Acta Informatica Pragensia 2025, 14(2), 215-245 | DOI: 10.18267/j.aip.2692098

Generative Artificial Intelligence in Ubiquitous Learning: Evaluating a Chatbot-based Recommendation Engine for Personalized and Context-aware Education

Manel Guettala ORCID...1, Samir Bourekkache ORCID...1, Okba Kazar ORCID...2, Saad Harous ORCID...3
1 Laboratoire de l'INFormatique Intelligente (LINFI), Department of Computer Science, University of Mohamed Khider Biskra, Algeria
2 Department of Computer Science, College of Arts, Sciences, IT & Communication, University of Kalba, Sharjah, United Arab Emirates
3 Department of Computer Science, College of Computing and Informatics, University of Sharjah, Sharjah, United Arab Emirates

Background: Ubiquitous learning environments aim to provide personalized and context-aware educational resources; however, traditional recommendation systems often fall short in meeting these dynamic learner needs.

Objective: This study develops and evaluates a chatbot-based recommendation system that uses generative AI and prompt engineering techniques to enhance recommendation accuracy and user engagement in ubiquitous learning contexts.

Methods: A ChatGPT-powered chatbot was implemented using few-shot prompting and dynamic context integration to deliver personalized, real-time educational support. The system was deployed using an intuitive Gradio interface, facilitating user accessibility and seamless interaction across varied learning scenarios. A tailored evaluation dataset was constructed to capture diverse user interactions and the system was tested through real-world case studies and user feedback metrics, including task success rates, response times and satisfaction ratings.

Results: The chatbot achieved an 85% overall task success rate, a 70% success rate in context-aware tasks and an 80% user satisfaction rating, with most users assigning scores of 4 or 5 on a 5-point scale.

Conclusion: The findings demonstrate that the proposed solution outperforms traditional systems in delivering personalized, adaptive and context-aware educational recommendations, underscoring the transformative potential of generative AI in advancing learner-centred ubiquitous learning environments.

Keywords: Ubiquitous computing; Context awareness; Deep learning; Personalized educational; Educational technologies; HCI; Recommendation system; LLMs; Generative AI; ChatGPT; Prompting engineering; Few-shot prompting.

Received: October 9, 2024; Revised: May 29, 2025; Accepted: May 30, 2025; Prepublished online: July 1, 2025; Published: July 26, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Guettala, M., Bourekkache, S., Kazar, O., & Harous, S. (2025). Generative Artificial Intelligence in Ubiquitous Learning: Evaluating a Chatbot-based Recommendation Engine for Personalized and Context-aware Education. Acta Informatica Pragensia14(2), 215-245. doi: 10.18267/j.aip.269
Download citation

