Acta Informatica Pragensia 2024, 13(2), 308-326 | DOI: 10.18267/j.aip.2442855
Advancements in Breast Cancer Diagnosis: A Comprehensive Review of Mammography Datasets, Preprocessing and Classification Techniques
- 1 Laboratory of Mathematics, Informatics and Systems, Larbi Tebessi University – Tebessa, Algeria
- 2 University of Science and Technology Houari Boumediene, Algeria
Breast cancer, a pervasive global health concern, necessitates early detection for an improved prognosis. Mammography, a pivotal screening tool, faces challenges in interpretation, motivating the integration of advanced computational models. This paper offers a comprehensive examination of breast cancer classification through mammography, focusing on machine learning (ML) and deep learning (DL) approaches. The discussion encompasses widely used mammography datasets, preprocessing techniques, data augmentation and diverse classification algorithms. Noteworthy datasets include LAMIS-DMDB, EMBED and INbreast. Preprocessing involves denoising and contrast enhancement, employing techniques such as Wiener filtering and histogram equalization. Data augmentation, a critical factor in handling small datasets, is explored using basic and advanced techniques, including generative adversarial networks. ML algorithms analyse entire mammograms, while DL techniques, notably convolutional neural networks, focus on localized regions of interest. Despite promising strides, challenges persist in obtaining high-quality datasets and ensuring model interpretability, as well as the strong similarities between cancer and non-cancer regions and irrelevant feature extraction. The paper concludes by outlining potential research directions to further transform breast cancer prognosis and treatment.
Keywords: Breast cancer; Lesion classification; Mammography datasets; Mammography classification techniques.
Received: February 13, 2024; Revised: June 21, 2024; Accepted: June 28, 2024; Published: August 4, 2024 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Agarwal, R., Díaz, O., Yap, M. H., Lladó, X., & Martí, R. (2020). Deep learning for mass detection in Full Field Digital Mammograms. Computers in Biology and Medicine, 121, Article 103774. https://doi.org/10.1016/j.compbiomed.2020.103774
Go to original source...
- Alam, N., Denton, E. R. E., & Zwiggelaar, R. (2019). Classification of Microcalcification Clusters in Digital Mammograms Using a Stack Generalization Based Classifier. Journal of Imaging, 5(9), 76. https://doi.org/10.3390/jimaging5090076
Go to original source...
- Al-antari, M. A., Han, S.-M., & Kim, T.-S. (2020). Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms. Computer Methods and Programs in Biomedicine, 196, 105584. https://doi.org/10.1016/j.cmpb.2020.105584
Go to original source...
- Al-masni, M. A., Al-antari, M. A., Park, J.-M., Gi, G., Kim, T.-Y., Rivera, P., Valarezo, E., Choi, M.-T., Han, S.-M., & Kim, T.-S. (2018). Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Computer Methods and Programs in Biomedicine, 157, 85-94. https://doi.org/10.1016/j.cmpb.2018.01.017
Go to original source...
- Antropova, N., Huynh, B. Q., & Giger, M. L. (2017). A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Medical Physics, 44(10), 5162-5171. https://doi.org/10.1002/mp.12453
Go to original source...
- Arnold, M., Morgan, E., Rumgay, H., Mafra, A., Singh, D., Laversanne, M., Vignat, J., Gralow, J. R., Cardoso, F., Siesling, S., & Soerjomataram, I. (2022). Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast, 66, 15-23. https://doi.org/10.1016/j.breast.2022.08.010
Go to original source...
- Baccouche, A., Garcia-Zapirain, B., & Elmaghraby, A. S. (2022). An integrated framework for breast mass classification and diagnosis using stacked ensemble of residual neural networks. Scientific Reports, 12(1), 12259. https://doi.org/10.1038/s41598-022-15632-6
Go to original source...
- Bektas, B., Emre, I. E., Kartal, E., & Gulsecen, S. (2018). Classification of Mammography Images by Machine Learning Techniques. In 2018 3rd International Conference on Computer Science and Engineering (UBMK), (pp. 580-585). IEEE. https://doi.org/10.1109/UBMK.2018.8566380
Go to original source...
