Acta Informatica Pragensia 2024, 13(2), 193-212 | DOI: 10.18267/j.aip.2362707

Efficient Contactless Palmprint Recognition System Based on Deep Rule‐Based Classification

Yacine Belhocine ORCID...1, Abdallah Meraoumia ORCID...2, Khediri Abderrazak ORCID...1, Mohammed Saigaa ORCID...1
1 Laboratory of Mathematics, Informatics and Systems, Larbi Tebessi University – Tebessa, Algeria
2 Laboratory of Intelligent and Communicating Systems Engineering, University of Science and Technology – Houari Boumediene, Algeria

In recent years, as technology has advanced and more and more activities have become digitized, cybersecurity has become a top priority for governments around the world. Cybersecurity is essential for protecting computer systems, networks and data from cyberattacks that can have a negative impact on individuals, businesses and governments. Indeed, biometrics is a key means of cybersecurity that can help prevent unauthorized access, identity theft and unauthorized changes to data. This paper presents an innovative contactless palmprint recognition system, integrating two types of features to enhance accuracy and efficiency. Our approach employs two distinct feature sets: handcrafted features, based on the Pyramid Histogram of Oriented Gradients (PHOG) and Local Phase Quantization (LPQ) techniques and deep features extracted through deep learning-based image analysis methods such as DCTNet, DSTNet, PCANet and ICANet. Furthermore, we used a sophisticated Deep Rule-based (DRB) classifier for classification tasks. Experimental results obtained using a typical database demonstrated excellent identification rates, surpassing significantly those reported in similar studies.

Keywords: Cybersecurity; Biometrics; DRB; LPQ; PHOG; DCTNet; DSTNet; PCANet; ICANet; Deep rule-based classifier.

Received: February 14, 2024; Revised: May 8, 2024; Accepted: May 10, 2024; Prepublished online: July 16, 2024; Published: August 4, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Belhocine, Y., Meraoumia, A., Abderrazak, K., & Saigaa, M. (2024). Efficient Contactless Palmprint Recognition System Based on Deep Rule‐Based Classification. Acta Informatica Pragensia13(2), 193-212. doi: 10.18267/j.aip.236
Download citation

