Acta Informatica Pragensia 2022, 11(2), 254-264 | DOI: 10.18267/j.aip.1842411

Increasing Efficiency in Inventory Control of Products with Sporadic Demand Using Simulation

Katerina Huskova ORCID..., Jakub Dyntar ORCID...
Faculty of Economics, Technical University of Liberec, Voronì¾ská 13, 46001 Liberec, Czech Republic

The goal of this paper is to examine whether, in Q-system inventory control policy, a combination of the reorder point exceeding order quantity leads to minimal holding and ordering costs when dealing with sporadic demand. For this purpose, a past stock movement simulation is applied to a set of randomly generated data with different numbers of zero demand periods ranging from 10 to 90%. The outputs of the simulation prove that in situations where stock holding costs are too high, the simulation tends to reduce average stock by overcoming periods between two demand peaks with an increase in the numbers of small replenishment orders and reaches lower stock holding and ordering costs. Furthermore, the correlation analysis proves that there is a statistically significant relationship (r = .847, p = .004) between the number of time series that reach minimal holding and ordering costs under the control of reorder point (replenishment order) and the demand standard deviation affected by the evolving sporadicity. These findings can support decision making linked with inventory management of products with sporadic demand and contribute to development of business information systems.

Keywords: Sporadic demand; Inventory control; ERP; Enterprise resource planning; Simulation; Operations research.

Received: May 10, 2022; Revised: June 30, 2022; Accepted: July 6, 2022; Prepublished online: July 6, 2022; Published: August 19, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Huskova, K., & Dyntar, J. (2022). Increasing Efficiency in Inventory Control of Products with Sporadic Demand Using Simulation. Acta Informatica Pragensia11(2), 254-264. doi: 10.18267/j.aip.184
Download citation