- Burt, J. R., Torosdagli, N., Khosravan, N., RaviPrakash, H., Mortazi, A., Tissavirasingham, F., Hussein, S., & Bagci, U. (2018). Deep learning beyond cats and dogs: recent advances in diagnosing breast cancer with deep neural networks. British Journal of Radiology, 91, 20170545. https://doi.org/10.1259/bjr.20170545
Go to original source...
- Cai, G., Guo, Y., Chen, W., Zeng, H., Zhou, Y., & Lu, Y. (2020). Computer-aided detection and diagnosis of microcalcification clusters on full field digital mammograms based on deep learning method using neutrosophic boosting. Multimedia Tools and Applications, 79(23-24), 17147-17167. https://doi.org/10.1007/s11042-019-7726-x
Go to original source...
- Cai, H., Huang, Q., Rong, W., Song, Y., Li, J., Wang, J., Chen, J., & Li, L. (2019). Breast Microcalcification Diagnosis Using Deep Convolutional Neural Network from Digital Mammograms. Computational and Mathematical Methods in Medicine, 2019, 1-10. https://doi.org/10.1155/2019/2717454
Go to original source...
- Cai, H., Wang, J., Dan, T., Li, J., Fan, Z., Yi, W., Cui, C., Jiang, X., & Li, L. (2023). An Online Mammography Database with Biopsy Confirmed Types. Scientific Data, 10(1), 123. https://doi.org/10.1038/s41597-023-02025-1
Go to original source...
- Chen, K.-C., Chin, C.-L., Chung, N.-C., & Hsu, C.-L. (2020). Combining Multi-classifier with CNN in Detection and Classification of Breast Calcification. In Future Trends in Biomedical and Health Informatics and Cybersecurity in Medical Devices, (pp. 304-311). https://doi.org/10.1007/978-3-030-30636-6_42
Go to original source...
- Danala, G., Aghaei, F., Heidari, M., Wu, T., Patel, B., & Zheng, B. (2018). Computer-aided classification of breast masses using contrast-enhanced digital mammograms. In K. Mori & N. Petrick (Eds.), Medical Imaging 2018: Computer-Aided Diagnosis, (p. 91). SPIE. https://doi.org/10.1117/12.2293136
Go to original source...
- de Brito Silva, T. F., de Paiva, A. C., Silva, A. C., Braz Júnior, G., & de Almeida, J. D. S. (2020). Classification of breast masses in mammograms using geometric and topological feature maps and shape distribution. Research on Biomedical Engineering, 36(3), 225-235. https://doi.org/10.1007/s42600-020-00063-x
Go to original source...
- Debelee, T. G., Schwenker, F., Ibenthal, A., & Yohannes, D. (2020). Survey of deep learning in breast cancer image analysis. Evolving Systems, 11(1), 143-163. https://doi.org/10.1007/s12530-019-09297-2
Go to original source...
- Dhade, P., & Shirke, P. (2024). Federated Learning for Healthcare: A Comprehensive Review. Engineering Proceedings, 59(1), 230. https://doi.org/10.3390/engproc2023059230
Go to original source...
- Fanizzi, A., Basile, T. M. A., Losurdo, L., Bellotti, R., Bottigli, U., Dentamaro, R., Didonna, V., Fausto, A., Massafra, R., Moschetta, M., Popescu, O., Tamborra, P., Tangaro, S., & La Forgia, D. (2020). A machine learning approach on multiscale texture analysis for breast microcalcification diagnosis. BMC Bioinformatics, 21(S2), 91. https://doi.org/10.1186/s12859-020-3358-4
Go to original source...
- George, M., Chen, Z., & Zwiggelaar, R. (2019). Multiscale connected chain topological modelling for microcalcification classification. Computers in Biology and Medicine, 114, 103422. https://doi.org/10.1016/j.compbiomed.2019.103422
Go to original source...
- Giger, M. L., Karssemeijer, N., & Schnabel, J. A. (2013). Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer. Annual Review of Biomedical Engineering, 15, 327-357. https://doi.org/10.1146/annurev-bioeng-071812-152416
Go to original source...
- Gnanasekaran, V. S., Joypaul, S., Meenakshi Sundaram, P., & Chairman, D. D. (2020). Deep learning algorithm for breast masses classification in mammograms. IET Image Processing, 14(12), 2860-2868. https://doi.org/10.1049/iet-ipr.2020.0070
Go to original source...
