Acta Informatica Pragensia 2022, 11(2), 241-253 | DOI: 10.18267/j.aip.1832074
Use of FURIA for Improving Task Mining
- Faculty of Economics, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
Companies that use robotic process automation very often deal with the problem of selecting a suitable process for automation. Manual selection of a suitable process is very time-consuming. Therefore, part of the process mining field specializes in selecting suitable processes for automation based on process data. This work deals with the possibility of improving the existing method for finding suitable candidates for automation. To improve the current approach, we remove the limiting restrictions of the current method and use another FURIA rule-learning algorithm for rule detection. We use three different datasets and the WEKA platform to validate the results. The results show that FURIA and the removal of strictly deterministic rules as restrictions turned out to be a competitive approach to the original one. On data presented in this study, the selected approach detected more candidates for automation and with higher accuracy. This study implies that FURIA and not using a strictly deterministic process is an appropriate procedure with certain use cases as other procedures mentioned in this study.
Keywords: FURIA; Task mining; RPA; Robotic process automation; RIPPER; Automatable routines.
Received: January 13, 2022; Revised: June 18, 2022; Accepted: June 21, 2022; Prepublished online: July 2, 2022; Published: August 19, 2022 Show citation
References
- Agostinelli, S., Lupia, M., Marrella, A., & Mecella, M. (2020). Automated Generation of Executable RPA Scripts from User Interface Logs. In A. Asatiani, J. M. García, N. Helander, A. Jiménez-Ramírez, A. Koschmider, J. Mendling, G. Meroni, & H. A. Reijers (Eds.), Business Process Management: Blockchain and Robotic Process Automation Forum (Vol. 393, pp. 116-131). Springer International Publishing. https://doi.org/10.1007/978-3-030-58779-6_8
Go to original source...
- Aguirre, S., & Rodriguez, A. (2017). Automation of a Business Process Using Robotic Process Automation (RPA): A Case Study. In J. C. Figueroa-García, E. R. López-Santana, J. L. Villa-Ramírez, & R. Ferro-Escobar (Eds.), Applied Computer Sciences in Engineering (Vol. 742, pp. 65-71). Springer International Publishing. https://doi.org/10.1007/978-3-319-66963-2_7
Go to original source...
- Bosco, A., Augusto, A., Dumas, M., La Rosa, M., & Fortino, G. (2019). Discovering Automatable Routines from User Interaction Logs. In Business Process Management Forum (Vol. 360, pp. 144-162). Springer International Publishing. https://doi.org/10.1007/978-3-030-26643-1_9
Go to original source...
- Choi, D., R'bigui, H., & Cho, C. (2021). Candidate Digital Tasks Selection Methodology for Automation with Robotic Process Automation. Sustainability, 13(16), 8980. https://doi.org/10.3390/su13168980
Go to original source...
- Cohen, W. W. (1995). Fast Effective Rule Induction. In Machine Learning Proceedings 1995 (pp. 115-123). Elsevier. https://doi.org/10.1016/B978-1-55860-377-6.50023-2
Go to original source...
- Fumarola, F., Lanotte, P. F., Ceci, M., & Malerba, D. (2016). CloFAST: Closed sequential pattern mining using sparse and vertical id-lists. Knowledge and Information Systems, 48(2), 429-463. https://doi.org/10.1007/s10115-015-0884-x
Go to original source...
- Hühn, J. C., & Hüllermeier, E. (2010). An Analysis of the FURIA Algorithm for Fuzzy Rule Induction. In J. Koronacki, Z. W. Ra¶, S. T. Wierzchoñ, & J. Kacprzyk (Eds.), Advances in Machine Learning I (Vol. 262, pp. 321-344). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-05177-7_16
Go to original source...
- Hühn, J., & Hüllermeier, E. (2009). FURIA: An algorithm for unordered fuzzy rule induction. Data Mining and Knowledge Discovery, 19(3), 293-319. https://doi.org/10.1007/s10618-009-0131-8
Go to original source...