References

  1. Abid, A., Abdalla, A., Abid, A., Khan, D., Alfozan, A., & Zou, J. Y. (2019). Gradio: Hassle-Free sharing and testing of ML models in the Wild. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1906.02569 Go to original source...
  2. Abramski, K., Citraro, S., Lombardi, L., Rossetti, G., & Stella, M. (2023). Cognitive network science reveals bias in GPT-3, GPT-3.5 Turbo, and GPT-4 mirroring math anxiety in High-School students. Big Data and Cognitive Computing, 7(3), 124. https://doi.org/10.3390/bdcc7030124 Go to original source...
  3. Adomavicius, G., & Tuzhilin, A. (2010). Context-aware recommender systems. In Recommender systems handbook, (pp. 217-253). Springer. https://doi.org/10.1007/978-1-4899-7637-6_6 Go to original source...
  4. Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734-749. https://doi.org/10.1109/tkde.2005.99 Go to original source...
  5. Arapakis, I., Park, S., & Pielot, M. (2021). Impact of Response Latency on User Behaviour in Mobile Web Search. In Proceedings of the 2021 Conference on Human Information Interaction and Retrieval, (pp. 279-283). ACM. https://doi.org/10.1145/3406522.3446038 Go to original source...
  6. Baltrunas, L., Ludwig, B., Peer, S., & Ricci, F. (2012). Context relevance assessment and exploitation in mobile recommender systems. Personal and Ubiquitous Computing, 16(5), 507-526. https://doi.org/10.1007/s00779-011-0417-x Go to original source...
  7. Burger, B., Kanbach, D. K., Kraus, S., Breier, M., & Corvello, V. (2023). On the use of AI-based tools like ChatGPT to support management research. European Journal of Innovation Management, 26(7), 233-241. https://doi.org/10.1108/ejim-02-2023-0156 Go to original source...
  8. Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction, 12(4), 331-370. https://doi.org/10.1023/a:1021240730564 Go to original source...
  9. Chinonso, O. E., Theresa, A. M., & Aduke, T. C. (2023). ChatGPT for Teaching, Learning and Research: Prospects and Challenges. Global Academic Journal of Humanities and Social Sciences, 5(2), 33-40. https://doi.org/10.36348/gajhss.2023.v05i02.001 Go to original source...
  10. Deldjoo, Y., He, Z., McAuley, J., Korikov, A., Sanner, S., Ramisa, A., Vidal, R., Sathiamoorthy, M., Kasirzadeh, A., & Milano, S. (2024). A review of modern recommender systems using Generative Models (Gen-RECSYS). In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, (pp. 6448-6458). ACM. https://doi.org/10.1145/3637528.3671474 Go to original source...
  11. Duran, E. B., & Alvarez, M. M. (2017). Method for generating expert recommendations to advise students on ubiquitous learning experiences. In 2017 36th International Conference of the Chilean Computer Science Society, (pp. 1-8). IEEE. https://doi.org/10.1109/sccc.2017.8405121 Go to original source...
  12. El Guabassi, I., Achhab, M. A., Jellouli, I., & Mohajir, B. E. E. (2016). Recommender system for ubiquitous learning based on decision tree. In 2016 4th IEEE international colloquium on information science and technology, (pp. 535-540). IEEE. https://doi.org/10.1109/cist.2016.7805107 Go to original source...
  13. Fernández-Tobías, I., Cantador, I., Kaminskas, M., & Ricci, F. (2012). Cross-domain recommender systems: A survey of the state of the art. Paper presented at the Spanish conference on information retrieval. http://arantxa.ii.uam.es/~cantador%20/doc/2012/ceri12a.pdf
  14. Gao, Y., Tong, W., Wu, E. Q., Chen, W., Zhu, G., & Wang, F. (2023). Chat with ChatGPT on interactive engines for intelligent driving. IEEE Transactions on Intelligent Vehicles, 8(3), 2034-2036. https://doi.org/10.1109/tiv.2023.3252571 Go to original source...
  15. Gomez-Uribe, C. A., & Hunt, N. (2015). The netflix recommender system: Algorithms, business value, and innovation. ACM Transactions on Management Information Systems, 6(4), 1-19. https://doi.org/10.1145/2843948 Go to original source...
  16. Guettala, M., Bourekkache, S., & Kazar, O. (2021). Ubiquitous learning a new challenge of ubiquitous computing: state of the art. In 2021 International Conference on Information Systems and Advanced Technologies, (pp. 1-5). IEEE. https://doi.org/10.1109/icisat54145.2021.9678434 Go to original source...
  17. Guettala, M., Bourekkache, S., Kazar, O., & Harous, S. (2024a). Generative Artificial Intelligence in Education: Advancing Adaptive and Personalized learning. Acta Informatica Pragensia, 13(3), 460-489. https://doi.org/10.18267/j.aip.235 Go to original source...
  18. Guettala, M., Bourekkache, S., Kazar, O., & Harous, S. (2024b). Building Advanced RAG Q&A with Multiple Data Sources Using Langchain: A Multi-Search Agent RAG Application in Ubiquitous Learning. In 2024 2nd International Conference on Computing and Data Analytics, (pp. 1-7). IEEE. https://doi.org/10.1109/iccda64887.2024.10867361 Go to original source...
  19. Guettala, M., Bourekkache, S., Kazar, O., Harous, S., & Zouai, M. (2023). The design and implementation of intelligent ubiquitous learning Multi-Agent Context-Aware System. Research Square (Research Square). https://doi.org/10.21203/rs.3.rs-3138577/v1 Go to original source...
  20. Guettala, M., Bourekkache, S., Kazar, O., Harous, S., Athamena, B., & Houhamdi, Z. (2022). Cloud ubiquitous learning approach based on multi-agents system. In 2022 International Arab Conference on Information Technology (ACIT), (pp. 1-8). IEEE. https://doi.org/10.1109/acit57182.2022.9994205 Go to original source...
  21. Haruna, K., Ismail, M. A., Damiasih, D., Chiroma, H., & Herawan, T. (2017). A Comprehensive Survey on Comparisons across Contextual Pre-filtering, Contextual Post-filtering and Contextual Modelling Approaches. TELKOMNIKA, 15(4), 1865. https://doi.org/10.12928/telkomnika.v15i4.6875 Go to original source...