- Gonzales Martinez, R., & van Dongen, D.-M. (2023). Deep learning algorithms for the early detection of breast cancer: A comparative study with traditional machine learning. Informatics in Medicine Unlocked, 41, 101317. https://doi.org/10.1016/j.imu.2023.101317
Go to original source...
- Gopal, A., Gandhimaruthian, L., & Ali, J. (2020). Role of General Adversarial Networks in Mammogram Analysis: A Review. Current Medical Imaging, 16(7), 863-877. https://doi.org/10.2174/1573405614666191115102318
Go to original source...
- Halling-Brown, M. D., Warren, L. M., Ward, D., Lewis, E., Mackenzie, A., Wallis, M. G., Wilkinson, L. S., Given-Wilson, R. M., McAvinchey, R., & Young, K. C. (2021). OPTIMAM mammography image database: A large-scale resource of mammography images and clinical data. Radiology: Artificial Intelligence, 3(1). https://doi.org/10.1148/ryai.2020200103
Go to original source...
- Hamed, G., Marey, M., Amin, S. E.-S., & Tolba, M. F. (2018). A Proposed Model for Denoising Breast Mammogram Images. In 2018 13th International Conference on Computer Engineering and Systems (ICCES), (pp. 652-657). IEEE. https://doi.org/10.1109/ICCES.2018.8639307
Go to original source...
- Hassan, N. M., Hamad, S., & Mahar, K. (2022). Mammogram breast cancer CAD systems for mass detection and classification: a review. Multimedia Tools and Applications, 81(14), 20043-20075. https://doi.org/10.1007/s11042-022-12332-1
Go to original source...
- Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, P., Moore, R., Chang, K. & Munishkumaran, S. (1998). Current Status of the Digital Database for Screening Mammography. Digital Mammography, (pp. 457-460). Springer. https://doi.org/10.1007/978-94-011-5318-8_75
Go to original source...
- Holzinger, A., Langs, G., Denk, H., Zatloukal, K., & Müller, H. (2019). Causability and explainability of artificial intelligence in medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(4), e1312. https://doi.org/10.1002/widm.1312
Go to original source...
- Imane, O., Mohamed, A., Lazhar, R. F., Hama, S., Elhadj, B., & Conci, A. (2024). LAMIS-DMDB: A new full field digital mammography database for breast cancer AI-CAD researches. Biomedical Signal Processing and Control, 90, 105823. https://doi.org/10.1016/j.bspc.2023.105823
Go to original source...
- Jabeen, K., Khan, M. A., Balili, J., Alhaisoni, M., Almujally, N. A., Alrashidi, H., Tariq, U., & Cha, J. H. (2023). BC2NetRF: Breast Cancer Classification from Mammogram Images Using Enhanced Deep Learning Features and Equilibrium-Jaya Controlled Regula Falsi-Based Features Selection. Diagnostics, 13(7). https://doi.org/10.3390/diagnostics13071238
Go to original source...
- Jalloul, R., Chethan, H. K., & Alkhatib, R. (2023). A Review of Machine Learning Techniques for the Classification and Detection of Breast Cancer from Medical Images. Diagnostics, 13(14), 2460. https://doi.org/10.3390/diagnostics13142460
Go to original source...
- Jeong, J. J., Tariq, A., Adejumo, T., Trivedi, H., Gichoya, J. W., & Banerjee, I. (2022). Systematic Review of Generative Adversarial Networks (GANs) for Medical Image Classification and Segmentation. Journal of Digital Imaging, 35(2), 137-152. https://doi.org/10.1007/s10278-021-00556-w
Go to original source...
- Jeong, J. J., Vey, B. L., Bhimireddy, A., Kim, T., Santos, T., Correa, R., Dutt, R., Mosunjac, M., Oprea-Ilies, G., Smith, G., Woo, M., McAdams, C. R., Newell, M. S., Banerjee, I., Gichoya, J., & Trivedi, H. (2023). The EMory BrEast imaging Dataset (EMBED): A Racially Diverse, Granular Dataset of 3.4 Million Screening and Diagnostic Mammographic Images. Radiology: Artificial Intelligence, 5(1). https://doi.org/10.1148/ryai.220047
Go to original source...
