Acta Informatica Pragensia 2021, 10(2), 123-137 | DOI: 10.18267/j.aip.1514171

Modelling COVID-19 Hotspot Using Bipartite Network Approach

Boon Hao Hong ORCID...1, Jane Labadin ORCID...1, Wei King Tiong ORCID...1, Terrin Lim ORCID...1, Melvin Hsien Liang Chung ORCID...2
1 Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia
2 Bintulu Divisional Health Office, Bintulu, Sarawak, Malaysia

COVID-19 causes a jarring impact on the livelihoods of people in Malaysia and globally. To prevent an outbreak in the community, identifying the likely sources of infection (hotspots) of COVID-19 is important. The goal of this study is to formulate a bipartite network model of COVID-19 transmissions by incorporating patient mobility data to address the assumption on population homogeneity made in the conventional models and focus on indirect transmission. Two types of nodes – human and location – are the main concern in the research scenario. 21 location nodes and 31 human nodes are identified from a patient’s pre-processed mobility data. The parameters used in this study for location node and human node quantifications are the ventilation rate of a location and the environmental properties of the location that affect the stability of the virus such as temperature and relative humidity. The summation rule is applied to quantify all nodes in the network and the link weight between the human node and the location node. The ranking of location and human nodes in this network is computed using a web search algorithm. This model is considered verified as the error obtained from the comparison made between the benchmark model and the COVID-19 bipartite network model is small. As a result, the higher ranking of the location is denoted as a hotspot in this study, and for a human node attached to this node will be ranked higher in the human node ranking. Consequently, the hotspot has a higher risk of transmission compared to other locations. These findings are proposed to provide a framework for public health authorities to identify the sources of infection and high-risk groups of people in the COVID-19 cases to control the transmission at the initial stage.

Keywords: COVID-19; Hotspot; Contact tracing; Bipartite network; Location rank.

Received: April 15, 2021; Revised: June 6, 2021; Accepted: June 6, 2021; Prepublished online: June 7, 2021; Published: September 10, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Hong, B.H., Labadin, J., King Tiong, W., Lim, T., & Chung, M.H.L. (2021). Modelling COVID-19 Hotspot Using Bipartite Network Approach. Acta Informatica Pragensia10(2), 123-137. doi: 10.18267/j.aip.151
Download citation

