Acta Informatica Pragensia 2026, 15(1), 135-156 | DOI: 10.18267/j.aip.294136

Optimizing Osteoporosis Detection with Cascaded Convolutional Neural Network and Real-Coded Genetic Algorithm

Hemalatha Balan ORCID...1, Madhavi Latha Pandala ORCID...2, Venkatasubramanian Srinivasan ORCID...3, Venkatachalam Kandasamy ORCID...4
1 Department of Information Technology, Dr. N. G. P. Institute of Technology, Coimbatore, India
2 Department of Information Technology, Siddhartha Academy of Higher Education Deemed to be University, Vijayawada, India
3 Department of Computer Science and Business Systems, Saranathan College of Engineering, Trichy, India
4 Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, India

Background: Osteoporosis is a condition characterized by bones that are porous and brittle, increasing the risk of fractures. It is often asymptomatic until substantial harm develops, making it crucial to treat at the onset of the disorder.

Objective: This study aims to develop a practical, in-depth and adaptable framework utilizing constructed clinical and demographic datasets for the early detection of osteoporosis.

Methods: We design a cascade convolutional neural network with adaptive weight fusion and fine-tune it with a real-coded genetic algorithm. An anonymized clinical and demographic record publicly available bone mineral density dataset was used. Missing data identification, normalization and encoding of categorical variables were key diagnostic steps. The training subset consisted of 70% of the dataset, while the remaining 30% was used for testing.

Results: The predictive capability of the proposed model is demonstrated by utilizing two datasets. Dataset 1 is used for training and testing, achieving a classification accuracy of 99.5%, precision of 98.7%, recall of 99.0% and AUC-ROC of 0.99. Dataset 2 is used to test the model generalizability, achieving a classification accuracy of 97.0%.

Conclusion: The model integrates well into primary care settings, as it relies on structured clinical data rather than imaging. Its low costs relative to value and high scalability make it suitable for population-level screening and treatment of osteoporosis. The limitation of the research is that we utilize only a clinical dataset to train the model without image analysis.

Keywords: Osteoporosis; Deep learning; Medical imaging; Automated diagnosis; Bone density; X-ray; CNN; Early detection.

Received: June 20, 2025; Revised: October 21, 2025; Accepted: October 22, 2025; Prepublished online: January 1, 2026; Published: January 3, 2026  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Balan, H., Pandala, M.L., Srinivasan, V., & Kandasamy, V. (2026). Optimizing Osteoporosis Detection with Cascaded Convolutional Neural Network and Real-Coded Genetic Algorithm. Acta Informatica Pragensia15(1), 135-156. doi: 10.18267/j.aip.294
Download citation