- Joseph, A. M., John, M. G., & Dhas, A. S. (2017). Mammogram image denoising filters: A comparative study. In 2017 Conference on Emerging Devices and Smart Systems (ICEDSS), (pp. 184-189). IEEE. https://doi.org/10.1109/ICEDSS.2017.8073679
Go to original source...
- Kalavathi, R., & Swamy Das, M. (2023). A Review on Deep Learning Approaches for Histopathology Breast Cancer Classification. In Proceedings of Fourth International Conference on Computer and Communication Technologies, (pp. 367-375). Springer. https://doi.org/10.1007/978-981-19-8563-8_35
Go to original source...
- Kermouni Serradj, N., Messadi, M., & Lazzouni, S. (2022). Classification of Mammographic ROI for Microcalcification Detection Using Multifractal Approach. Journal of Digital Imaging, 35(6), 1544-1559. https://doi.org/10.1007/s10278-022-00677-w
Go to original source...
- Lee, R. S., Gimenez, F., Hoogi, A., Miyake, K. K., Gorovoy, M., & Rubin, D. L. (2017). A curated mammography data set for use in computer-aided detection and diagnosis research. Scientific Data, 4(1), 170177. https://doi.org/10.1038/sdata.2017.177
Go to original source...
- Lehman, C. D., Arao, R. F., Sprague, B. L., Lee, J. M., Buist, D. S. M., Kerlikowske, K., Henderson, L. M., Onega, T., Tosteson, A. N. A., Rauscher, G. H., & Miglioretti, D. L. (2017). National performance benchmarks for modern screening digital mammography: Update from the Breast Cancer Surveillance Consortium. Radiology, 283(1), 49-58. https://doi.org/10.1148/radiol.2016161174
Go to original source...
- Leong, Y. S., Hasikin, K., Lai, K. W., Mohd Zain, N., & Azizan, M. M. (2022). Microcalcification Discrimination in Mammography Using Deep Convolutional Neural Network: Towards Rapid and Early Breast Cancer Diagnosis. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.875305
Go to original source...
- Loizidou, K., Elia, R., & Pitris, C. (2023). Computer-aided breast cancer detection and classification in mammography: A comprehensive review. Computers in Biology and Medicine, 153, 106554. https://doi.org/10.1016/j.compbiomed.2023.106554
Go to original source...
- Loizidou, K., Skouroumouni, G., Nikolaou, C., & Pitris, C. (2020). An Automated Breast Micro-Calcification Detection and Classification Technique Using Temporal Subtraction of Mammograms. IEEE Access, 8, 52785-52795. https://doi.org/10.1109/ACCESS.2020.2980616
Go to original source...
- Loizidou, K., Skouroumouni, G., Pitris, C., & Nikolaou, C. (2021). Digital subtraction of temporally sequential mammograms for improved detection and classification of microcalcifications. European Radiology Experimental, 5(1), 40. https://doi.org/10.1186/s41747-021-00238-w
Go to original source...
- Mahmood, T., Li, J., Pei, Y., Akhtar, F., Rehman, M. U., & Wasti, S. H. (2022). Breast lesions classifications of mammographic images using a deep convolutional neural network-based approach. PLOS ONE, 17(1), e0263126. https://doi.org/10.1371/journal.pone.0263126
Go to original source...
- Maitra, I. K., Nag, S., & Bandyopadhyay, S. K. (2012). Technique for preprocessing of digital mammogram. Computer Methods and Programs in Biomedicine, 107(2), 175-188. https://doi.org/10.1016/j.cmpb.2011.05.007
Go to original source...
- Moreira, I. C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M. J., & Cardoso, J. S. (2012). INbreast. Academic Radiology, 19(2), 236-248. https://doi.org/10.1016/j.acra.2011.09.014
Go to original source...
- Nasser, M., & Yusof, U. K. (2023). Deep Learning Based Methods for Breast Cancer Diagnosis: A Systematic Review and Future Direction. Diagnostics, 13(1), 161. https://doi.org/10.3390/diagnostics13010161
Go to original source...
