Acta Informatica Pragensia 2016, 5(2), 144-161 | DOI: 10.18267/j.aip.912740

Identifikácia QRS komplexu v EKG zázname

Martin Paralič
Department of Telecommunications and Multimedia, Faculty of Electrical Engineering, University of Žilina, Univerzitná 1, 01026 Žilina, Slovak Republic

Podľa svetovej zdravotníckej organizácie sú skupinou najčastejších chorôb, ktoré vedú k úmrtiu človeka kardiovaskulárne ochorenia. Symptómy ochorenia sa prejavujú rôznymi spôsobmi a obvykle s výrazným oneskorením pre včasnú liečbu. V tomto článku sa venujeme vývoju mobilnej aplikácie pre meranie elektrokardiogramu. Primárnou úlohou aplikácie má byť zber biometrických dát s pomocou inteligentného oblečenia. Na oblečení budú umiestnené suché elektródy pre galvanické meranie. Oblečenie bude komunikovať s mobilnou aplikáciou cez bezdrôtové rozhranie Bluetooth. Sekundárnou úlohou je manipulácia a spracovanie dát. V tomto článku sa zameriavame práve na túto analýzu dát - detekcie QRS komplexu, P-vlny a T-vlny v EKG signáloch. Zo sekvencie viacerých QRS komplexov nasledujúcich za sebou, možno detegovať rôzne choroby a arytmie srdca. V prípade nájdených anomálií, môže aplikácia odporúčať pacientovi návštevu lekára, skôr než začne pociťovať príznaky. Aplikácie je určená len pre vedecké účely a domácu zdravotnú starostlivosť. Nie je určená na klinickú diagnózu, ktorú musí vykonať odborný lekár s profesionálnym vybavením. Aplikácia exportuje a importuje dáta do formátu kompatibilného s MIT/BIH databázou arytmií.

Keywords: Monitorovanie EKG, QRS komplex, mobilná aplikácia, spracovanie signálu, EKG signál

Identification of the QRS Complex in the ECG

The cardiovascular heart diseases are one of the most common causes of leading to death of man. Unfortunately, the symptoms vary and the most common reason for critical delays in medical treatment is lack of early warning and patient unawareness. In this paper, we present a development of the mobile application for Electrocardiogram measurements based on communication with a smart clothing using Bluetooth. The objectives of the application are a wireless data collection and analysis of ECG signal. The analysis is aimed for precise detection of QRS complex parameters plus detection of P-wave and T-wave. Measurement and evaluation of multiple PQRST parameters in a series allows detection of anomalies which leads to different heart diseases. Early warning system can help to make preventive actions to avoid severe heart disease. The recorded data are exported to format of the MIT/BIH arrhythmia database to be compatible with the professional medical software. This program will be devoted to the purposes of research and home healthcare instead of clinical diagnosis.

Keywords: ECG monitoring, QRS complex, Mobile application, Signal processing, ECG signal

Received: October 16, 2016; Revised: December 6, 2016; Accepted: December 19, 2016; Published: December 31, 2016  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Paralič, M. (2016). Identification of the QRS Complex in the ECG. Acta Informatica Pragensia5(2), 144-161. doi: 10.18267/j.aip.91
Download citation

Supplementary files

Download filej-aip-91-data.zip

File size: 27.06 MB

References

  1. Al-Ziarjawey, H. A. J., & Çankaya, I. (2015). Heart rate monitoring and PQRST detection based on graphical user interface with Matlab. International Journal of Information and Electronics Engineering, 5(4), 311-316. doi: 10.7763/IJIEE.2015.V5.550 Go to original source...
  2. Belgacem, N., & Bereksi-Reguig, F. (2011). Bluetooth portable device for ECG and patient motion monitoring. Nature & Technology,4, 19-23.Retrieved from http://www.univ-chlef.dz/revuenatec/art_04_03.pdf
  3. Borská, L. et al. (2010). Desatero EKG. 2. ed. Brno: MSD.
  4. Goldberger, A. L., et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation, 101(23), e215-e220.doi: 10.1161/01.CIR.101.23.e215 Go to original source...
  5. Goldberger, A.L., et al. (2016). PhysioNet the research resource for complex physiologic signals. WEB - ECG database and toolkit. Retrieved from https://physionet.org/
  6. Hampton, J. (2005). EKG stručně, jasně, přehledně. 6th edition. Grada: Praha., ISBN 80-247-0960-0
  7. Khan, M. G. (2003). Rapid ECG interpretation. 3rd edition. New York: Elsevier.
  8. Ligtenberg, A., & Kunt, M. (1983). A robust-digital QRS-detection algorithm for arrhythmia monitoring. Computers and Biomedical Research, 16(3), 273-286. doi: 10.1016/0010-4809(83)90027-7 Go to original source...
  9. Lin, B. S., Lin, B. S., Chou, N. K., Chong, F. C., & Chen, S. J. (2006). RTWPMS: A Real-Time Wireless Physiological Monitoring System. IEEE Transactions on Information Technology in Biomedicine, 10(4), 647-656. doi: 10.1109/TITB.2006.874194 Go to original source...
  10. Nakajina, H., et al.(1998). World Health Organization, Life in the 21st Century - a Vision for All, World Health Report. Geneva: World Health Organization.
  11. Pan, J., &Tompkins, W. J. (1985). A Real-Time QRS Detection Algorithm. IEEE Transactions on Biomedical Engineering, BME-32(3), 230-236. doi: 10.1109/TBME.1985.325532 Go to original source...
  12. Rasid, M. F. A.,& Woodward, B. (2005). Bluetooth telemedicine Processor for multichannel biomedical signal transmission via mobile cellular networks. IEEE Transactions on Information Technology in Biomedicine, 9(1), 35-43. doi: 10.1109/TITB.2004.840070 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.