References

  1. Al-Husaini, N., Razali, R., Al-Haidose, A., Al-Hamdani, M., & Abdallah, A. M. (2025). Characterizing low femoral neck BMD in Qatar Biobank participants using machine learning models. BMC Musculoskeletal Disorders, 26(1), 492. https://doi.org/10.1186/s12891-025-08726-5 Go to original source...
  2. Alden, Z. N. a. M. S., & Ata, O. (2024). A comprehensive analysis and performance evaluation for osteoporosis prediction models. PeerJ Computer Science, 10, e2338. https://doi.org/10.7717/peerj-cs.2338 Go to original source...
  3. Amani, F., Amanzadeh, M., Hamedan, M., & Amani, P. (2024). Diagnostic accuracy of deep learning in prediction of osteoporosis: a systematic review and meta-analysis. BMC Musculoskeletal Disorders, 25(1), 991. https://doi.org/10.1186/s12891-024-08120-7 Go to original source...
  4. Ashwini, A., Chirchi, V., Balasubramaniam, S., & Shah, M. A. (2025). Bio inspired optimization techniques for disease detection in deep learning systems. Scientific Reports, 15(1), 18202. https://doi.org/10.1038/s41598-025-02846-7 Go to original source...
  5. Belali, M. H., Khan, F. R., Rajin, N. M., Sarkar, H., & Uddin, K. M. M. (2025). Bone Osteoporosis Fractures Detection with Deep Learning: An X-ray Image Analysis Approach. Biomedical Materials & Devices, 4(1), 533-551. https://doi.org/10.1007/s44174-025-00285-6 Go to original source...
  6. Chan, W. P., Liu, J., & Chi, W. (2004). Evaluation of bone mineral density of the lumbar spine and proximal femur in population-based routine health examinations of healthy asians. Acta Radiologica, 45(1), 59-64. https://doi.org/10.1080/02841850310003221 Go to original source...
  7. Chen, Y., Chan, W. P., Zhang, H., Tsai, Z., Peng, H., Huang, S., Jang, Y., & Kuo, Y. (2024). Automated osteoporosis classification and T-score prediction using hip radiographs via deep learning algorithm. Therapeutic Advances in Musculoskeletal Disease, 16, 1759720X241237872. https://doi.org/10.1177/1759720x241237872 Go to original source...
  8. Cooper, C., O'Neill, T., & Silman, A. (1993). The epidemiology of vertebral fractures. Bone, 14, 89-97. https://doi.org/10.1016/8756-3282(93)90358-h Go to original source...
  9. Dhanagopal, R., Menaka, R., Kumar, R. S., Raj, P. T. V., Debrah, E. L., & Pradeep, K. (2024). Channel-Boosted and Transfer Learning Convolutional Neural Network-Based Osteoporosis Detection from CT Scan, Dual X-Ray, and X-Ray Images. Journal of Healthcare Engineering, 2024, 1-10. https://doi.org/10.1155/2024/3733705 Go to original source...
  10. D'Souza, M., Nimma, D., Pokkuluri, K. S., Ramesh, J. V. N., Kondaveeti, S. B., & Kongala, L. (2024). Multiclass Osteoporosis Detection: Enhancing Accuracy with Woodpecker-Optimized CNN-XGBoost. International Journal of Advanced Computer Science and Applications, 15(8), 0150889. https://doi.org/10.14569/ijacsa.2024.0150889 Go to original source...
  11. Carberry, G. A., Pooler, B. D., Binkley, N., Lauder, T. B., Bruce, R. J., & Pickhardt, P. J. (2013). Unreported vertebral body compression fractures at abdominal multidetector CT. Radiology, 268(1), 120-126. https://doi.org/10.1148/radiol.13121632 Go to original source...
  12. Ha, T.J., Kim, H.S., Kang, S.U., Lee, D., Kim, W.J., Moon, K.W., Choi, H.S., Kim, J.H., Kim, Y., Bak, S.H., & Park, S.W. (2024). Multi-classification of osteoporosis grading stages using abdominal computed tomography with clinical variables: Application of deep learning with a convolutional neural network. Journal of the Korean Society of Radiology, 18(3), 187-201. https://doi.org/10.7742/jksr.2024.18.3.187 Go to original source...
  13. Halesh, T.G., & Sathish, P. (2024). Femur bone volumetric estimation for osteoporosis classification based on deep learning with tuna jellyfish optimization using X-ray images. Multiagent and Grid Systems, 20(1), 1-25. https://doi.org/10.3233/mgs-230123 Go to original source...
  14. Ho, C., Fan, T., Kuo, C., Yen, T., Chang, S., Pei, Y., & Chen, Y. (2025). HarDNet-based deep learning model for osteoporosis screening and bone mineral density inference from hand radiographs. Bone, 190, 117317. https://doi.org/10.1016/j.bone.2024.117317 Go to original source...
  15. Huo, X., Sun, G., Tian, S., Wang, Y., Yu, L., Long, J., Zhang, W., & Li, A. (2024). HiFuse: Hierarchical multi-scale feature fusion network for medical image classification. Biomedical Signal Processing and Control, 87, 105534. https://doi.org/10.1016/j.bspc.2023.105534 Go to original source...
  16. Houssein, E. H., Saber, E., Ali, A. A., & Wazery, Y. M. (2024). Integrating metaheuristics and artificial intelligence for healthcare: basics, challenging and future directions. Artificial Intelligence Review, 57(8), 205. https://doi.org/10.1007/s10462-024-10822-2 Go to original source...
  17. Iliou, T., Anagnostopoulos, C., Stephanakis, I. M., & Anastassopoulos, G. (2017). A novel data preprocessing method for boosting neural network performance: A case study in osteoporosis prediction. Information Sciences, 380, 92-100. https://doi.org/10.1016/j.ins.2015.10.026 Go to original source...
  18. Kale, K. D., Ainapure, B., Nagulapati, S., Sankpal, L., & Satpute, B. S. (2024). Chronological-hybrid optimization enabled deep learning for boundary segmentation and osteoporosis classification using femur bone. The Imaging Science Journal, 72(2), 183-203. https://doi.org/10.1080/13682199.2023.2200513 Go to original source...
  19. Kale, K., Naik, A., & Naik, P. (2025). Femur Dual-Energy X-ray Absorptiometry (DEXA) Scan Dataset of the Indian Population. Mendeley Data, V1. https://doi.org/10.17632/kys6x6wykj.1 Go to original source...
