Acta Informatica Pragensia 2012, 1(1), 22-31 | DOI: 10.18267/j.aip.22846

Inteligentný systém na analýzu hustoty dopravnej premávky z videozáznamu

Martin Paralič
Katedra telekomunikácií a Multimédií, Elektrotechnická fakulta, Žilinská Univerzita v Žiline, Univerzitná 1, Žilina 010 26, Slovensko

Tento článok popisuje novú metódu pre monitorovací systém dopravy, s detekciou pohyblivých objektov a stavovým strojom pre meranie hustoty premávky. Navrhnutá metóda je odolná voči svetelným podmienkam a voči otrasom spôsobených vetrom. Na potlačenie týchto nepriaznivých vplyvov sa používa metóda filtrovania pomocou Gaussových pyramíd. Systém umožňuje monitorovať viacero jazdných pruhov a rôzne križovatky v oboch jazdných smeroch.

Keywords: monitorovanie premávky, stavový stroj, Gaussova pyramída

The Intelligent System for the Traffic Density Analysis

This paper presents the novel method for video-based traffic monitoring system, with a moving object detection and state machine for the traffic density measurement. Proposed method is robust to a different lightning conditions and tremors caused by the wind. The Gaussian pyramids are used for the elimination of such effects. The multiple road lines and crossroads are monitored by the intelligent state machine in a both directions.

Keywords: Traffic monitoring, State machine, Gaussian pyramid

Received: October 9, 2012; Revised: December 26, 2012; Accepted: December 29, 2012; Published: December 29, 2012  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Paralič, M. (2012). The Intelligent System for the Traffic Density Analysis. Acta Informatica Pragensia1(1), 22-31. doi: 10.18267/j.aip.2
Download citation

References

  1. CUCCHIARA R., PICCARDI M., MELLO P. Image Analysis and Rule-Based Reasoning for a traffic Monitoring System, IEEE Transaction on Intelligent Transportation systems, vol. 1., June 2000, pp. 119-130. Go to original source...
  2. FATHY M., SIYAL M.Y. Image Processing Techniques For Real-Time Qualitative Road Traffic Data Analysis. Real-Time Imaging, vol. 5, August 1999, pp. 271-278. Go to original source...
  3. HA D.M., LEE J.M., KIM Y.-D. Neural-edge-based vehicle detection and traffic parameter extraction. Image and Vision computing, vol. 22, September 2004, pp. 899-907. Go to original source...
  4. KIRATIRATANAPRUK K., DUBEY P., SIDDHICHAI S. A gradient based foreground detection technique for object tracking in a traffic monitoring system. IEEE Conference on Advanced Video and Signal Based Surveillance, September 2005, pp. 377-381. Go to original source...
  5. LAPARMONPINYO P., CHITSOBHUK O. A video-based traffic monitoring system based on gradient-edge and detection window techniques. The 2nd International Conference on Computer and Automation Engineering (ICCAE), 2010. Go to original source...
  6. ZHOU J., GAO D., ZHANG D. Moving Vehicle Detection for Automatic Traffic Monitoring, IEEE Transaction on Vehicular Technology, vol. 56, January 2007, pp. 51-59. Go to original source...
  7. COIFMAN B. Vehicle re-identification and travel time measurement in real-time on freeways using existing loop detector infrastructure. Transportation Research Record 1643, Transportation Research Board, 1998, pp. 181-191. Go to original source...
  8. STERN S. Traffic Flow Data Acquisition Using Magnetic-Loop Vehicle Detectors, Highway Research Record Number 154, Highway Research Board, National Research Council, 1965, pp. 38-52.
  9. OLKKONEN H., PESOLA P. Gaussian Pyramid Wavelet Transform for Multi-resolution Analysis of Images, Graphical Models and Image Processing, Vol. 58, Issue 4, July 1996, pp. 394-398. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.