References

  1. Axsäter, S. (2000) Exact Analysis of Continuous Review (R,Q) Policies in Two-Echelon Inventory Systems with Compound Poisson Demand. Operations Research, 48(5), 686-696. https://doi.org/10.1287/opre.48.5.686.12403 Go to original source...
  2. Croston, J. D. (1972). Forecasting and stock control for intermittent demands. Journal of the Operational Research Society, 23(3), 289-303. Go to original source...
  3. Dendauw, P., Goeman, T., Claeys, D., De Turck, K., Fiems, D., & Bruneel, H. (2021). Condition-based critical level policy for spare parts inventory management. Computers & Industrial Engineering, 157, 107369. https://doi.org/10.1016/j.cie.2021.107369 Go to original source...
  4. Do Rego, J. R., & De Mesquita, M. A. (2015). Demand forecasting and inventory control: A simulation study on automotive spare parts. International Journal of Production Economics, 161, 1-16. https://doi.org/10.1016/j.ijpe.2014.11.009 Go to original source...
  5. Dyntar, J. (2018). Návrh a optimalizace dodavatelských systémù s vyu¾itím dynamické simulace. FinEco.
  6. Dyntar, J., & Kemrová, E. (2011). Efficiency of Past stock movement simulation in intermittent demand stock control. Scientific papers of the University of Pardubice. Series D, 21(3), 31-42.
  7. Gamberini, R., Lolli, F., Regattieri, A., & Rimini, B. (2014). Dynamic re-order policies for irregular and sporadic demand profiles. Procedia Engineering, 69, 1420-1429. https://doi.org/10.1016/j.proeng.2014.03.137 Go to original source...
  8. Gardner Jr, E., & Koehler, A. B. (2005). Comments on a patented bootstrapping method for forecasting intermittent demand. International Journal of Forecasting, 21(3), 617-618. https://doi.org/10.1016/j.ijforecast.2005.04.021 Go to original source...
  9. Ghnatios, C., Hage, R. M., & Hage, I. (2019). An efficient tabu-search optimized regression for data-driven modeling. Comptes Rendus Mécanique, 347(11), 806-816. https://doi.org/10.1016/j.crme.2019.11.006 Go to original source...
  10. Hur, M., Keskin, B. B., & Schmidt, C. P. (2018). End-of-life inventory control of aircraft spare parts under performance based logistics. International Journal of Production Economics, 204, 186-203. https://doi.org/10.1016/j.ijpe.2018.07.028 Go to original source...
  11. Chatfield, C. (1978). The Holt-Winters Forecasting Procedure. Journal of the Royal Statistical Society, Series C (Applied Statistics), 27(3), 264-279. https://doi.org/10.2307/2347162 Go to original source...
  12. Chung, K. J., & Cárdenas-Barrón, L. E. (2012). The complete solution procedure for the EOQ and EPQ inventory models with linear and fixed backorder costs. Mathematical and Computer Modelling, 55(11-12), 2151-2156. https://doi.org/10.1016/j.mcm.2011.12.051 Go to original source...
  13. Johnston, F. R., & Boylan, J. E. (1996). Forecasting for Items with Intermittent Demand. The Journal of the Operational Research Society, 47(1), 113-121. https://doi.org/10.2307/2584256 Go to original source...
  14. Kukreja, A., & Schmidt, C. P. (2005). A model for lumpy demand parts in a multi-location inventory system with transshipments. Computers & Operations Research, 32(8), 2059-2075. https://doi.org/10.1016/j.cor.2004.01.007 Go to original source...
  15. Lagodimos, A. G., Christou, I. T., & Skouri, K. (2012). Computing globally optimal (s, S, T) inventory policies. Omega, 40(5), 660-671. https://doi.org/10.1016/j.omega.2011.12.008 Go to original source...
  16. Levén, E., & Segerstedt, A. (2004). Inventory control with a modified Croston procedure and Erlang distribution. International Journal of Production Economics, 90(3), 361-367. https://doi.org/10.1016/S0925-5273(03)00053-7 Go to original source...
  17. Lowas III, A. F., & Ciarallo, F. W. (2016). Reliability and operations: Keys to lumpy aircraft spare parts demands. Journal of Air Transport Management, 50, 30-40. https://doi.org/10.1016/j.jairtraman.2015.09.004 Go to original source...
  18. Pasandideh, S. H. R., Niaki, S. T. A., & Tokhmehchi, N. (2011). A parameter-tuned genetic algorithm to optimize two-echelon continuous review inventory systems. Expert Systems with Applications, 38(9), 11708-11714. https://doi.org/10.1016/j.eswa.2011.03.056 Go to original source...
  19. Qiu, R., Sun, M., & Lim, Y. F. (2017). Optimizing (s, S) policies for multi-period inventory models with demand distribution uncertainty: Robust dynamic programing approaches. European Journal of Operational Research, 261(3), 880-892. https://doi.org/10.1016/j.ejor.2017.02.027 Go to original source...
  20. ªahin, M., Eldemir, F., & Turkyilmaz, A. (2021). Inventory Cost Minimization of Spare Parts in Aviation Industry. Transportation Research Procedia, 59, 29-37. https://doi.org/10.1016/j.trpro.2021.11.094 Go to original source...
  21. Syntetos, A. A., Babai, M. Z., & Gardner Jr, E. S. (2015). Forecasting intermittent inventory demands: simple parametric methods vs. bootstrapping. Journal of Business Research, 68(8), 1746-1752. https://doi.org/10.1016/j.jbusres.2015.03.034 Go to original source...
  22. Syntetos, A. A., & Boylan, J. E. (2001). On the bias of intermittent demand estimates. International Journal of Production Economics, 71(1-3), 457-466. https://doi.org/10.1016/S0925-5273(00)00143-2 Go to original source...
  23. Tao, Y., Lee, L. H., Chew, E. P., Sun, G., & Charles, V. (2017). Inventory control policy for a periodic review system with expediting. Applied Mathematical Modelling, 49, 375-393. https://doi.org/10.1016/j.apm.2017.04.036 Go to original source...
  24. Teunter, R. H., & Duncan, L. (2009). Forecasting intermittent demand: a comparative study. Journal of the Operational Research Society, 60(3), 321-329. https://doi.org/10.1057/palgrave.jors.2602569 Go to original source...
  25. Vasconcelos, B. C., & Marques, M. P. (2000). Reorder Quantities for (Q, R) Inventory Models. The Journal of the Operational Research Society, 51(5), 635-638. https://doi.org/10.2307/254194 Go to original source...
  26. Willemain, T. R., Smart, C. N., Shockor, J. H., & DeSautels, P. A. (1994). Forecasting intermittent demand in manufacturing: a comparative evaluation of Croston's method. International Journal of Forecasting, 10(4), 529-538. https://doi.org/10.1016/0169-2070(94)90021-3 Go to original source...
  27. Willemain, T. R., Smart, C. N., & Schwarz, H. F. (2004). A new approach to forecasting intermittent demand for service parts inventories. International Journal of Forecasting, 20(3), 375-387. https://doi.org/10.1016/S0169-2070(03)00013-X Go to original source...
  28. Yuan, Y., Tole, K., Ni, F., He, K., Xiong, Z., & Liu, J. (2022). Adaptive simulated annealing with greedy search for the circle bin packing problem. Computers & Operations Research, 105826. https://doi.org/10.1016/j.cor.2022.105826 Go to original source...
  29. Zhu, S., van Jaarsveld, W., & Dekker, R. (2022). Critical project planning and spare parts inventory management in shutdown maintenance. Reliability Engineering & System Safety, 219, 108197. https://doi.org/10.1016/j.ress.2021.108197 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.