- Jin, Z., & Anderson, M. R. (2017). Software for Foofah: Transforming Data by Example [Data set]. https://doi.org/10.1145/3218889
Go to original source...
- Leno, V., Augusto, A., Dumas, M., La Rosa, M., Maggi, F. M., & Polyvyanyy, A. (2021a). Discovering executable routine specifications from user interaction logs. ArXiv:2106.13446 [Cs]. http://arxiv.org/abs/2106.13446
- Leno, V., Augusto, A., Dumas, M., La Rosa, M., Maggi, F. M., & Polyvyanyy, A. (2021b). Discovering data transfer routines from user interaction logs. Information Systems, 101916. https://doi.org/10.1016/j.is.2021.101916
Go to original source...
- Leno, V., Augusto, A., Dumas, M., Rosa, M. L., Maggi, F., & Polyvyanyy, A. (2020). Identifying candidate routines for Robotic Process Automation from unsegmented UI logs. arXiv:2008.05782v2. https://arxiv.org/abs/2008.05782
Go to original source...
- Leno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., & Maggi, F. M. (2021). Robotic Process Mining: Vision and Challenges. Business & Information Systems Engineering, 63(3), 301-314. https://doi.org/10.1007/s12599-020-00641-4
Go to original source...
- Leopold, H., van der Aa, H., & Reijers, H. A. (2018). Identifying Candidate Tasks for Robotic Process Automation in Textual Process Descriptions. In J. Gulden, I. Reinhartz-Berger, R. Schmidt, S. Guerreiro, W. Guédria, & P. Bera (Eds.), Enterprise, Business-Process and Information Systems Modeling (Vol. 318, pp. 67-81). Springer International Publishing. https://doi.org/10.1007/978-3-319-91704-7_5
Go to original source...
- Manghai, A. & Jegadeeshwaran, R. (2019). Application of FURIA for Finding the Faults in a Hydraulic Brake System Using a Vibration Analysis through a Machine Learning Approach. International Journal of Prognostics and Health Management, 10(1). https://doi.org/10.36001/ijphm.2019.v10i1.2748
Go to original source...
- Narayana, M. B. S., Khalifa, H., & van der Aalst, W. (2020). JXES: JSON Support for the XES Event Log Standard. ArXiv:2009.06363 [Cs]. http://arxiv.org/abs/2009.06363
- Razaghpanah, A., Nithyanand, R., Vallina-Rodriguez, N., Sundaresan, S., Allman, M., Kreibich, C., & Gill, P. (2018). Apps, Trackers, Privacy, and Regulators: A Global Study of the Mobile Tracking Ecosystem. In The 25th Annual Network and Distributed System Security Symposium (NDSS 2018). IMDEA. https://dspace.networks.imdea.org/handle/20.500.12761/507
Go to original source...
- Soeny, K., Pandey, G., Gupta, U., Trivedi, A., Gupta, M., & Agarwal, G. (2021). Attended robotic process automation of prescriptions' digitization. Smart Health, 20, 100189. https://doi.org/10.1016/j.smhl.2021.100189
Go to original source...
- Syed, R., Suriadi, S., Adams, M., Bandara, W., Leemans, S. J. J., Ouyang, C., ter Hofstede, A. H. M., van de Weerd, I., Wynn, M. T., & Reijers, H. A. (2020). Robotic Process Automation: Contemporary themes and challenges. Computers in Industry, 115, 103162. https://doi.org/10.1016/j.compind.2019.103162
Go to original source...
- van der Aalst, W. M. P., Bichler, M., & Heinzl, A. (2018). Robotic Process Automation. Business & Information Systems Engineering, 60(4), 269-272. https://doi.org/10.1007/s12599-018-0542-4
Go to original source...
- Viehhauser, J., & Doerr, M. (2021). Digging for Gold in RPA Projects - A Quantifiable Method to Identify and Prioritize Suitable RPA Process Candidates. In M. La Rosa, S. Sadiq, & E. Teniente (Eds.), Advanced Information Systems Engineering (Vol. 12751, pp. 313-327). Springer International Publishing. https://doi.org/10.1007/978-3-030-79382-1_19
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.