Acta Informatica Pragensia 2014, 3(1), 104-112 | DOI: 10.18267/j.aip.3811255

Approach to Hand Tracking and Gesture Recognition Based on Depth-Sensing Cameras and EMG Monitoring

Ondrej Kainz, František Jakab
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Košice, Letná 9, 042 00 Košice, Slovakia

In this paper, a new approach for hand tracking and gesture recognition based on the Leap Motion device and surface electromyography (SEMG) is presented. The system is about to process the depth image information and the electrical activity produced by skeletal muscles on forearm. The purpose of such combination is enhancement in the gesture recognition rate. As a first we analyse the conventional approaches toward hand tracking and gesture recognition and present the results of various researches. Successive topic gives brief overview of depth-sensing cameras with focus on Leap motion device where we test its accuracy of fingers recognition. The vision-SEMG-based system is to be potentially applicable to many areas of human computer interaction.

Keywords: Depth-sensing camera, electromyography, gesture recognition, hand tracking, Leap Motion

Received: March 30, 2014; Revised: May 28, 2014; Accepted: June 10, 2014; Published: June 20, 2014  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kainz, O., & Jakab, F. (2014). Approach to Hand Tracking and Gesture Recognition Based on Depth-Sensing Cameras and EMG Monitoring. Acta Informatica Pragensia3(1), 104-112. doi: 10.18267/j.aip.38
Download citation

References

  1. Changa, Y.-J., Chenb, S.-F., Huang, J.-D. (2011). A Kinect-based system for physical rehabilitation: A pilot study for young adults with motor disabilities. Research in Developmental Disabilities, 32(6), 2566-2570. doi: j.ridd.2011.07.002 Go to original source...
  2. Dominio, F., Donadeo, M., Zanuttigh, P. (2013). Combining multiple depth-based descriptors for hand gesture recognition. Pattern Recognition Letters, in press, doi: j.patrec.2013.10.010 Go to original source...
  3. Gaoxiang, O., Xiangyang, Z., Zhaojie, J., Honghai, L. (2014). Dynamical Characteristics of Surface EMG Signals of Hand Grasps via Recurrence Plot. IEEE Journal of Biomedical and Health Informatics, 18(1), 257-265. doi: 10.1109/JBHI.2013.2261311. Go to original source...
  4. Garcia M.A. C.,Vieira T.M. M. (2011) Surface electromyography: Why, when and how to use it. Revista Andaluza de Medicina del Deporte, 10(6), 17-28
  5. González-Ortega, D., Díaz-Pernas, F.J., Martínez-Zarzuela, M., Antón-Rodríguez, M. (2014). A Kinect-based system for cognitive rehabilitation exercises monitoring. Computer Methods and Programs in Biomedicine, 113(2), 620-631. doi: j.cmpb.2013.10.014 Go to original source...
  6. Haggag, H., Hossny, M., Filippidis, D., Creighton, D., Nahavandi, S., Puri, V. (2013). Measuring depth accuracy in RGBD cameras. 7th International Conference on Signal Processing and Communication Systems (pp. 1-7). doi: 10.1109/ICSPCS.2013.6723971 Go to original source...
  7. Hernández-Lópeza, J.-J., Quintanilla-Olveraa, A.-L., López-Ramíreza, J.-L., Rangel-Butandaa, F.-J., Ibarra-Manzanoa, M.-A., Almanza-Ojedab, D.-L. (2012). Detecting objects using color and depth segmentation with Kinect sensor. Procedia Technology, 3, 196-204. doi: j.protcy.2012.03.021 Go to original source...
  8. Jana, A. (2012). Kinect for Windows SDK Programming Guide. Birmingham: Packt Publishing Ltd.
  9. Jiang, Y., Liu, Y., Matsumaru, T. (2012). Applying infrared radiation image sensor to step-on interface: Touched point detection and tracking, IEEE/SICE International Symposium on System Integration (pp. 752-757). doi: 10.1109/SII.2012.6427302 Go to original source...
  10. Katirii B. (2007) Electromyography in Clinical Practice: A Case Study Approach. Philadelphia: Mosby Elsevier.
  11. Kumar S., Mital A. (1996). Electromyography in Ergonomics. London: T J Press.
  12. Luo Z., Wang F., Ma W. (2006). Pattern Classification of Surface Electromyography Based on AR Model and High-order Neural Network. Proceedings of the 2nd IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (pp. 1-6), doi: 10.1109/MESA.2006.296982 Go to original source...
  13. Mazumdar, D., Talukdar, A.K. & Sarma, K.K. (2013). Gloved and free hand tracking based hand gesture recognition. 1st International Conference on Emerging Trends and Applications in Computer Science (pp. 197-202). doi: 10.1109/ICETACS.2013.6691422 Go to original source...
  14. Mehrez, B., Jemni, M. (2012). 3D Motion Trajectory Analysis Approach to Improve Sign Language 3D-based Content Recognition. Proceedings of the International Neural Network Society Winter Conference (13 vol., pp. 133-143). doi: 10.1016/j.procs.2012.09.122 Go to original source...
  15. Pavlovic, V.I., Sharma, R., & Huang, T.S. (1997). Visual interpretation of hand gestures for human-computer interaction: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 677 - 695., doi: 10.1109/34.598226 Go to original source...
  16. Sabir, K., Stolte, C., Tabor, B., O'Donoghue, S.I. (2013). The Molecular Control Toolkit: Controlling 3D molecular graphics via gesture and voice. IEEE Symposium on Biological Data Visualization (pp. 49-56), doi: 10.1109/BioVis.2013.6664346 Go to original source...
  17. Sun, C., Zhang, T., Bao, B.-K., Xu, C., Mei, T. (2013). Discriminative exemplar coding for sign language recognition with Kinect. IEEE Transactions on Cybernetics, 43(5), 1418-1428. doi: 10.1109/TCYB.2013.2265337 Go to original source...
  18. Verma, H.V., Aggarwal, E., Chandra, S. (2013). Gesture recognition using kinect for sign language translation. IEEE Second International Conference on Image Information Processing (pp. 96-100). doi: 10.1109/ICIIP.2013.6707563 Go to original source...
  19. Zhaojie, J., Honghai L. (2014). Human Hand Motion Analysis With Multisensory Information. IEEE/ASME Transactions on Mechatronics, 19(2), 456-466. doi: 10.1109/TMECH.2013.2240312 Go to original source...
  20. Zheng, W.-L., Zhu J.-Y., Peng Y., Lu, B.-L. (2014). EEG-Based Emotion Classification Using Deep Belief Networks. IEEE International Conference on Multimedia & Expo (ICME)
  21. Zhiyuan, L., Xiang, Ch., Qiang, L., Xu, Z., Ping, Z. (2014). A Hand Gesture Recognition Framework and Wearable Gesture-Based Interaction Prototype for Mobile Devices. IEEE Transactions on Human-Machine Systems, 44(2), 293 - 299. doi: 10.1109/THMS.2014.2302794 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.