Acta Informatica Pragensia 2018, 7(1), 104-111 | DOI: 10.18267/j.aip.1165606

Paraconsistent Many–Valued Logic in GUHA Framework

Esko Turunen
Department of Mathematics, Tampere University of Technology, P.O. Box 553, FIN-33101, Tampere, Finland

The primary aim of this paper is to establish a formal connection between a particular many–valued paraconsistent logic and the logic of a KDD method, namely the GUHA data mining method by introducing a new quantifier called Paraconsistent Separation quantifier. This quantifier is implemented to LISp–Miner Software. The secondary aim is to demonstrate a possible usefulness of this quantifier in social and other applied sciences by examples taking from family planning context.

Keywords: KDD, paraconsistent logic, many–valued logic

Received: March 2, 2018; Accepted: June 12, 2018; Prepublished online: June 27, 2018; Published: June 30, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Turunen, E. (2018). Paraconsistent Many–Valued Logic in GUHA Framework. Acta Informatica Pragensia7(1), 104-111. doi: 10.18267/j.aip.116
Download citation

References

  1. Belnap, N. D. (1977). A useful four-valued logic. In J. M. Dunn & G. Epstein (Eds.), Modern Uses of Multiple-Valued Logic (pp. 5-37). Dordrecht: Springer. doi: 10.1007/978-94-010-1161-7_2 Go to original source...
  2. Carnielli, W. & Coniglio, M. E. (2016). Paraconsistent logic: Consistency, contradiction and negation. New York: Springer. Go to original source...
  3. Cintula, P., Hájek, P., & Noguera, C. (2011). Handbook of mathematical fuzzy logic (in 3 volumes). London: College Publications.
  4. Lim, T.-S. (1997). This dataset is a subset of the 1987 national indonesia contraceptive prevalence survey. Retrieved June 2, 2018, from https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice
  5. LISp-Miner (2018). The official site of the LISp-Miner project. Retrieved June 2, 2018, from https://lispminer.vse.cz/
  6. Pavelka, J. (1979a). On fuzzy logic I. Many-valued rules of inference. Mathematical Logic Quarterly, 25(3-6), 45-52. doi: 10.1002/malq.19790250304 Go to original source...
  7. Pavelka, J. (1979b). On fuzzy logic II. Enriched residuated lattices and semantics of propositional calculi. Mathematical Logic Quarterly, 25(7-12), 119-134. doi: 10.1002/malq.19790250706 Go to original source...
  8. Pavelka, J. (1979c). On fuzzy logic III. Semantical completeness of some many-valued propositional calculi. Mathematical Logic Quarterly, 25(25-29), 447-464. doi: 10.1002/malq.19790252510 Go to original source...
  9. Rauch, J. (2013). Observational calculi and association rules. Berlin: Springer. Go to original source...
  10. Rodolfo, E., Esteva, F., Flaminio, T., L., G., & Carles Noguera, C. (2015). Paraconsistency properties in degree-preserving fuzzy logics. Soft Computing, 19(3), 531-546. doi: 10.1007/s00500-014-1489-0 Go to original source...
  11. Rodriguez, T., Turunen, E., Ruan, D., & Montero, J. (2014). Another paraconsistent algebraic semantics for Lukasiewicz-Pavelka logic. Fuzzy Sets and Systems, 242(1), 132-147. doi: 10.1016/j.fss.2013.06.011 Go to original source...
  12. Turunen, E., Öztürk, M., & Tsoukias, A. (2010). Paraconsistent semantics for Pavelka style fuzzy sentential logic. Fuzzy Sets and Systems, 161(14), 1926-1940. doi: 10.1016/j.fss.2009.12.017 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.