  22. Iatrellis, O., Samaras, N., Kokkinos, K., & Panagiotakopoulos, T. (2024). Leveraging Generative AI for Sustainable Academic Advising: Enhancing Educational Practices through AI-Driven Recommendations. Sustainability, 16(17), 7829. https://doi.org/10.3390/su16177829 Go to original source...
  23. Javaid, M., Haleem, A., Singh, R. P., Khan, S., & Khan, I. H. (2023). Unlocking the opportunities through ChatGPT Tool towards ameliorating the education system. BenchCouncil Transactions on Benchmarks Standards and Evaluations, 3(2), 100115. https://doi.org/10.1016/j.tbench.2023.100115 Go to original source...
  24. Kingsford, C., & Salzberg, S. L. (2008). What are decision trees? Nature Biotechnology, 26(9), 1011-1013. https://doi.org/10.1038/nbt0908-1011 Go to original source...
  25. Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender Systems. Computer, 42(8), 30-37. https://doi.org/10.1109/mc.2009.263 Go to original source...
  26. Koren, Y., Rendle, S., & Bell, R. (2021). Advances in collaborative filtering. In Recommender systems handbook, (pp. 91-142). Springer. https://doi.org/10.1007/978-1-4899-7637-6_3 Go to original source...
  27. Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J., & Kim, H. (2024). Few-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education. Education and Information Technologies, 29(9), 11483-11515. https://doi.org/10.1007/s10639-023-12249-8 Go to original source...
  28. Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering algorithm. Pattern Recognition, 36(2), 451-461. https://doi.org/10.1016/s0031-3203(02)00060-2 Go to original source...
  29. Lops, P., De Gemmis, M., & Semeraro, G. (2011). Content-based recommender systems: State of the art and trends. In Recommender systems handbook, (pp. 73-105). Springer. https://doi.org/10.1007/978-0-387-85820-3_3 Go to original source...
  30. Mhlanga, D. (2023). Open AI in education, the responsible and ethical use of ChatGPT towards lifelong learning. In FinTech and Artificial Intelligence for Sustainable Development, (pp. 387-409). Palgrave Macmillan. https://doi.org/10.1007/978-3-031-37776-1_17 Go to original source...
  31. Nielsen, J. (1994). Enhancing the explanatory power of usability heuristics. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems, (pp. 152-158). ACM. Go to original source...
  32. Pazzani, M. J., & Billsus, D. (2007). Content-based recommendation systems. In The adaptive web: methods and strategies of web personalization, (pp. 325-341). Springer. https://doi.org/10.1007/978-3-540-72079-9_10 Go to original source...
  33. Peterson, L. E. (2009). K-nearest neighbor. Scholarpedia, 4(2), 1883. https://doi.org/10.4249/scholarpedia.1883 Go to original source...
  34. Remountakis, M., Kotis, K., Kourtzis, B., & Tsekouras, G. E. (2023). ChatGPT and persuasive technologies for the management and delivery of personalized recommendations in hotel hospitality. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2307.14298 Go to original source...
  35. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web. ACM. https://doi.org/10.1145/371920.372071 Go to original source...
  36. Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative filtering recommender systems. In The adaptive web: methods and strategies of web personalization, (pp. 291-324). Springer. https://doi.org/10.1007/978-3-540-72079-9_9 Go to original source...
  37. Siro, C., Aliannejadi, M., & De Rijke, M. (2023). Understanding and Predicting User Satisfaction with Conversational Recommender Systems. ACM Transactions on Office Information Systems, 42(2), 1-37. https://doi.org/10.1145/3624989 Go to original source...
  38. Sondakh, D. E. S., Taju, S. W., Yuune, J. K. T., Kaminang, A. F., & Wagey, S. G. (2024). Research Project Topic Recommender System using Generative Language Model. CogITo Smart Journal, 10(1), 233-245. https://doi.org/10.31154/cogito.v10i1.678.654-666 Go to original source...
  39. Sordoni, A., Galley, M., Auli, M., Brockett, C., Ji, Y., Mitchell, M., Nie, J., Gao, J., & Dolan, B. (2015). A Neural Network approach to Context-Sensitive Generation of Conversational Responses. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, (pp. 196-205). ACL. https://doi.org/10.3115/v1/n15-1020 Go to original source...
  40. Thiprak, S., & Kurutach, W. (2015). Ubiquitous computing technologies and context aware recommender systems for ubiquitous learning. In 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). IEEE. https://doi.org/10.1109/ECTICon.2015.7206939 Go to original source...
  41. Verbert, K., Manouselis, N., Ochoa, X., Wolpers, M., Drachsler, H., Bosnic, I., & Duval, E. (2012). Context-Aware Recommender Systems for Learning: A survey and future challenges. IEEE Transactions on Learning Technologies, 5(4), 318-335. https://doi.org/10.1109/tlt.2012.11 Go to original source...
  42. Wang, S., & Wu, C. (2011). Application of context-aware and personalized recommendation to implement an adaptive ubiquitous learning system. Expert Systems With Applications, 38(9), 10831-10838. https://doi.org/10.1016/j.eswa.2011.02.083 Go to original source...
  43. Waswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. In 31st Conference on Neural Information Processing Systems (NIPS 2017). NIPS. https://papers.nips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
  44. Zhai, X. (2022). ChatGPT User Experience: Implications for Education. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4312418 Go to original source...
  45. Zhang, Y., Jin, Y., Chen, L., & Yang, T. (2024). Navigating User experience of ChatGPT-based Conversational Recommender Systems: The effects of Prompt Guidance and Recommendation Domain. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2405.13560 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.