- Nguyen, H. T., Nguyen, H. Q., Pham, H. H., Lam, K., Le, L. T., Dao, M., & Vu, V. (2023). VinDr-Mammo: A large-scale benchmark dataset for computer-aided diagnosis in full-field digital mammography. Scientific Data, 10(1), 277. https://doi.org/10.1038/s41597-023-02100-7
Go to original source...
- Oyelade, O. N., Ezugwu, A. E., Almutairi, M. S., Saha, A. K., Abualigah, L., & Chiroma, H. (2022). A generative adversarial network for synthetization of regions of interest based on digital mammograms. Scientific Reports, 12(1), 6166. https://doi.org/10.1038/s41598-022-09929-9
Go to original source...
- Oza, P., Sharma, P., & Patel, S. (2023). Breast lesion classification from mammograms using deep neural network and test-time augmentation. Neural Computing and Applications, (in press). https://doi.org/10.1007/s00521-023-09165-w
Go to original source...
- Oza, P., Sharma, P., Patel, S., Adedoyin, F., & Bruno, A. (2022). Image Augmentation Techniques for Mammogram Analysis. Journal of Imaging, 8(5). https://doi.org/10.3390/jimaging8050141
Go to original source...
- Prayitno, Shyu, C.-R., Putra, K. T., Chen, H.-C., Tsai, Y.-Y., Hossain, K. S. M. T., Jiang, W., & Shae, Z.-Y. (2021). A Systematic Review of Federated Learning in the Healthcare Area: From the Perspective of Data Properties and Applications. Applied Sciences, 11(23), 11191. https://doi.org/10.3390/app112311191
Go to original source...
- Ragab, D. A., Attallah, O., Sharkas, M., Ren, J., & Marshall, S. (2021). A framework for breast cancer classification using Multi-DCNNs. Computers in Biology and Medicine, 131, 104245. https://doi.org/10.1016/j.compbiomed.2021.104245
Go to original source...
- Rahmani Seryasat, O., & Haddadnia, J. (2018). Evaluation of a New Ensemble Learning Framework for Mass Classification in Mammograms. Clinical Breast Cancer, 18(3), e407-e420. https://doi.org/10.1016/j.clbc.2017.05.009
Go to original source...
- Ramos-Pollán, R., Guevara-López, M. A., Suárez-Ortega, C., Díaz-Herrero, G., Franco-Valiente, J. M., Rubio-del-Solar, M., González-de-Posada, N., Vaz, M. A. P., Loureiro, J., & Ramos, I. (2012). Discovering Mammography-based Machine Learning Classifiers for Breast Cancer Diagnosis. Journal of Medical Systems, 36(4), 2259-2269. https://doi.org/10.1007/s10916-011-9693-2
Go to original source...
- Rehman, K. ur, Li, J., Pei, Y., Yasin, A., Ali, S., & Mahmood, T. (2021). Computer Vision-Based Microcalcification Detection in Digital Mammograms Using Fully Connected Depthwise Separable Convolutional Neural Network. Sensors, 21(14), 4854. https://doi.org/10.3390/s21144854
Go to original source...
- Ribli, D., Horváth, A., Unger, Z., Pollner, P., & Csabai, I. (2018). Detecting and classifying lesions in mammograms with Deep Learning. Scientific Reports, 8(1), 4165. https://doi.org/10.1038/s41598-018-22437-z
Go to original source...
- Rodríguez-Ruiz, A., Krupinski, E., Mordang, J. J., Schilling, K., Heywang-Köbrunner, S. H., Sechopoulos, I., & Mann, R. M. (2019). Detection of breast cancer with mammography: Effect of an artificial intelligence support system. Radiology, 290(3), 305-314. https://doi.org/10.1148/radiol.2018181371
Go to original source...
- Sahu, A., Das, P. K., & Meher, S. (2023). Recent advancements in machine learning and deep learning-based breast cancer detection using mammograms. Physica Medica, 114, 103138. https://doi.org/10.1016/j.ejmp.2023.103138
Go to original source...
- Shen, L., Margolies, L. R., Rothstein, J. H., Fluder, E., McBride, R., & Sieh, W. (2019). Deep Learning to Improve Breast Cancer Detection on Screening Mammography. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-48995-4
Go to original source...
