Acta Informatica Pragensia 2024, 13(2), 288-307 | DOI: 10.18267/j.aip.2432469
Deep Learning Approach for Predicting Psychodiagnosis
- 1 Department of Computer Science, University of Batna 2, Fesdis – Batna, Algeria
- 2 Laboratoire de l'INFormatique Intelligente (LINFI), University of Mohamed Khider Biskra, Algeria
- 3 Department of Mathematics, University of Batna 2, Fesdis – Batna, Algeria
Artificial intelligence methods, especially deep learning, have seen increasing application in analysing personality and occupational data to identify individuals with psychological and neurological disorders. Currently, there is a great need for effectively processing mental healthcare with the integration of artificial intelligence such as machine learning and deep learning. The paper addresses the pressing need for accurate and efficient methods for diagnosing psychiatric disorders, which are often complex and multifaceted. By exploiting the power of convolutional neural networks (CNN), we propose a novel CNN-based natural language processing method without removing stop words for predicting psychiatric diagnoses capable of accurately classifying individuals based on their psychological data. Our proposal is based on keeping a richer linguistic and semantic context to accurately predict psychiatric diagnosis. The experiment involves two datasets: one gathered from a private clinic and the other from Kaggle, called the Human Stress Dataset. The outcomes from the first dataset demonstrate a remarkable accuracy rate of 98.51% when employing CNN, showcasing their superior performance compared to the standard machine learning techniques such as logistic regression, k-nearest neighbours and support vector machines. With the second dataset, our model achieved an impressive area under the receiver operating characteristic curve (AUROC) of 0.87. This result surpasses those achieved by existing state-of-the-art methods, further highlighting the efficacy of our CNN-based approach in discerning subtle nuances within the data and making accurate predictions. Moreover, we have compared our model with three other programs on the same dataset and the accuracy reached 78.52%. The results are promising to aid parents or clinicians in early and rapidly predicting the ill individual.
Keywords: Classification; Deep learning; Machine learning; Prediction; Psychodiagnosis; Natural language processing.
Received: February 8, 2024; Revised: June 13, 2024; Accepted: June 28, 2024; Published: August 4, 2024 Show citation
References
- Allesøe, R. L., Thompson, W. K., Bybjerg-Grauholm, J., Hougaard, D. M., Nordentoft, M., Werge, T., Rasmussen, S., & Benros, M. E. (2023). Deep Learning for Cross-Diagnostic Prediction of Mental Disorder Diagnosis and Prognosis using Danish Nationwide register and Genetic data. JAMA Psychiatry, 80(2), 146. https://doi.org/10.1001/jamapsychiatry.2022.4076
Go to original source...
- Cheng, A. T. A., Chen, T. H. H., Chen, C., & Jenkins, R. (2000). Psychosocial and psychiatric risk factors for suicide. British Journal of Psychiatry, 177(4), 360-365. https://doi.org/10.1192/bjp.177.4.360
Go to original source...
- Chesney, E., Goodwin, G. M., & Fazel, S. (2014). Risks of all-cause and suicide mortality in mental disorders: a meta-review. World Psychiatry, 13(2), 153-160. https://doi.org/10.1002/wps.20128
Go to original source...
- Chollet, F. (2015). Keras. GitHub. https://github.com/fchollet/keras
- Chung, J., & Teo, J. (2023). Single classifier vs. ensemble machine learning approaches for mental health prediction. Brain Informatics, 10(1), Article 1. https://doi.org/10.1186/s40708-022-00180-6
Go to original source...
- Chung, J., & Teo, J. (2022). Mental health prediction using Machine Learning: Taxonomy, applications, and challenges. Applied Computational Intelligence and Soft Computing, 2022, 1-19. https://doi.org/10.1155/2022/9970363
Go to original source...
- Cho, G., Yim, J., Choi, Y., Ko, J., & Lee, S. (2019). Review of Machine Learning Algorithms for Diagnosing Mental Illness. Psychiatry Investigation, 16(4), 262-269. https://doi.org/10.30773/pi.2018.12.21.2
Go to original source...
