Acta Informatica Pragensia 2014, 3(1), 89-103 | DOI: 10.18267/j.aip.372879
Model pre sledovanie objektu s prediktívnym riadením zdrojov streamingu v multikamerových systémoch
- Laboratórium počítačových sieti, Katedra počítačov a informatiky, Fakulta elektrotechniky a informatiky, Technická univerzita v Košiciach, Letná 9, 042 00 Košice, Slovenská republika
Práca sa zaoberá analýzou, porovnaním a návrhom prepojenia streamingových, detekčných a sledovacích technológií v prostredí multikamerových systémov. Cieľom je návrh prediktívneho sledovacieho systému, ktorý v reálnom čase sleduje a trasuje objekt v záberoch z viacerých kamier a realizuje streaming videa práve z jedného zdroja, v ktorom je objekt najlepšie zobrazený. Na ohodnotenie jednotlivých zdrojov systému bola navrhnutá metrika hodnotenia založená na aktuálnej polohe, veľkosti a miere spoľahlivosti detekcie sledovaného objektu v zábere. V práci boli navrhnuté mechanizmy a spôsoby predikcie hodnotenia jednotlivých zdrojov, predikcie nasledujúceho vysielaného zdroja a spôsoby riadenia streamingu.
Keywords: Video streaming, Sledovanie objektu, Počítačové videnie, Multikamerové systémy, Predikcia
Object Tracking Model with Predictive Control of Streaming Sources in Multicameras Systems
This work deals with the analysis, comparison and design of interconnection between streaming, detection and tracking technologies in the multi-camera environment. The goal is design of predictive tracking system with ability to track object in real time across multiple cameras and also with ability to stream video from one source with the best display of object. There was designed a metric for rating each source of system, which is based on current position, size or detection reliability of tracked object in the scene. It was also designed mechanisms and methods for prediction of video source rating, for prediction next streamed source and methods for stream control.
Keywords: Computer vision, Multicameras systems, Prediction methods for stream control
Received: March 8, 2014; Revised: June 13, 2014; Accepted: June 16, 2014; Published: June 20, 2014 Show citation
References
- Adam A., Rivlin E., Shimshoni I. (2006). Robust fragments-based tracking using the integral histogram. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 798-805).
Go to original source...
- Akhshabi S., Begen A., Dovrolis C. (2011). An Experimental Evaluation of Rate-Adaptation Algorithms in Adaptive Streaming over http. In MMSys'11, USA.
Go to original source...
- Babenko B., Yang M., Belongie S. (2009). Visual tracking with online multiple instance learning. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 983-990).
Go to original source...
- Bradski G., Kaehler A. (2008). Learning OpenCV. Sebastopol: O'Reilly.
- Begen A., Akgul T., Baugher M. (2011). Watching Video over the Web. Part I, Streaming Protocols, Cisco.
- Collins R., Liu T., Leordeanu M. (2005) Online selection of discriminative tracking features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1631-1643.
Go to original source...
- Cuevas E., Zaldivar D., Rojas R. (2005). Kalman filter for vision tracking. FUDOCS, Technical Report B 05-12.
- Funk N. (2003). A Study of the Kalman Filter applied to Visual Tracking. Project for CMPUT 652.
- Gong, C. et al. (2012). The extended co-learning framework for robust object tracking. In Proceedings - IEEE International Conference on Multimedia and Expo (pp. 398-403).
Go to original source...
- Grabner H., Bischof H. (2006). On-line boosting and vision. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 260-267).
Go to original source...
- Grabner H., Leistner C., Bischof H. (2008). Semi-supervised on-line boosting for robust tracking. In Proceedings of European Conference on Computer Vision (pp. 234-247).
Go to original source...
- Gravdal E. (2012). Augumented Reality and Object Tracking for Mobile Devices. Trondheim: NTNU.
- Jin, J. et al. (2013). Tracking with deep neural networks. In 47th Annual Conference on Information Sciences and Systems, CISS 2013.
- Kalal Z., Matas J., Mikolajczyk K. (2010). P-N learning: Bootstrapping binary classifiers by structural constraints. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 49-56).
Go to original source...
- Kalal, Z., Mikolajczyk, K., Matas, J. (2012). Tracking-Learning-Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34 (7), 1409-1422.
Go to original source...
- Kwon J., Lee K. (2010). Visual tracking decomposition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 1269-1276).
Go to original source...
- Mei X., Ling H. (2009). Robust visual tracking using l1 minimization. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1436-1443).
- Mizerák T. (2010). Protokoly pro komunikaci klientu na platforme Flash. Brno: MUNI.
- O'Driscoll G. (2008). Next generation IPTV services and Technologies. Hoboken: Wiley.
Go to original source...
- Qualcomm Inc. (2012). FastCV Library 1.1.1. Retrieved from https://developer.qualcomm.com/docs/fastcv/api/index.html.
Go to original source...
- Ross D. et al. (2008). Incremental learning for robust visual tracking. International Journal of Computer Vision 77(1), 125-141.
Go to original source...
- Schrader, S. et al. (2012). A distributed online learning tracking algorithm. In 12th International Conference on Control, Automation, Robotics and Vision (pp. 1083-1088).
Go to original source...
- Stalder S., Grabner H., Van Gool A. (2009). Beyond semi-supervised tracking: Tracking should be as simple as detection, but not simpler than recognition. In Proceedings of IEEE Workshop on Online Learning for Computer Vision.
Go to original source...
- Wang Q. et al. (2011). An Experimental Comparison of Online Object Tracking Algorithms. In Proceedings of SPIE: Image and Signal Processing Track.
Go to original source...
- Zhang, T., Gomez, H.M. (2013). Technology survey on video face tracking. In Proceedings of SPIE - The International Society for Optical Engineering.
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.