Acta Informatica Pragensia 2014, 3(2), 204-218 | DOI: 10.18267/j.aip.496278

Rethinking the Concept of Just Noticeable Difference in Online Marketing

Viktor Vojtko
Department of Trade and Tourism, Faculty of Economics, University of South Bohemia in Ceske Budejovice, Studentska 13, 370 05 Ceske Budejovice

The main goal of this study is to answer a question whether the just noticeable difference (JND) related marketing practices could survive in the world with social media and as a part of online marketing. Although the findings are limited, they suggest that using of such practices might be much riskier than it used to be before and marketers should be aware of that and consider their using more thoroughly. It also shows that usage of the agent based modelling (ABM) can be helpful in dealing with problems like this one and can provide further insight into dynamics of processes on consumer markets where the social media play crucial role in spreading of information.

Keywords: Just Noticeable Difference, Marketing, Simulation, Agent-based Modelling, Social Media

Received: September 27, 2014; Revised: November 26, 2014; Accepted: December 6, 2014; Published: December 30, 2014  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Vojtko, V. (2014). Rethinking the Concept of Just Noticeable Difference in Online Marketing. Acta Informatica Pragensia3(2), 204-218. doi: 10.18267/j.aip.49
Download citation

References

  1. Ainsworth, J., & Ballantine, P. W. (2014). That׳s different! How consumers respond to retail website change. Journal of Retailing and Consumer Services, 21(5), 764-772. doi:10.1016/j.jretconser.2014.06.003 Go to original source...
  2. Anderson, R. M., & May, R. M. (1992). Infectious Diseases of Humans: Dynamics and Control (Reprint edition.). Oxford University Press.
  3. Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509-512. doi:10.1126/science.286.5439.509 Go to original source...
  4. Çakir, M., & Balagtas, J. V. (2014). Consumer Response to Package Downsizing: Evidence from the Chicago Ice Cream Market. Journal of Retailing, 90(1), 1-12. doi:10.1016/j.jretai.2013.06.002 Go to original source...
  5. Delre, S. A., Jager, W., & Janssen, M. A. (2007). Diffusion dynamics in small-world networks with heterogeneous consumers. Computational and Mathematical Organization Theory, 13(2), 185-202. doi:10.1007/s10588-006-9007-2 Go to original source...
  6. Evans, M. M., Foxall, G., & Jamal, A. (2009). Consumer Behaviour (2nd edition.). Chichester, England ; Hoboken, NJ: Wiley.
  7. Goldenberg, J., Han, S., Lehmann, D. R., & Hong, J. W. (2009). The Role of Hubs in the Adoption Process. Journal of Marketing, 73(2), 1-13. doi:10.1509/jmkg.73.2.1 Go to original source...
  8. Han, S., Gupta, S., & Lehmann, D. R. (2001). Consumer price sensitivity and price thresholds. Journal of Retailing, 77(4), 435-456. doi:10.1016/S0022-4359(01)00057-4 Go to original source...
  9. Holme, P., & Kim, B. J. (2002). Growing scale-free networks with tunable clustering. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 65(2), 026107/1-026107/4. doi:10.1103/PhysRevE.65.026107 Go to original source...
  10. King, R. A., Racherla, P., & Bush, V. D. (2014). What We Know and Don't Know About Online Word-of-Mouth: A Review and Synthesis of the Literature. Journal of Interactive Marketing, 28(3), 167-183. doi:10.1016/j.intmar.2014.02.001 Go to original source...
  11. Kvasnička, M. (2014). Viral Video Diffusion in a Fixed Social Network: An Agent-based Model. Procedia Economics and Finance, 12, 334-342. Go to original source...
  12. Li, M., Guan, S., Wu, C., Gong, X., Li, K., Wu, J., … Lai, C.-H. (2014). From sparse to dense and from assortative to disassortative in online social networks. Scientific Reports, 4. doi:10.1038/srep04861 Go to original source...
  13. Li, M., Zou, H., Guan, S., Gong, X., Li, K., Di, Z., & Lai, C.-H. (2013). A coevolving model based on preferential triadic closure for social media networks. Scientific Reports, 3. doi:10.1038/srep02512 Go to original source...
  14. Miller, R. L. (1962). Dr. Weber and the Consumer. Journal of Marketing, 26(1), 57-61. doi:10.2307/1249633 Go to original source...
  15. Pasta, M. Q., Zaidi, F., & Rozenblat, C. (2014). Generating online social networks based on socio-demographic attributes. Journal of Complex Networks, cnu034. doi:10.1093/comnet/cnu034 Go to original source...
  16. Peres, R. (2014). The impact of network characteristics on the diffusion of innovations. Physica A: Statistical Mechanics and Its Applications, 402, 330-343. doi:10.1016/j.physa.2014.02.003 Go to original source...
  17. Rand, W., & Rust, R. T. (2011). Agent-based modeling in marketing: Guidelines for rigor. International Journal of Research in Marketing, 28(3), 181-193. doi:10.1016/j.ijresmar.2011.04.002 Go to original source...
  18. Schiffman, L. G., & Wisenblit, J. (2014). Consumer Behavior (11 edition.). Boston: Prentice Hall.
  19. Schramm, M. E., Trainor, K. J., Shanker, M., & Hu, M. Y. (2010). An agent-based diffusion model with consumer and brand agents. Decision Support Systems, 50(1), 234-242. doi:10.1016/j.dss.2010.08.004 Go to original source...
  20. Solomon, M. R. (2014). Consumer Behavior: Buying, Having, and Being (11 edition.). Boston: Prentice Hall. Go to original source...
  21. Watts, D. J., & Dodds, P. S. (2007). Influentials, Networks, and Public Opinion Formation. Journal of Consumer Research, 34(4), 441-458. doi:10.1086/518527 Go to original source...
  22. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of "small-world" networks. Nature, 393(6684), 440-442. doi:10.1038/30918 Go to original source...
  23. Wilensky, U. (1999). NetLogo. Evanston, IL: Center for Connected Learning and Computer-Based Modeling, Northwestern University. Retrieved from http://ccl.northwestern.edu/netlogo/

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.