- Elleker, D., & O'Neill, M. (2014). Psychiatric Disorders. In Michalos, A.C. (eds) Encyclopedia of Quality of Life and Well-Being Research. Springer. https://doi.org/10.1007/978-94-007-0753-5_2303
Go to original source...
- Ferrara, M., Franchini, G., Funaro, M., Cutroni, M., Valier, B., Toffanin, T., Palagini, L., Zerbinati, L., Folesani, F., Murri, M. B., Caruso, R., & Grassi, L. (2022). Machine Learning and Non-Affective Psychosis: identification, differential diagnosis, and treatment. Current Psychiatry Reports, 24(12), 925-936. https://doi.org/10.1007/s11920-022-01399-0
Go to original source...
- Fokkema, M., Iliescu, D., Greiff, S., & Ziegler, M. (2022). Machine learning and prediction in psychological assessment. European Journal of Psychological Assessment, 38(3), 165-175. https://doi.org/10.1027/1015-5759/a000714
Go to original source...
- Fu, X., Qian, Y., Jin, X., Yu, H., Wu, H., Du, L., Chen, H., & Shi, Y. (2023). Suicide rates among people with serious mental illness: a systematic review and meta-analysis. Psychological Medicine, 53(2), 351-361. https://doi.org/10.1017/s0033291721001549
Go to original source...
- Garriga, R., Mas, J., Abraha, S., Nolan, J., Harrison, O., Tadros, G., & Matic, A. (2022). Machine learning model to predict mental health crises from electronic health records. Nature Medicine, 28(6), 1240-1248. https://doi.org/10.1038/s41591-022-01811-5
Go to original source...
- Hyman, S. E. (2010). The diagnosis of Mental Disorders: The problem of Reification. Annual Review of Clinical Psychology, 6(1), 155-179. https://doi.org/10.1146/annurev.clinpsy.3.022806.091532
Go to original source...
- Ingram, W. M., Khanna, R., & Weston, C. (2021). Informatics Technologies in the Diagnosis and Treatment of Mental Health Conditions. In Tenenbaum, J.D., Ranallo, P.A. (eds) Mental Health Informatics, (pp. 453-477). Springer. https://doi.org/10.1007/978-3-030-70558-9_17
Go to original source...
- Iyortsuun, N. K., Kim, S., Jhon, M., Yang, H., & Pant, S. (2023). A review of machine learning and deep learning approaches on mental health diagnosis. Healthcare, 11(3), 285. https://doi.org/10.3390/healthcare11030285
Go to original source...
- Jang, J., Yoon, S., Son, G., Kang, M., Choeh, J. Y., & Choi, K. (2022). Predicting personality and psychological distress using natural Language Processing: a study protocol. Frontiers in Psychology, 13, 865541. https://doi.org/10.3389/fpsyg.2022.865541
Go to original source...
- Kreesh, R. (2024). Human Stress Prediction. https://www.kaggle.com/datasets/kreeshrajani/human-stress-prediction/data
- Llano, J., Ramirez, V., & Morillo, P. (2020). Benchmarking of Classification Algorithms for Psychological Diagnosis. In Narváez, F., Vallejo, D., Morillo, P., Proaño, J. (eds) Smart Technologies, Systems and Applications, (pp. 188-201). Springer. https://doi.org/10.1007/978-3-030-46785-2_16
Go to original source...
- Liu, Z., Wong, N. M., Shao, R., Lee, S., Huang, C., Liu, H., Lin, C., & Lee, T. M. (2022). Classification of Major Depressive Disorder using Machine Learning on brain structure and functional connectivity. Journal of Affective Disorders Reports, 10, 100428. https://doi.org/10.1016/j.jadr.2022.100428
Go to original source...