References

  1. ASHRAE. (2013). ANSI-ASHRAE Standard 62.1-2013 Ventilation for Acceptable Indoor Air Quality. American Society of Heating, Refrigerating and Air-Conditioning Engineers. http://www.myiaire.com/product-docs/ultraDRY/ASHRAE62.1.pdf
  2. Block, P., Hoffman, M., Raabe, I. J., Dowd, J. B., Rahal, C., Kashyap, R., & Mills, M. C. (2020). Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world. Nature Human Behaviour, 4, 588-596. https://doi.org/10.1038/s41562-020-0898-6 Go to original source...
  3. Buitrago-Garcia, D., Egli-Gany, D., Counotte, M. J., Hossmann, S., Imeri, H., Ipekci, A. M., Salanti, G., & Low, N. (2020). Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and meta-analysis. PLOS Medicine, 17(9), e1003346. https://doi.org/10.1371/journal.pmed.1003346 Go to original source...
  4. Cai, J., Sun, W., Huang, J., Gamber, M., Wu, J., & He, G. (2020). Indirect virus transmission in cluster of COVID-19 cases, Wenzhou, China, 2020. Emerging infectious diseases, 26(6), 1343. https://doi.org/10.3201/eid2606.200412 Go to original source...
  5. Cevik, M., Kuppalli, K., Kindrachuk, J., & Peiris, M. (2020). Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ, 371, m3862. https://doi.org/10.1136/bmj.m3862 Go to original source...
  6. Cevik, M., Tate, M., Lloyd, O., Maraolo, A. E., Schafers, J., & Ho, A. (2021). SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. The Lancet Microbe, 2(1), e13-e22. https://doi.org/10.1016/s2666-5247(20)30172-5 Go to original source...
  7. Dabisch, P., Schuit, M., Herzog, A., Beck, K., Wood, S., Krause, M., Miller, D., Weaver, W., Freeburger, D., Hooper, I., Green, B., Williams, G., Holland, B., Bohannon, J., Wahl, V., Yolitz, J., Hevey, M., & Ratnesar-Shumate, S. (2021). The influence of temperature, humidity, and simulated sunlight on the infectivity of SARS-CoV-2 in aerosols. Aerosol Science and Technology, 55(2), 142-153. https://doi.org/10.1080/02786826.2020.1829536 Go to original source...
  8. Dai, H., & Zhao, B. (2020). Association of the infection probability of COVID-19 with ventilation rates in confined spaces. Building Simulation, 13(6), 1321-1327. https://doi.org/10.1007/s12273-020-0703-5 Go to original source...
  9. Duan, X. (2013). Exposure factors handbook of Chinese population. China Environmental Science Press.
  10. Eze, M. O. (2013). Web Algorithm Search Engine Based Network Modeling of Malaria Transmission. Doctoral dissertation. Universiti Malaysia Sarawak.
  11. Fears, A. C., Klimstra, W. B., Duprex, P., Hartman, A., Weaver, S. C., Plante, K. S., Mirchandani, D., Plante, J. A., Aguilar, P. V., Fernández, D., Nalca, A., Totura, A., Dyer, D., Kearney, B., Lackemeyer, M., Bohannon, J. K., Johnson, R., Garry, R. F., Reed, D. S., & Roy, C. J. (2020). Persistence of Severe Acute Respiratory Syndrome Coronavirus 2 in Aerosol Suspensions. Emerging Infectious Diseases, 26(9), 2168-2171. https://doi.org/10.3201/eid2609.201806 Go to original source...
  12. Firth, J. A., Hellewell, J., Klepac, P., Kissler, S., Kucharski, A. J., & Spurgin, L. G. (2020). Using a real-world network to model localized COVID-19 control strategies. Nature Medicine, 26(10), 1616-1622. https://doi.org/10.1038/s41591-020-1036-8 Go to original source...
  13. Gasser, U., Ienca, M., Scheibner, J., Sleigh, J., & Vayena, E. (2020). Digital tools against COVID-19: taxonomy, ethical challenges, and navigation aid. The Lancet Digital Health, 2(8), e425-e434. https://doi.org/10.1016/s2589-7500(20)30137-0 Go to original source...
  14. Gill, B. S., Jayaraj, V. J., Singh, S., Mohd Ghazali, S., Cheong, Y. L., Md Iderus, N. H., Sundram, B. M., Aris, T. B., Mohd Ibrahim, H., Hong, B. H., & Labadin, J. (2020). Modelling the Effectiveness of Epidemic Control Measures in Preventing the Transmission of COVID-19 in Malaysia. International Journal of Environmental Research and Public Health, 17(15), 5509. https://doi.org/10.3390/ijerph17155509 Go to original source...
  15. Gomes, D. S., Andrade, L. A., Ribeiro, C. J. N., Peixoto, M. V. S., Lima, S. V. M. A., Duque, A. M., Cirilo, T. M., Góes, M. A. O., Lima, A. G. C. F., Santos, M. B., Araújo, K. C. G. M., & Santos, A. D. (2020). Risk clusters of COVID-19 transmission in northeastern Brazil: prospective space-time modelling. Epidemiology and Infection, 148. https://doi.org/10.1017/s0950268820001843 Go to original source...
  16. Guo, Z.-D., Wang, Z.-Y., Zhang, S.-F., Li, X., Li, L., Li, C., Cui, Y., Fu, R.-B., Dong, Y.-Z., Chi, X.-Y., Zhang, M.-Y., Liu, K., Cao, C., Liu, B., Zhang, K., Gao, Y.-W., Lu, B., & Chen, W. (2020). Early Release - Aerosol and Surface Distribution of Severe Acute Respiratory Syndrome Coronavirus 2 in Hospital Wards, Wuhan, China, 2020. Emerging Infectious Diseases, 26(7), 1583. https://doi.org/10.3201/eid2607.200885 Go to original source...
  17. Huang, R., Liu, M., & Ding, Y. (2020). Spatial-temporal distribution of COVID-19 in China and its prediction: A data-driven modeling analysis. The Journal of Infection in Developing Countries, 14(3), 246-253. https://doi.org/10.3855/jidc.12585 Go to original source...
  18. Kok, W. C. (2017). A Computational Approach to Predict the Spread of Dengue. Master thesis. Universiti Malaysia Sarawak.
  19. Kok, W. C., Labadin, J., & Perera, D. (2017). Modeling Dengue Hotspot with Bipartite Network Approach. In Alfred R., Iida H., Ag. Ibrahim A., Lim Y. (eds) Computational Science and Technology, ICCST 2017 (pp. 220-229). Springer. https://doi.org/10.1007/978-981-10-8276-4_21 Go to original source...
