentation using U-NET semantic segmentation and RESNET34 encoder-decoder. Measurement: Sensors, 29, 100817. https://doi.org/10.1016/j.measen.2023.100817
Go to original source...
- Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Computer Vision - ECCV 2014, (pp. 818-833). Springer. https://doi.org/10.1007/978-3-319-10590-1_53
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.