References

  1. Agab, S. E., & Chelali, F. Z. (2023). New combined DT-CWT and HOG descriptor for static and dynamic hand gesture recognition. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-023-14433-x Go to original source...
  2. Alanezi, N. A., Alharbi, N. H., Alharthi, Z. S., & Alhazmi, O. H. (2020). POSTER: A Brief Overview of Biometrics in Cybersecurity: A Comparative Analysis. In 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH). IEEE. https://doi.org/10.1109/SMART-TECH49988.2020.00067 Go to original source...
  3. Amrouni, N., Benzaoui, A., Bouaouina, R., Khaldi, Y., Adjabi, I., & Bouglimina, O. (2022). Contactless Palmprint Recognition Using Binarized Statistical Image Features-Based Multiresolution Analysis. Sensors, 22(24), 9814. https://doi.org/10.3390/s22249814 Go to original source...
  4. Angelov, P. P., & Gu, X. (2018). Deep rule-based classifier with human-level performance and characteristics. Information Sciences, 463-464, 196-213. https://doi.org/10.1016/j.ins.2018.06.048 Go to original source...
  5. Aravinth, J., & Valarmathy, S. (2015). Multi classifier-based score level fusion of multi-modal biometric recognition and its application to remote biometrics authentication. The Imaging Science Journal, 64(1), 1-14. https://doi.org/10.1080/13682199.2015.1104067 Go to original source...
  6. Attia, A., Akhtar, Z., Chalabi, N. E., Maza, S., Chalabi, N. E., & Chahir, Y. (2020). Deep rule-based classifier for finger knuckle pattern recognition system. Evolving Systems, 12(4), 1015-1029. https://doi.org/10.1007/s12530-020-09359-w Go to original source...
  7. Bendjenna, H., Allah, A. A., & Meraoumia, A. (2023). Learning-Free Deep Features for Multispectral Palm-Print Classification. Computer Science, 24(2), 243-271. https://doi.org/10.7494/csci.2023.24.2.4685 Go to original source...
  8. Chan, T.-H., Jia, K., Gao, S., Lu, J., Zeng, Z., & Ma, Y. (2015). PCANet: A Simple Deep Learning Baseline for Image Classification? IEEE Transactions on Image Processing, 24(12), 5017-5032. https://doi.org/10.1109/tip.2015.2475625 Go to original source...
  9. Cong J. N., & Beng, A. (2015). DCTNet: A simple learning-free approach for face recognition. In 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA). IEEE. https://doi.org/10.1109/APSIPA.2015.7415375 Go to original source...
  10. Dai, F., Wang, Z., Zou, X., Zhang, R., & Deng, X. (2024). Noncontact palm vein ROI extraction based on improved lightweight HRNET in complex backgrounds. IET Biometrics, 2024, Article 4924184. https://doi.org/10.1049/2024/4924184 Go to original source...
  11. Gowda, S., Hemantha Kumar G, & Imran, M. (2019). Multimodal biometric verification system: Evaluation of various score level fusion rules. In 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). IEEE. https://doi.org/10.1109/icecct.2019.8869429 Go to original source...
  12. Gu, X., & Angelov, P. P. (2018). Semi-supervised deep rule-based approach for image classification. Applied Soft Computing, 68, 53-68. https://doi.org/10.1016/j.asoc.2018.03.032 Go to original source...
  13. Karaoglu, H. H., & Eksioglu, E. M. (2023). DCTNet: deep shrinkage denoising via DCT filterbanks. Signal, Image and Video Processing, 17(7), 3665-3676. https://doi.org/10.1007/s11760-023-02593-0 Go to original source...
  14. Li, Z., & Tang, Y. (2023). Multimodal Biometric Fusion Algorithm Based on Ranking Partition Collision Theory. Machine Intelligence Research, 20(6), 884-896. https://doi.org/10.1007/s11633-022-1403-7 Go to original source...
  15. Lin, W., Hasenstab, K., Moura Cunha, G., & Schwartzman, A. (2020). Comparison of handcrafted features and convolutional neural networks for liver MR image adequacy assessment. Scientific Reports, 10(1), 20336. https://doi.org/10.1038/s41598-020-77264-y Go to original source...
  16. Ma, S., Hu, Q., Zhao, S., Chen, S., & Jiang, L. (2024). SYEnet: Simple yet effective network for palmprint recognition. Information Sciences, 669, 120518-120518. https://doi.org/10.1016/j.ins.2024.120518 Go to original source...
  17. Mebarkia, M., Meraoumia, A., Houam, L., & Khemaissia, S. (2023). X-ray image analysis for osteoporosis diagnosis: From shallow to deep analysis. Displays, 76, 102343. https://doi.org/10.1016/j.displa.2022.102343 Go to original source...
  18. Michael, G. K. O., Connie, T., & Jin, A. T. B. (2010). An innovative contactless palm print and knuckle print recognition system. Pattern Recognition Letters, 31(12), 1708-1719. https://doi.org/10.1016/j.patrec.2010.05.021 Go to original source...
  19. Rawat, D. B., Doku, R., & Garuba, M. (2019). Cybersecurity in Big Data Era: From Securing Big Data to Data-Driven Security. IEEE Transactions on Services Computing, 14(6), 1-1. https://doi.org/10.1109/tsc.2019.2907247 Go to original source...
  20. Saïdani, A., & Echi, A. K. (2014). Pyramid histogram of oriented gradient for machine-printed/handwritten and Arabic/Latin word discrimination. In 2014 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR). IEEE. https://doi.org/10.1109/SOCPAR.2014.7008017 Go to original source...
  21. Shen, L., Jin, J., Zhang, R., Li, H., Zhao, K., Zhang, Y., ... & Jia, W. (2023). RPG-Palm: Realistic Pseudo-data Generation for Palmprint Recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 19605-19616). IEEE. https://doi.org/10.1109/ICCV51070.2023.01796 Go to original source...
  22. Singhal, P., Sharma, S., Saha, S., Mishra, I., Alfurhood, B. S., & Singh, P. (2023). Smart security system using Hybrid System with IoT and Blockchain: A security system Human sased Detection. In 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). IEEE. https://doi.org/10.1109/ICACITE57410.2023.10182383 Go to original source...
  23. Trabelsi, S., Samai, D., Dornaika, F., Benlamoudi, A., Bensid, K., & Taleb-Ahmed, A. (2022). Efficient palmprint biometric identification systems using deep learning and feature selection methods. Neural Computing and Applications, 34(14), 12119-12141. https://doi.org/10.1007/s00521-022-07098-4 Go to original source...
  24. Verma, S., & Chandran, S. (2019). Contactless Palmprint Verification System using 2-D Gabor Filter and Principal Component Analysis. International Arab Journal of Information Technology, 16(1), 23-29.
  25. Wu, C., Nabil, S., Zhou, S., Wang, M., Ying, L., & Wang, G. (2022). Gram Matrix-Based Convolutional Neural Network for Biometric Identification Using Photoplethysmography Signal. Journal of Shanghai Jiaotong University (Science), 27(4), 463-472. https://doi.org/10.1007/s12204-022-2426-5 Go to original source...
  26. Wu, J., Qiu, S., Kong, Y., Jiang, L. W., Chen, Y., Yang, W., Senhadji, L., & Hu, S. (2018). PCANet: An energy perspective. Neurocomputing, 313, 271-287. https://doi.org/10.1016/j.neucom.2018.06.025 Go to original source...
  27. Yang, B., Zhang, Q., & Liu, Z. (2022). ICANet: A Method of Short Video Emotion Recognition Driven by Multimodal Data. 2022 In 2nd International Conference on Networking Systems of AI (INSAI). IEEE. https://doi.org/10.1109/insai56792.2022.00014 Go to original source...
  28. Zhang, L., Li, L., Yang, A., Shen, Y., & Yang, M. (2017). Towards contactless palmprint recognition: A novel device, a new benchmark, and a collaborative representation based identification approach. Pattern Recognition, 69, 199-212. https://doi.org/10.1016/j.patcog.2017.04.016 Go to original source...
  29. Zhang, L., Cheng, Z., Shen, Y., & Wang, D. (2018a). Palmprint and PalmVein recognition based on DCNN and a new Large-Scale Contactless Palmvein dataset. Symmetry, 10(4), 78. https://doi.org/10.3390/sym10040078 Go to original source...
  30. Zhang, Y., Geng, T., Wu, X., Zhou, J., & Gao, D. (2018b). ICANet: a simple cascade linear convolution network for face recognition. EURASIP Journal on Image and Video Processing, 2018(1), Article 51. https://doi.org/10.1186/s13640-018-0288-4 Go to original source...
  31. Zhu, Q., Zhou, Y., Fei, L., Zhang, D., & Zhang, D. (2023). Multi-Spectral Palmprints Joint Attack and Defense With Adversarial Examples Learning. IEEE Transactions on Information Forensics and Security, 18, 1789-1799. https://doi.org/10.1109/tifs.2023.3254432 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.