- Mylona, E., Kourou, K., Manikis, G., Kondylakis, H., Marias, K., Karademas, E., Poikonen-Saksela, P., Mazzocco, K., Marzorati, C., Pat-Horenczyk, R., Roziner, I., Sousa, B., Oliveira-Maia, A., Simos, P., & Fotiadis, D. I. (2021). Prediction of Poor Mental Health Following Breast Cancer Diagnosis Using Random Forests. In 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE. https://doi.org/10.1109/embc46164.2021.9629589
Go to original source...
- Rao, K. P. N., & Manvi, S. (2023). Survey on electronic health record management using amalgamation of artificial intelligence and blockchain technologies. Acta Informatica Pragensia, 12(1), 179-199. https://doi.org/10.18267/j.aip.194
Go to original source...
- Saito, T., Suzuki, H., & Kishi, A. (2022). Predictive modeling of mental illness onset using wearable devices and medical examination data: Machine Learning approach. Frontiers in Digital Health, 4. https://doi.org/10.3389/fdgth.2022.861808
Go to original source...
- Shetty, S., S, A. V., & Mahale, A. (2023). Diagnostic Performance Evaluation of Deep Learning-Based Medical Text Modelling to Predict Pulmonary Diseases from Unstructured Radiology Free-Text Reports. Acta Informatica Pragensia, 12(2), 260-274. https://doi.org/10.18267/j.aip.214
Go to original source...
- Shadroo, S., Nejad, M. Y., Yosefian, S. T., Naserbakht, M., & Hosseinzadeh, M. (2021). Proposing two hybrid data mining models for discovering students' mental health problems. Acta Informatica Pragensia, 10(1), 85-107. https://doi.org/10.18267/j.aip.148
Go to original source...
- Suchting, R., Green, C. E., Glazier, S. M., & Lane, S. D. (2018). A data science approach to predicting patient aggressive events in a psychiatric hospital. Psychiatry Research, 268, 217-222. https://doi.org/10.1016/j.psychres.2018.07.004
Go to original source...
- Sumathi, M.R., & Poorna, B. (2016). Prediction of Mental Health Problems Among Children Using Machine Learning Techniques. International Journal of Advanced Computer Science and Applications, 7(1), 552-557.
Go to original source...
- Torres, A., Morales, F., Nguyen-Finn, K. L., & Mercado, A. (2023). Co-occurrence of neurodevelopmental disorders predict caretaker mental health in a Latinx sample. The Journal of Behavioral Health Services & Research, 50(2), 181-193. https://doi.org/10.1007/s11414-022-09818-z
Go to original source...
- Wainberg, M. L., Scorza, P., Shultz, J. M., Helpman, L., Mootz, J. J., Johnson, K. A., Neria, Y., Bradford, J. E., Oquendo, M. A., & Arbuckle, M. R. (2017). Challenges and Opportunities in Global Mental Health: a Research-to-Practice Perspective. Current Psychiatry Reports, 19(5), Article 28. https://doi.org/10.1007/s11920-017-0780-z
Go to original source...
- Watts, D., De Azevedo Cardoso, T., Librenza-Garcia, D., Ballester, P., Passos, I. C., Kessler, F. H. P., Reilly, J., Chaimowitz, G., & Kapczinski, F. (2022). Predicting criminal and violent outcomes in psychiatry: a meta-analysis of diagnostic accuracy. Translational Psychiatry, 12(1). https://doi.org/10.1038/s41398-022-02214-3
Go to original source...
- Wei, Z., Wang, Y., Hu, L., Wang, Y., Li, C., & Sun, L. (2024). Incidence, prevalence, and mortality of schizophrenia from 2016 to 2020 in Shandong, China. Psychiatry Research, 331, 115612. https://doi.org/10.1016/j.psychres.2023.115612
Go to original source...
- Zhang, Y., Ding, D. Y., Qian, T., Manning, C. D., and Langlotz, C. P. (2018). Learning to summarize radiology findings. In EMNLP 2018 Workshop on Health Text Mining and Information Analysis. ACL. https://aclanthology.org/W18-5623.pdf
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.