  20. Kucharski, A. J., Russell, T. W., Diamond, C., Liu, Y., Edmunds, J., Funk, S., Eggo, R. M., Sun, F., Jit, M., Munday, J. D., Davies, N., Gimma, A., Zandvoort, K. van, Gibbs, H., Hellewell, J., Jarvis, C. I., Clifford, S., Quilty, B. J., Bosse, N. I., & Abbott, S. (2020). Early dynamics of transmission and control of COVID-19: A mathematical modelling study. The Lancet Infectious Diseases, 20(5), 553-558. https://doi.org/10.1016/S1473-3099(20)30144-4 Go to original source...
  21. Lauer, S. A., Grantz, K. H., Bi, Q., Jones, F. K., Zheng, Q., Meredith, H. R., Azman, A. S., Reich, N. G., & Lessler, J. (2020). The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine, 172(9). https://doi.org/10.7326/M20-0504 Go to original source...
  22. Lessler, J., Azman, A. S., McKay, H. S., & Moore, S. M. (2017). What is a Hotspot Anyway? The American Journal of Tropical Medicine and Hygiene, 96(6), 1270-1273. https://doi.org/10.4269/ajtmh.16-0427 Go to original source...
  23. Liew, C. Y. (2016). Bipartite-Network-Based Modeling of Habitat Suitability. Doctoral dissertation. Universiti Malaysia Sarawak.
  24. Meyers, L. A., Newman, M. E. J., & Pourbohloul, B. (2006). Predicting epidemics on directed contact networks. Journal of Theoretical Biology, 240(3), 400-418. https://doi.org/10.1016/j.jtbi.2005.10.004 Go to original source...
  25. Miller, S. L., Nazaroff, W. W., Jimenez, J. L., Boerstra, A., Buonanno, G., Dancer, S. J., Kurnitski, J., Marr, L. C., Morawska, L., & Noakes, C. (2021). Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air, 31(2), 314-323. https://doi.org/10.1111/ina.12751 Go to original source...
  26. MoH. (2020). Annex 12: Management of Closed Contacts of Confirmed Case. Retrieved from http://covid-19.moh.gov.my/garis-panduan/garis-panduan-kkm
  27. Qiu, X., Nergiz, A. I., Maraolo, A. E., Bogoch, I. I., Low, N., & Cevik, M. (2021). Defining the role of asymptomatic and pre-symptomatic SARS-CoV-2 transmission - a living systematic review. Clinical Microbiology and Infection, 27(4), 511-519. https://doi.org/10.1016/j.cmi.2021.01.011 Go to original source...
  28. Riley, E., Murphy, G., & Riley, R. (1978). Airborne spread of measles in a suburban elementary school. American Journal of Epidemiology, 107(5), 421-432. https://doi.org/10.1093/oxfordjournals.aje.a112560 Go to original source...
  29. Santarpia, J. L., Rivera, D. N., Herrera, V. L., Morwitzer, M. J., Creager, H. M., Santarpia, G. W., Crown, K. K., Brett-Major, D. M., Schnaubelt, E. R., Broadhurst, M. J., Lawler, J. V., Reid, S. P., & Lowe, J. J. (2020). Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Scientific Reports, 10(1), 12732. https://doi.org/10.1038/s41598-020-69286-3 Go to original source...
  30. Shen, M., Peng, Z., Xiao, Y., & Zhang, L. (2020). Modelling the epidemic trend of the 2019 novel coronavirus outbreak in China. bioRxiv, 2020.2001.2023.916726. https://doi.org/10.1101/2020.01.23.916726 Go to original source...
  31. van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., de Wit, E., & Munster, V. J. (2020). Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. New England Journal of Medicine, 382(16), 1564-1567. https://doi.org/10.1056/nejmc2004973 Go to original source...
  32. Viguerie, A., Veneziani, A., Lorenzo, G., Baroli, D., Aretz-Nellesen, N., Patton, A., Yankeelov, T. E., Reali, A., Hughes, T. J. R., & Auricchio, F. (2020). Diffusion-reaction compartmental models formulated in a continuum mechanics framework: application to COVID-19, mathematical analysis, and numerical study. Computational Mechanics, 66(5), 1131-1152. https://doi.org/10.1007/s00466-020-01888-0 Go to original source...
  33. Wang, Z., Zhang, X., Teichert, G. H., Carrasco-Teja, M., & Garikipati, K. (2020). System inference for the spatio-temporal evolution of infectious diseases: Michigan in the time of COVID-19. Computational Mechanics, 66(5), 1153-1176. https://doi.org/10.1007/s00466-020-01894-2 Go to original source...
  34. Weeden, K., & Cornwell, B. (2020). The Small-World Network of College Classes: Implications for Epidemic Spread on a University Campus. Sociological Science, 7, 222-241. https://doi.org/10.15195/v7.a9 Go to original source...
  35. Wells, W. F. (1955). Airborne Contagion and Air Hygiene: An Ecological Study of Droplet Infections. Harvard University Press.
  36. Whitelaw, S., Mamas, M. A., Topol, E., & Spall, H. G. C. V. (2020). Applications of digital technology in COVID-19 pandemic planning and response. The Lancet Digital Health, 2(8), e435-e440. https://doi.org/10.1016/S2589-7500(20)30142-4 Go to original source...
  37. Wu, J. T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. The Lancet, 395(10225), 689-697. https://doi.org/10.1016/s0140-6736(20)30260-9 Go to original source...
  38. Xie, Z., Qin, Y., Li, Y., Shen, W., Zheng, Z., & Liu, S. (2020). Spatial and temporal differentiation of COVID-19 epidemic spread in mainland China and its influencing factors. Science of the Total Environment, 744, 140929. https://doi.org/10.1016/j.scitotenv.2020.140929 Go to original source...
  39. Ying, L. C., Labadin, J., Chai, W. Y., Tuen, A. A., & Peter, C. (2015). Applying Bipartite Network Approach to Scarce Data: Modeling Habitat Suitability of a Marine Mammal Species. Procedia Computer Science, 60, 266-275. https://doi.org/10.1016/j.procs.2015.08.126 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.