- Soltani, H., Amroune, M., Bendib, I., & Haouam, M. Y. (2021). Breast Cancer Lesion Detection and Segmentation Based On Mask R-CNN. In 2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI), (pp. 1-6). IEEE. https://doi.org/10.1109/ICRAMI52622.2021.9585913
Go to original source...
- Soltani, H., Amroune, M., Bendib, I., Haouam, M.-Y., Benkhelifa, E., & Fraz, M. M. (2023). Breast lesions segmentation and classification in a two-stage process based on Mask-RCNN and Transfer Learning. Multimedia Tools and Applications, 83, 35763-35780. https://doi.org/10.1007/s11042-023-16895-5
Go to original source...
- Tabár, L., Vitak, B., Chen, T. H. H., Yen, A. M. F., Cohen, A., Tot, T., Chiu, S. Y. H., Chen, S. L. S., Fann, J. C. Y., Rosell, J., Fohlin, H., Smith, R. A., & Duffy, S. W. (2011). Swedish two-county trial: Impact of mammographic screening on breast cancer mortality during 3 decades. Radiology, 260(3), 658-663. https://doi.org/10.1148/radiol.11110469
Go to original source...
- Tariq, M., Iqbal, S., Ayesha, H., Abbas, I., Ahmad, K. T., & Niazi, M. F. K. (2021). Medical image based breast cancer diagnosis: State of the art and future directions. Expert Systems with Applications, 167, 114095. https://doi.org/10.1016/j.eswa.2020.114095
Go to original source...
- Tripathy, S., & Swarnkar, T. (2020). Unified Preprocessing and Enhancement Technique for Mammogram Images. Procedia Computer Science, 167, 285-292. https://doi.org/https://doi.org/10.1016/j.procs.2020.03.223
Go to original source...
- Vidić, I., Egnell, L., Jerome, N. P., Teruel, J. R., Sjøbakk, T. E., Østlie, A., Fjøsne, H. E., Bathen, T. F., & Goa, P. E. (2018). Support vector machine for breast cancer classification using diffusion-weighted MRI histogram features: Preliminary study. Journal of Magnetic Resonance Imaging, 47(5), 1205-1216. https://doi.org/10.1002/jmri.25873
Go to original source...
- Vijayarajeswari, R., Parthasarathy, P., Vivekanandan, S., & Basha, A. A. (2019). Classification of mammogram for early detection of breast cancer using SVM classifier and Hough transform. Measurement, 146, 800-805. https://doi.org/10.1016/j.measurement.2019.05.083
Go to original source...
- Wang, S., Huo, J., Ouyang, X., Che, J., Xue, Z., Shen, D., Wang, Q., & Cheng, J.-Z. (2020). mr2NST: Multi-resolution and Multi-reference Neural Style Transfer for Mammography. In Predictive Intelligence in Medicine, (pp. 169-177). Springer. https://doi.org/10.1007/978-3-030-59354-4_16
Go to original source...
- Yu, X., Ren, Z., Guttery, D. S., & Zhang, Y.-D. (2024). DF-dRVFL: A novel deep feature based classifier for breast mass classification. Multimedia Tools and Applications, 83, 14393-14422. https://doi.org/10.1007/s11042-023-15864-2
Go to original source...
- Zahoor, S., Shoaib, U., & Lali, I. U. (2022). Breast Cancer Mammograms Classification Using Deep Neural Network and Entropy-Controlled Whale Optimization Algorithm. Diagnostics, 12(2), 557. https://doi.org/10.3390/diagnostics12020557
Go to original source...
- Zakareya, S., Izadkhah, H., & Karimpour, J. (2023). A New Deep-Learning-Based Model for Breast Cancer Diagnosis from Medical Images. Diagnostics, 13(11), 1944. https://doi.org/10.3390/diagnostics13111944
Go to original source...
- Zhang, X. (2023). Molecular Classification of Breast Cancer: Relevance and Challenges. Archives of Pathology & Laboratory Medicine, 147(1), 46-51. https://doi.org/10.5858/arpa.2022-0070-RA
Go to original source...
- Zhu, Z., Wang, S.-H., & Zhang, Y.-D. (2023). A Survey of Convolutional Neural Network in Breast Cancer. Computer Modeling in Engineering & Sciences, 136(3), 2127-2172. https://doi.org/10.32604/cmes.2023.025484
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.