  20. Kang, J., Park, C., Lee, D., Yoo, J., & Kim, M. (2023). Prediction of bone mineral density in CT using deep learning with explainability. Frontiers in Physiology, 13, 1061911. https://doi.org/10.3389/fphys.2022.1061911 Go to original source...
  21. Kunjali, S., & Malarvizhi, S. (2024). Optimized Support Vector Machine using Sparrow Search Optimization for Osteoporosis Disease Diagnosis. In 2024 2nd International Conference on Sustainable Computing and Smart Systems, (pp. 1523-1528). IEEE. https://doi.org/10.1109/icscss60660.2024.10625185 Go to original source...
  22. Liu, L. (2024). Implemented classification techniques for osteoporosis using deep learning from the perspective of healthcare analytics. Technology and Health Care, 32(3), 1947-1965. https://doi.org/10.3233/thc-231517 Go to original source...
  23. Lee, S., Kim, J., Kang, H., Kang, D., & Park, J. (2021). Genetic algorithm based deep learning neural network structure and hyperparameter optimization. Applied Sciences, 11(2), 744. https://doi.org/10.3390/app11020744 Go to original source...
  24. Müller, D., Bauer, J. S., Zeile, M., Rummeny, E. J., & Link, T. M. (2008). Significance of sagittal reformations in routine thoracic and abdominal multislice CT studies for detecting osteoporotic fractures and other spine abnormalities. European Radiology, 18(8), 1696-1702. https://doi.org/10.1007/s00330-008-0920-2 Go to original source...
  25. Oh, S., Kang, W. Y., Park, H., Yang, Z., Lee, J., Kim, C., Woo, O. H., & Hong, S. (2024). Evaluation of deep learning-based quantitative computed tomography for opportunistic osteoporosis screening. Scientific Reports, 14(1), 363. https://doi.org/10.1038/s41598-023-45824-7 Go to original source...
  26. Johnell, O., & Kanis, J. A. (2006). An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis International, 17(12), 1726-1733. https://doi.org/10.1007/s00198-006-0172-4 Go to original source...
  27. Panse, V., & Gupta, R. (2021). Medical image enhancement with brightness preserving based on local contrast stretching and global dynamic histogram equalization. In 2021 10th IEEE International Conference on Communication Systems and Network Technologies, (pp. 164-170). IEEE. https://doi.org/10.1109/CSNT51715.2021.9509670 Go to original source...
  28. Sarhan, A. M., Gobara, M., Yasser, S., Elsayed, Z., Sherif, G., Moataz, N., Yasir, Y., Moustafa, E., Ibrahim, S., & Ali, H. A. (2024). Knee Osteoporosis diagnosis based on Deep Learning. International Journal of Computational Intelligence Systems, 17(1), 241. https://doi.org/10.1007/s44196-024-00615-4 Go to original source...
  29. Sarmadi, A., Razavi, Z. S., Van Wijnen, A. J., & Soltani, M. (2024). Comparative analysis of vision transformers and convolutional neural networks in osteoporosis detection from X-ray images. Scientific Reports, 14(1), 18007. https://doi.org/10.1038/s41598-024-69119-7 Go to original source...
  30. Samala, S., Prasad, C.R., Kumar, P.R., Akash, K., Afreena, M.D., & Kumar, M.S. (2024). CNN-Based Osteoporosis Diagnosis: A Novel Approach to Bone Fragility Analysis. In 2024 International Conference on IoT Based Control Networks and Intelligent Systems, (pp. 1111-1116). IEEE. https://doi.org/10.1109/ICICNIS64247.2024.10823107 Go to original source...
  31. Sampath, K., Rajagopal, S., & Chintanpalli, A. (2024). A comparative analysis of CNN-based deep learning architectures for early diagnosis of bone cancer using CT images. Scientific Reports, 14(1), 2144. https://doi.org/10.1038/s41598-024-52719-8 Go to original source...
  32. Sivasakthi, B., Preetha, K., & Selvanayagi, D. (2025). Osteoporosis Disease Detection using Optimized Elman Recurrent Neural Network based on Hybrid Bacterial Colony Optimization and Tabu Search Algorithm. International Research Journal of Multidisciplinary Technovation, 7(1), 1-16. https://doi.org/10.54392/irjmt2511 Go to original source...
  33. Sharma, A. (2021). BMD dataset. https://www.kaggle.com/datasets/amarsharma768/bmd-data
  34. Tong, X., Wang, S., Zhang, J., Fan, Y., Liu, Y., & Wei, W. (2024). Automatic Osteoporosis Screening System Using Radiomics and Deep Learning from Low-Dose Chest CT Images. Bioengineering, 11(1), 50. https://doi.org/10.3390/bioengineering11010050 Go to original source...
  35. Woud, W., Hamad, M. M., & Alrawi, A. T. H. (2025). Enhancing Osteoporosis Detection with Fuzzy Logic Preprocing and Pre-Trained Deep Convolutional Neural Networks. Journal of Intelligent Systems and Internet of Things, 16(2), 214-235. https://doi.org/10.54216/jisiot.160216 Go to original source...
  36. Wright, N. C., Looker, A. C., Saag, K. G., Curtis, J. R., Delzell, E. S., Randall, S., & Dawson-Hughes, B. (2014). The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. Journal of Bone and Mineral Research, 29(11), 2520-2526. https://doi.org/10.1002/jbmr.2269 Go to original source...
  37. Zhang, B., Chen, Z., Yan, R., Lai, B., Wu, G., You, J., Wu, X., Duan, J., & Zhang, S. (2024). Development and validation of a Feature-Based Broad-Learning system for opportunistic osteoporosis screening using lumbar spine radiographs. Academic Radiology, 31(1), 84-92. https://doi.org/10.1016/j.acra.2023.07.002 Go to original source...
  38. Zhang, D., Yang, X., Wang, F., Qiu, C., Chai, Y., & Fang, D. (2025). Comparative analysis of feature extraction methods and machine learning models for predicting osteoporosis prevalence. Journal of Medical Systems, 49(1), 72. https://doi.org/10.1007/s10916-025-02203-1 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.